|
| 1 | +import asyncio |
| 2 | +import functools |
| 3 | +import logging |
| 4 | +import os |
| 5 | +from datetime import datetime |
| 6 | +from pathlib import Path |
| 7 | +import shutil |
| 8 | +import socket |
| 9 | +import subprocess |
| 10 | +from typing import Optional, Tuple |
| 11 | + |
| 12 | +import psutil |
| 13 | + |
| 14 | +from ray.dashboard.modules.reporter.profile_manager import ( |
| 15 | + _format_failed_profiler_command, |
| 16 | +) |
| 17 | + |
| 18 | +logger = logging.getLogger(__name__) |
| 19 | + |
| 20 | + |
| 21 | +class GpuProfilingManager: |
| 22 | + """GPU profiling manager for Ray Dashboard. |
| 23 | +
|
| 24 | + NOTE: The current implementation is based on the `dynolog` OSS project, |
| 25 | + but these are mostly implementation details that can be changed in the future. |
| 26 | + `dynolog` needs to be installed on the nodes where profiling is being done. |
| 27 | +
|
| 28 | + This only supports Torch training scripts with KINETO_USE_DAEMON=1 set. |
| 29 | + It is not supported for other frameworks. |
| 30 | + """ |
| 31 | + |
| 32 | + # Port for the monitoring daemon. |
| 33 | + # This port was chosen arbitrarily to a value to avoid conflicts. |
| 34 | + _DYNOLOG_PORT = 65406 |
| 35 | + |
| 36 | + # Default timeout for the profiling operation. |
| 37 | + _DEFAULT_TIMEOUT_S = 5 * 60 |
| 38 | + |
| 39 | + _NO_PROCESSES_MATCHED_ERROR_MESSAGE_PREFIX = "No processes were matched" |
| 40 | + |
| 41 | + _DISABLED_ERROR_MESSAGE = ( |
| 42 | + "GPU profiling is not enabled on node {ip_address}. " |
| 43 | + "This is the case if no GPUs are detected on the node or if " |
| 44 | + "the profiling dependency `dynolog` is not installed on the node.\n" |
| 45 | + "Please ensure that GPUs are available on the node and that " |
| 46 | + "`dynolog` is installed." |
| 47 | + ) |
| 48 | + _NO_PROCESSES_MATCHED_ERROR_MESSAGE = ( |
| 49 | + "The profiling command failed for pid={pid} on node {ip_address}. " |
| 50 | + "There are a few potential reasons for this:\n" |
| 51 | + "1. The `KINETO_USE_DAEMON=1 KINETO_DAEMON_INIT_DELAY_S=5` environment variables " |
| 52 | + "are not set for the training worker processes.\n" |
| 53 | + "2. The process requested for profiling is not running a " |
| 54 | + "PyTorch training script. GPU profiling is only supported for " |
| 55 | + "PyTorch training scripts, typically launched via " |
| 56 | + "`ray.train.torch.TorchTrainer`." |
| 57 | + ) |
| 58 | + _DEAD_PROCESS_ERROR_MESSAGE = ( |
| 59 | + "The requested process to profile with pid={pid} on node " |
| 60 | + "{ip_address} is no longer running. " |
| 61 | + "GPU profiling is not available for this process." |
| 62 | + ) |
| 63 | + |
| 64 | + def __init__(self, profile_dir_path: str): |
| 65 | + # Dump trace files to: /tmp/ray/session_latest/logs/profiles/ |
| 66 | + self._root_log_dir = Path(profile_dir_path) |
| 67 | + self._profile_dir_path = self._root_log_dir / "profiles" |
| 68 | + self._daemon_log_file_path = ( |
| 69 | + self._profile_dir_path / f"dynolog_daemon_{os.getpid()}.log" |
| 70 | + ) |
| 71 | + |
| 72 | + hostname = socket.gethostname() |
| 73 | + self._ip_address = socket.gethostbyname(hostname) |
| 74 | + |
| 75 | + self._dynolog_bin = shutil.which("dynolog") |
| 76 | + self._dyno_bin = shutil.which("dyno") |
