-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathReadMe.Rmd
638 lines (527 loc) · 31 KB
/
ReadMe.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
---
output: github_document
---
```{r init, include=FALSE, purl = FALSE}
knitr::opts_chunk$set(cache=TRUE, tidy = TRUE, collapse = TRUE, autodep = TRUE,
tidy.opts=list(blank=FALSE, width.cutoff=100), comment = "#>")
options(width = 100)
```
# Using LocalSolver to solve VRP problems
The last days I have been playing a bit with [LocalSolver](http://www.localsolver.com/) and tried to model various vehicle routing problems (VRP). LocalSolver is a heuristic solver based on a heuristic search approach combining different optimization techniques. It includes a math modeling language (LSP) and there is a package so that it can be used from [R](https://www.r-project.org/). You need to download and install LocalSolver (I used v7.0) and get an academic license from their webpage.
Below I will formulate models for different VRPs and solve them using LocalSolver. The purpose of these tests is not to compare them with an optimal solution to the problems, but to examine the modelling capabilities of LSP. All the code used can be found in files `simulate.R` and `ReadMe.R`.
## Capacitated VRP (CVRP)
Let us start by consider the classical CVRP. First, we simulate some data:
```{r cvrpData}
source("simulate.R")
data <- simulateCVRP(customers = 10, seed = 578)
str(data)
```
Note that all data are integers since I have chosen to use integers in LocalSolver (input data must be the same data type). Next, we formulate the model using [LSP](http://www.localsolver.com/documentation/lspreference/index.html). Here I used the example on LocalSolver's webpage as a starting point. The learning curve for LSP is quite steep; however, the [examples](http://www.localsolver.com/documentation/exampletour/index.html) help. I was missing a forum where to ask question though. An important issue is that you must choose where the index in arrays start. I choose C style and let all index start from zero. We need decision variables `routeSequences[k]` containing a list of numbers in the range zero to `customers-1`. That is, if `routeSequences[k]` equals {0,4,6}, then truck number `k` visit customer 1, 5 and 7 (remember index start from zero).
```{r cvrpModel, warning=FALSE}
library(localsolver)
model <- "function model(){
routeSequences[k in 0..nbTrucks-1] <- list(nbCustomers); // decision variable
constraint partition[k in 0..nbTrucks-1](routeSequences[k]); // visited by exaclty one route
trucksUsed[k in 0..nbTrucks-1] <- count(routeSequences[k]) > 0;
nbTrucksUsed <- sum[k in 0..nbTrucks-1](trucksUsed[k]);
for [k in 0..nbTrucks-1] {
local sequence <- routeSequences[k];
local c <- count(sequence);
// The quantity needed in each route must not exceed the truck capacity
routeQuantity[k] <- sum(0..c-1, i => demands[sequence[i]]);
constraint routeQuantity[k] <= truckCapacity;
// Distance travelled by truck k
routeDistances[k] <- sum(1..c-1, i => distanceMatrix[sequence[i-1]+1][sequence[i]+1]) +
(c > 0 ? (distanceMatrix[0][sequence[0]+1] + distanceMatrix[sequence[c-1]+1][0]) : 0);
}
// Total distance travelled
totalDistance <- sum[k in 0..nbTrucks-1](routeDistances[k]);
// Objective: minimize the number of trucks used, then minimize the distance travelled
minimize nbTrucksUsed;
minimize totalDistance;
}"
lsp <- ls.problem(model)
lsp <- set.params(lsp, lsTimeLimit=c(20,20), indexFromZero=TRUE, lsNbThreads = 4)
```
The model is added to LocalSolver using the [localsolver package](https://cran.r-project.org/web/packages/localsolver/index.html). I set the time limit to 20 seconds for each objective. Output returned to R can be added using function `add.output.expr`.