| 77 | + |
| 78 | + self._dynolog_daemon_process: Optional[subprocess.Popen] = None |
| 79 | + |
| 80 | + if not self.node_has_gpus(): |
| 81 | + logger.warning( |
| 82 | + "[GpuProfilingManager] No GPUs found on this node, GPU profiling will not be setup." |
| 83 | + ) |
| 84 | + if not self._dynolog_bin or not self._dyno_bin: |
| 85 | + logger.warning( |
| 86 | + "[GpuProfilingManager] `dynolog` is not installed, GPU profiling will not be available." |
| 87 | + ) |
| 88 | + |
| 89 | + self._profile_dir_path.mkdir(parents=True, exist_ok=True) |
| 90 | + |
| 91 | + @property |
| 92 | + def enabled(self) -> bool: |
| 93 | + return ( |
| 94 | + self.node_has_gpus() |
| 95 | + and self._dynolog_bin is not None |
| 96 | + and self._dyno_bin is not None |
| 97 | + ) |
| 98 | + |
| 99 | + @property |
| 100 | + def is_monitoring_daemon_running(self) -> bool: |
| 101 | + return ( |
| 102 | + self._dynolog_daemon_process is not None |
| 103 | + and self._dynolog_daemon_process.poll() is None |
| 104 | + ) |
| 105 | + |
| 106 | + @classmethod |
| 107 | + @functools.cache |
| 108 | + def node_has_gpus(cls) -> bool: |
| 109 | + try: |
| 110 | + subprocess.check_output(["nvidia-smi"], stderr=subprocess.DEVNULL) |
| 111 | + return True |
| 112 | + except (subprocess.CalledProcessError, FileNotFoundError): |
| 113 | + return False |
| 114 | + |
| 115 | + @classmethod |
| 116 | + def is_pid_alive(cls, pid: int) -> bool: |
| 117 | + try: |
| 118 | + return psutil.pid_exists(pid) and psutil.Process(pid).is_running() |
| 119 | + except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess): |
| 120 | + return False |
| 121 | + |
| 122 | + def start_monitoring_daemon(self): |
| 123 | + """Start the GPU profiling monitoring daemon if it's possible. |
| 124 | + This must be called before profiling. |
| 125 | + """ |
| 126 | + |
| 127 | + if not self.enabled: |
| 128 | + logger.warning( |
| 129 | + "[GpuProfilingManager] GPU profiling is disabled, skipping daemon setup." |
| 130 | + ) |
| 131 | + return |
| 132 | + |
| 133 | + if self.is_monitoring_daemon_running: |
| 134 | + logger.warning( |
| 135 | + "[GpuProfilingManager] GPU profiling monitoring daemon is already running." |
| 136 | + ) |
| 137 | + return |
| 138 | + |
| 139 | + try: |
| 140 | + with open(self._daemon_log_file_path, "ab") as log_file: |
| 141 | + daemon = subprocess.Popen( |
| 142 | + [ |
| 143 | + self._dynolog_bin, |
| 144 | + "--enable_ipc_monitor", |
| 145 | + "--port", |
| 146 | + str(self._DYNOLOG_PORT), |
| 147 | + ], |
| 148 | + stdout=log_file, |
| 149 | + stderr=log_file, |
| 150 | + stdin=subprocess.DEVNULL, |
| 151 | + start_new_session=True, |
| 152 | + ) |
| 153 | + except (FileNotFoundError, PermissionError, OSError) as e: |
| 154 | + logger.error( |
| 155 | + f"[GpuProfilingManager] Failed to launch GPU profiling monitoring daemon: {e}\n" |
| 156 | + f"Check error log for more details: {self._daemon_log_file_path}" |
| 157 | + ) |
| 158 | + return |
| 159 | + |
| 160 | + logger.info( |
| 161 | + "[GpuProfilingManager] Launched GPU profiling monitoring daemon " |
| 162 | + f"(pid={daemon.pid}, port={self._DYNOLOG_PORT})\n" |
| 163 | + f"Redirecting logs to: {self._daemon_log_file_path}" |
| 164 | + ) |
| 165 | + self._dynolog_daemon_process = daemon |