```{r cvrpSolve}
lsp <- set.temp.dir(lsp, path=getwd()) # add temporay files to this folder
lsp <- add.output.expr(lsp, "routeSequences", c(data$nbTrucks, data$nbCustomers))
lsp <- add.output.expr(lsp, "routeDistances", data$nbTrucks)
lsp <- add.output.expr(lsp, "routeQuantity", data$nbTrucks)
lsp <- add.output.expr(lsp, "nbTrucksUsed")
lsp <- add.output.expr(lsp, "totalDistance")
sol<-ls.solve(lsp, data)
```
The results are now in the list `sol`. Three temporary files are used by the solver. `input.lsp` contains the model (with input and output) passed to the solver, `output.txt` the solver log and `data.txt` the input data. Unfortunately, the solver status is not returned! So you may have to check the log to see if a feasible solution was found:
```{r cvrpCheck}
length(grep("Feasible solution", readLines("output.txt"), value = TRUE, ignore.case = FALSE))>0
```
We postprocess the solution to get a result in a more readable format:
```{r cvrpPostprocess}
printSolution<-function(sol) {
cat("Number of routes:", sol$nbTrucksUsed, "\n")
cat("Total distance:", sol$totalDistance, "\n")
cat("Routes:\n")
for (r in 1:length(sol$routeDistances)) {
if (max(sol$routeSequences[r,])>=0) {
cat("Customers:",
paste0(sol$routeSequences[r,which(sol$routeSequences[r,]!=-1)], collapse = "-"),
"distance:", sol$routeDistances[r], "quantity:", sol$routeQuantity[r],
"\n")
}
}
}
printSolution(sol)
```
## Extension - Workday constraints
Assume that only a single driver is available and that the maximum possible workday is specified. We need workday length, travel times and handling time. Note that we now use `maxRoutes` instead of `trucks` which denote the maximum number of routes per driver.
```{r oneDriverData}
data <- simulateDriver(customers = 10, seed = 578, drivers = 1, maxRoutes = 5)
str(data)
```
To handle travel time constraints we add variables `routeStops[k][i]` which is the node visited at stop i (depot = node 0) and similar `arrivalTimes[k][i]` and `departureTimes[k][i]`.
```{r oneDriverModel1}
model <- "function model(){
routeSequences[k in 0..maxRoutes-1] <- list(nbCustomers);
routeStops[k in 0..maxRoutes-1][0] = 0;
routeStops[k in 0..maxRoutes-1][nbNodes] = 0;
departureTimes[k in 0..maxRoutes-1][i in 0..nbNodes] <- int(0,depotLatestArrival);
arrivalTimes[k in 0..maxRoutes-1][i in 0..nbNodes] <- int(0,depotLatestArrival);
constraint partition[k in 0..maxRoutes-1](routeSequences[k]);
for [k in 0..maxRoutes-1] {
local sequence <- routeSequences[k];
local c <- count(sequence);
routesUsed[k] <- c > 0;
routeQuantity[k] <- sum(0..c-1, i => demands[sequence[i]]);
constraint routeQuantity[k] <= truckCapacity;
routeDistances[k] <- sum(1..c-1, i => distanceMatrix[sequence[i-1]+1][sequence[i]+1]) +
(c > 0 ? (distanceMatrix[0][sequence[0]+1] + distanceMatrix[sequence[c-1]+1][0]) : 0);
if (k==0) constraint departureTimes[k][0] >= depotEarliestStart; // first route
for [i in 1..nbNodes] {
routeStops[k][i] <- routeSequences[k][i-1] + 1;
arrivalTimes[k][i] <- departureTimes[k][i-1] + travelTimeMatrix[routeStops[k][i-1]][routeStops[k][i]];
departureTimes[k][i] <- (routeStops[k][i] > 0 ? arrivalTimes[k][i] + handlingTime : 0);
}
routeArrivalDepot[k] <- departureTimes[k][0] + (c > 0 ? (travelTimeMatrix[0][sequence[0]+1] +
travelTimeMatrix[sequence[c-1]+1][0]) : 0) +
sum(1..c-1, i => travelTimeMatrix[sequence[i-1]+1][sequence[i]+1]) + c*handlingTime;
if (k>0) {
constraint departureTimes[k][0] >= routeArrivalDepot[k-1];
constraint routeArrivalDepot[k] <= depotLatestArrival;
} else {
constraint routeArrivalDepot[k] <= depotLatestArrival;
}
}
totalRoutesUsed <- sum[k in 0..maxRoutes-1](routesUsed[k]);
totalDistance <- sum[k in 0..maxRoutes-1](routeDistances[k]);
latestArrivalTime <- max[k in 0..maxRoutes-1](routeArrivalDepot[k]);
minimize totalDistance;
minimize latestArrivalTime;
}"
lsp <- ls.problem(model)
lsp <- set.params(lsp, lsTimeLimit=20, indexFromZero=TRUE, lsNbThreads = 4)
lsp <- set.temp.dir(lsp, path=getwd())
lsp <- add.output.expr(lsp, "routeSequences", c(data$maxRoutes, data$nbCustomers))
lsp <- add.output.expr(lsp, "routeDistances", data$maxRoutes)
lsp <- add.output.expr(lsp, "routeQuantity", data$maxRoutes)
lsp <- add.output.expr(lsp, "totalRoutesUsed")
lsp <- add.output.expr(lsp, "totalDistance")
lsp <- add.output.expr(lsp, "latestArrivalTime")
lsp <- add.output.expr(lsp, "routeStops", c(data$maxRoutes, data$nbNodes+1))
lsp <- add.output.expr(lsp, "arrivalTimes", c(data$maxRoutes, data$nbNodes+1))
lsp <- add.output.expr(lsp, "departureTimes", c(data$maxRoutes, data$nbNodes+1))
lsp <- add.output.expr(lsp, "routeArrivalDepot", data$maxRoutes)
sol<-ls.solve(lsp, data)
length(grep("Feasible solution", readLines("output.txt"), value = TRUE, ignore.case = FALSE))>0
```
We have minimized the total distance and next the lastest arrival time at the depot and postprocess the solution to get the result in a more readable format:
```{r oneDriverPostprocess}
printSolution<-function(sol) {
cat("Number of routes:", sol$totalRoutesUsed, "\n")
cat("Total distance:", sol$totalDistance, "\n")
cat("Latest depot arrival (min from midnight): ", sol$latestArrivalTime,
" (constraint <=", data$depotLatestArrival, ")\n", sep = "")
cat("Routes:\n")
for (r in 1:length(sol$routeArrivalDepot)) {
if (max(sol$routeStops[r,])>0) {
cat("Customers:",
paste0(sol$routeStops[r,1:(which(sol$routeStops[r,]==0)[2])], collapse = "-"),
"departure:", sol$departureTimes[r,1],
"finished:", sol$arrivalTimes[r, which(sol$routeStops[r,]==0)[2]],
"distance:", sol$routeDistances[r],
"quantity:", sol$routeQuantity[r], "\n")
cat(" Details:", sol$routeStops[r,1], paste0("(d:", sol$departureTimes[r,1], ") ->"))
for (i in 2:(which(sol$routeStops[r,]==0)[2]-1)) {
cat("\n ", sol$routeStops[r,i],
" (tt:", data$travelTimeMatrix[sol$routeStops[r,i-1] + 1, sol$routeStops[r,i]+1],
" a:", sol$arrivalTimes[r,i], " d:", sol$departureTimes[r,i], ") ", "->", sep="")
}
cat("\n ", sol$routeStops[r,which(sol$routeStops[r,]==0)[2]],
" (tt:", data$travelTimeMatrix[sol$routeStops[r,i-1]+1,sol$routeStops[r,i]+1],
" a:", sol$arrivalTimes[r,which(sol$routeStops[r,]==0)[2]], ")\n", sep="")
}
}
}
printSolution(sol)
```
Note currently there is no time added for filling the truck at the depot. Let us try another instance.
```{r oneDriverModel2}
data <- simulateDriver(customers = 20, seed = 578, drivers = 1, maxRoutes = 12)
lsp <- clear.output.exprs(lsp)
lsp <- add.output.expr(lsp, "routeSequences", c(data$maxRoutes, data$nbCustomers))
lsp <- add.output.expr(lsp, "routeDistances", data$maxRoutes)
lsp <- add.output.expr(lsp, "routeQuantity", data$maxRoutes)
lsp <- add.output.expr(lsp, "totalRoutesUsed")
lsp <- add.output.expr(lsp, "totalDistance")
lsp <- add.output.expr(lsp, "latestArrivalTime")
lsp <- add.output.expr(lsp, "routeStops", c(data$maxRoutes, data$nbNodes+1))
lsp <- add.output.expr(lsp, "arrivalTimes", c(data$maxRoutes, data$nbNodes+1))
lsp <- add.output.expr(lsp, "departureTimes", c(data$maxRoutes, data$nbNodes+1))
lsp <- add.output.expr(lsp, "routeArrivalDepot", data$maxRoutes)
sol<-ls.solve(lsp, data)
length(grep("Feasible solution", readLines("output.txt"), value = TRUE, ignore.case = FALSE))>0
printSolution(sol)
```
Note no feasible solution can be found, since the driver can not keep the latest arrival at depot limit. That is, the printed solution is the unfeasible solution found when the solver stopped. This is not the same as a proof of that no feasible solution exists since it is a heuristic solver we use.
## Extension - Multiple drivers
Assume that multiple drivers are allowed and for simplicity assume that they have the same working time. To handle multiple drivers we need to add a driver index to the model.