| 166 | + |
| 167 | + def _get_trace_filename(self) -> str: |
| 168 | + timestamp = datetime.now().strftime("%Y%m%d%H%M%S") |
| 169 | + return f"gputrace_{self._ip_address}_{timestamp}.json" |
| 170 | + |
| 171 | + async def gpu_profile( |
| 172 | + self, pid: int, num_iterations: int, _timeout_s: int = _DEFAULT_TIMEOUT_S |
| 173 | + ) -> Tuple[bool, str]: |
| 174 | + """ |
| 175 | + Perform GPU profiling on a specified process. |
| 176 | +
|
| 177 | + Args: |
| 178 | + pid: The process ID (PID) of the target process to be profiled. |
| 179 | + num_iterations: The number of iterations to profile. |
| 180 | + _timeout_s: Maximum time in seconds to wait for profiling to complete. |
| 181 | + This is an advanced parameter that catches edge cases where the |
| 182 | + profiling request never completes and hangs indefinitely. |
| 183 | +
|
| 184 | + Returns: |
| 185 | + Tuple[bool, str]: A tuple containing a boolean indicating the success |
| 186 | + of the profiling operation and a string with the |
| 187 | + filepath of the trace file relative to the root log directory, |
| 188 | + or an error message. |
| 189 | + """ |
| 190 | + if not self.enabled: |
| 191 | + return False, self._DISABLED_ERROR_MESSAGE.format( |
| 192 | + ip_address=self._ip_address |
| 193 | + ) |
| 194 | + |
| 195 | + if not self._dynolog_daemon_process: |
| 196 | + raise RuntimeError("Must call `start_monitoring_daemon` before profiling.") |
| 197 | + |
| 198 | + if not self.is_monitoring_daemon_running: |
| 199 | + error_msg = ( |
| 200 | + f"GPU monitoring daemon (pid={self._dynolog_daemon_process.pid}) " |
| 201 | + f"is not running on node {self._ip_address}. " |
| 202 | + f"See log for more details: {self._daemon_log_file_path}" |
| 203 | + ) |
| 204 | + logger.error(f"[GpuProfilingManager] {error_msg}") |
| 205 | + return False, error_msg |
| 206 | + |
| 207 | + if not self.is_pid_alive(pid): |
| 208 | + error_msg = self._DEAD_PROCESS_ERROR_MESSAGE.format( |
| 209 | + pid=pid, ip_address=self._ip_address |
| 210 | + ) |
| 211 | + logger.error(f"[GpuProfilingManager] {error_msg}") |
| 212 | + return False, error_msg |
| 213 | + |
| 214 | + trace_file_name = self._get_trace_filename() |
| 215 | + trace_file_path = self._profile_dir_path / trace_file_name |
| 216 | + |
| 217 | + cmd = [ |
| 218 | + self._dyno_bin, |
| 219 | + "--port", |
| 220 | + str(self._DYNOLOG_PORT), |
| 221 | + "gputrace", |
| 222 | + "--pids", |
| 223 | + str(pid), |
| 224 | + "--log-file", |
| 225 | + str(trace_file_path), |
| 226 | + "--process-limit", |
| 227 | + str(1), |
| 228 | + "--iterations", |
| 229 | + str(num_iterations), |
| 230 | + ] |
| 231 | + |
| 232 | + process = await asyncio.create_subprocess_exec( |
| 233 | + *cmd, |
| 234 | + stdout=subprocess.PIPE, |
| 235 | + stderr=subprocess.PIPE, |
| 236 | + ) |
| 237 | + stdout, stderr = await process.communicate() |
| 238 | + if process.returncode != 0: |
| 239 | + return False, _format_failed_profiler_command(cmd, "dyno", stdout, stderr) |
| 240 | + |
| 241 | + stdout_str = stdout.decode("utf-8") |
| 242 | + logger.info(f"[GpuProfilingManager] Launched profiling: {stdout_str}") |
| 243 | + |
| 244 | + # The initial launch command returns immediately, |