```{r driversModel}
data$drivers <- as.integer(3)
model <- "function model(){
routeSequences[k in 0..maxRoutes-1][d in 0..drivers-1] <- list(nbCustomers);
routeStops[k in 0..maxRoutes-1][d in 0..drivers-1][0] = 0;
routeStops[k in 0..maxRoutes-1][d in 0..drivers-1][nbNodes] = 0;
departureTimes[k in 0..maxRoutes-1][d in 0..drivers-1][i in 0..nbNodes] <- int(-1,depotLatestArrival);
arrivalTimes[k in 0..maxRoutes-1][d in 0..drivers-1][i in 0..nbNodes] <- int(-1,depotLatestArrival);
constraint partition[k in 0..maxRoutes-1][d in 0..drivers-1](routeSequences[k][d]);
for [k in 0..maxRoutes-1][d in 0..drivers-1] {
local sequence <- routeSequences[k][d];
local c <- count(sequence);
routesUsed[k][d] <- c > 0;
routeQuantity[k][d] <- sum(0..c-1, i => demands[sequence[i]]);
constraint routeQuantity[k][d] <= truckCapacity;
routeDistances[k][d] <- (c > 0 ? (distanceMatrix[0][sequence[0]+1] +
distanceMatrix[sequence[c-1]+1][0]) : 0) +
sum(1..c-1, i => distanceMatrix[sequence[i-1]+1][sequence[i]+1]);
if (k==0) constraint departureTimes[k][d][0] >= depotEarliestStart;
for [i in 1..nbNodes] {
routeStops[k][d][i] <- sequence[i-1] + 1;
arrivalTimes[k][d][i] <- departureTimes[k][d][i-1] +
travelTimeMatrix[routeStops[k][d][i-1]][routeStops[k][d][i]];
departureTimes[k][d][i] <- (routeStops[k][d][i] > 0 ? arrivalTimes[k][d][i] + handlingTime : -1);
}
routeArrivalDepot[k][d] <- departureTimes[k][d][0] + (c > 0 ? (travelTimeMatrix[0][sequence[0]+1] + travelTimeMatrix[sequence[c-1]+1][0]) : 0) +
sum(1..c-1, i => travelTimeMatrix[sequence[i-1]+1][sequence[i]+1]) + c*handlingTime;
if (k>0) {
constraint departureTimes[k][d][0] >= routeArrivalDepot[k-1][d];
constraint routeArrivalDepot[k][d] <= depotLatestArrival;
} else {
constraint routeArrivalDepot[k][d] <= depotLatestArrival;
}
}
totalRoutesUsed <- sum[k in 0..maxRoutes-1][d in 0..drivers-1] (routesUsed[k][d]);
totalDistance <- sum[k in 0..maxRoutes-1][d in 0..drivers-1](routeDistances[k][d]);
latestArrivalTime <- max[k in 0..maxRoutes-1][d in 0..drivers-1] (routeArrivalDepot[k][d]);
minimize totalDistance;
minimize latestArrivalTime;
}"
lsp <- ls.problem(model)
lsp <- set.params(lsp, lsTimeLimit=c(20,20), indexFromZero=TRUE, lsNbThreads = 4)
lsp <- set.temp.dir(lsp, path=getwd())
lsp <- add.output.expr(lsp, "routeSequences", c(data$maxRoutes, data$drivers, data$nbCustomers))
lsp <- add.output.expr(lsp, "routeDistances", c(data$maxRoutes, data$drivers))
lsp <- add.output.expr(lsp, "routeQuantity", c(data$maxRoutes, data$drivers))
lsp <- add.output.expr(lsp, "totalRoutesUsed")
lsp <- add.output.expr(lsp, "totalDistance")
lsp <- add.output.expr(lsp, "latestArrivalTime")
lsp <- add.output.expr(lsp, "routeStops", c(data$maxRoutes, data$drivers, data$nbNodes+1))
lsp <- add.output.expr(lsp, "arrivalTimes", c(data$maxRoutes, data$drivers, data$nbNodes+1))
lsp <- add.output.expr(lsp, "departureTimes", c(data$maxRoutes, data$drivers, data$nbNodes+1))
lsp <- add.output.expr(lsp, "routeArrivalDepot", c(data$maxRoutes, data$drivers))
sol<-ls.solve(lsp, data)
length(grep("Feasible solution", readLines("output.txt"), value = TRUE, ignore.case = FALSE))>0
```
We considered the same instance as before but now with 3 drivers, minimized the total distance and next the latest arrival time at the depot. The solution are:
```{r driversPostProcess}
printSolution<-function(sol) {
cat("Number of routes:", sol$totalRoutesUsed, "\n")
cat("Total distance:", sol$totalDistance, "\n")
cat("Latest depot arrival (min from midnight):", sol$latestArrivalTime, "\n")