| 245 | + # so wait for the profiling to actually finish before returning. |
| 246 | + # The indicator of the profiling finishing is the creation of the trace file, |
| 247 | + # when the completed trace is moved from <prefix>.tmp.json -> <prefix>.json |
| 248 | + # If the profiling request is invalid (e.g. "No processes were matched"), |
| 249 | + # the trace file will not be created and this will hang indefinitely, |
| 250 | + # up until the timeout is reached. |
| 251 | + |
| 252 | + # TODO(ml-team): This logic is brittle, we should find a better way to do this. |
| 253 | + if self._NO_PROCESSES_MATCHED_ERROR_MESSAGE_PREFIX in stdout_str: |
| 254 | + error_msg = self._NO_PROCESSES_MATCHED_ERROR_MESSAGE.format( |
| 255 | + pid=pid, ip_address=self._ip_address |
| 256 | + ) |
| 257 | + logger.error(f"[GpuProfilingManager] {error_msg}") |
| 258 | + return False, error_msg |
| 259 | + |
| 260 | + # The actual trace file gets dumped with a suffix of `_{pid}.json |
| 261 | + trace_file_name_pattern = trace_file_name.replace(".json", "*.json") |
| 262 | + |
| 263 | + return await self._wait_for_trace_file(pid, trace_file_name_pattern, _timeout_s) |
| 264 | + |
| 265 | + async def _wait_for_trace_file( |
| 266 | + self, |
| 267 | + pid: int, |
| 268 | + trace_file_name_pattern: str, |
| 269 | + timeout_s: int, |
| 270 | + sleep_interval_s: float = 0.25, |
| 271 | + ) -> Tuple[bool, str]: |
| 272 | + """Wait for the trace file to be created. |
| 273 | +
|
| 274 | + Args: |
| 275 | + pid: The target process to be profiled. |
| 276 | + trace_file_name_pattern: The pattern of the trace file to be created |
| 277 | + within the `<log_dir>/profiles` directory. |
| 278 | + timeout_s: Maximum time in seconds to wait for profiling to complete. |
| 279 | + sleep_interval_s: Time in seconds to sleep between checking for the trace file. |
| 280 | +
|
| 281 | + Returns: |
| 282 | + Tuple[bool, str]: (success, trace file path relative to the *root* log directory) |
| 283 | + """ |
| 284 | + remaining_timeout_s = timeout_s |
| 285 | + |
| 286 | + logger.info( |
| 287 | + "[GpuProfilingManager] Waiting for trace file to be created " |
| 288 | + f"with the pattern: {trace_file_name_pattern}" |
| 289 | + ) |
| 290 | + |
| 291 | + while True: |
| 292 | + dumped_trace_file_path = next( |
| 293 | + self._profile_dir_path.glob(trace_file_name_pattern), None |
| 294 | + ) |
| 295 | + if dumped_trace_file_path is not None: |
| 296 | + break |
| 297 | + |
| 298 | + await asyncio.sleep(sleep_interval_s) |
| 299 | + |
| 300 | + remaining_timeout_s -= sleep_interval_s |
| 301 | + if remaining_timeout_s <= 0: |
| 302 | + return ( |
| 303 | + False, |
| 304 | + f"GPU profiling timed out after {timeout_s} seconds, please try again.", |
| 305 | + ) |
| 306 | + |
| 307 | + # If the process has already exited, return an error. |
| 308 | + if not self.is_pid_alive(pid): |
| 309 | + return ( |
| 310 | + False, |
| 311 | + self._DEAD_PROCESS_ERROR_MESSAGE.format( |
| 312 | + pid=pid, ip_address=self._ip_address |
| 313 | + ), |
| 314 | + ) |
| 315 | + |
| 316 | + logger.info( |
| 317 | + f"[GpuProfilingManager] GPU profiling finished, trace file: {dumped_trace_file_path}" |
| 318 | + ) |
| 319 | + return True, str(dumped_trace_file_path.relative_to(self._root_log_dir)) |
0 commit comments