cat("Routes:\n")
for (d in 1:length(sol$routeArrivalDepot[1,])) {
for (r in 1:length(sol$routeArrivalDepot[,1])) {
if (max(sol$routeStops[r,d,])>0) {
cat("Driver:", d, "Customers:",
paste0(sol$routeStops[r,d,1:(which(sol$routeStops[r,d,]==0)[2])], collapse = "-"),
"departure:", sol$departureTimes[r,d,1], "finished:", sol$arrivalTimes[r,d, which(sol$routeStops[r,d,]==0)[2]],
"distance:", sol$routeDistances[r], "quantity:", sol$routeQuantity[r],
"\n")
cat(" Details:", sol$routeStops[r,d,1], paste0("(d:", sol$departureTimes[r,d,1], ") ->"))
for (i in 2:(which(sol$routeStops[r,d,]==0)[2]-1)) {
cat("\n ", sol$routeStops[r,d,i], " (tt:",
data$travelTimeMatrix[sol$routeStops[r,d,i-1]+1,sol$routeStops[r,d,i]+1],
" a:", sol$arrivalTimes[r,d,i], " d:", sol$departureTimes[r,d,i], ") ", "->", sep="")
}
cat("\n ", sol$routeStops[r,d,which(sol$routeStops[r,d,]==0)[2]],
" (tt:", data$travelTimeMatrix[sol$routeStops[r,d,i-1]+1,sol$routeStops[r,d,i]+1],
" a:", sol$arrivalTimes[r,d,which(sol$routeStops[r,d,]==0)[2]], ")\n", sep="")
}
}
}
}
printSolution(sol)
```
Note with 3 drivers we can keep the latest arrival at depot limit.
## Extension - Delivery over multiple days
Assume that the orders can be delivered at specific days (we ignore the time windows for the moment):
```{r daysData, cache=FALSE}
data<-simulateVRPTW(drivers = 2, maxRoutes = 5, customers = 30, days = 7, seed = 789)
str(data)
data$validDays
```
Valid days for an order corresponds to a one in the matrix `validDays`. For instance, customer 29 can be visited in days `r paste0(which(data$validDays[29,]==1), collapse=", ")`. We add a constraint that customer i must be visited at valid days.
```{r daysModel}
model <- "
function model(){
routeSequences[k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1] <- list(nbCustomers);
routeStops[k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1][0] = 0;
routeStops[k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1][nbNodes] = 0;
departureTimes[k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1][0] <- int(0,depotLatestArrival);
arrivalTimes[k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1][i in 0..nbNodes] <- int(0,depotLatestArrival);
constraint partition[k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1](routeSequences[k][d][t]);
for [k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1] {
local sequence <- routeSequences[k][d][t];
local c <- count(sequence);
routesUsed[k][d][t] <- c > 0;
routeQuantity[k][d][t] <- sum(0..c-1, i => demands[sequence[i]]);
constraint routeQuantity[k][d][t] <= truckCapacity;
routeDistances[k][d][t] <-
(c > 0 ? (distanceMatrix[0][sequence[0]+1] + distanceMatrix[sequence[c-1]+1][0]) : 0) +
sum(1..c-1, i => distanceMatrix[sequence[i-1]+1][sequence[i]+1]);
if (k==0) constraint departureTimes[k][d][t][0] >= depotEarliestStart;
for [i in 1..nbNodes] {
routeStops[k][d][t][i] <- sequence[i-1] + 1;
arrivalTimes[k][d][t][i] <- (routeStops[k][d][t][i-1] > 0 || (i==1 && routeStops[k][d][t][i]>0) ?
departureTimes[k][d][t][i-1] +
travelTimeMatrix[routeStops[k][d][t][i-1]][routeStops[k][d][t][i]] : 0);
departureTimes[k][d][t][i] <-
(routeStops[k][d][t][i] > 0 ? arrivalTimes[k][d][t][i] + handlingTime : 0);
}
routeArrivalDepot[k][d][t] <- max[i in 1..nbCustomers](arrivalTimes[k][d][t][i]);
if (k>0) {
constraint departureTimes[k][d][t][0] >= routeArrivalDepot[k-1][d][t];
constraint routeArrivalDepot[k][d][t] <= depotLatestArrival;
} else {
constraint routeArrivalDepot[k][d][t] <= depotLatestArrival;
}
}
for [t in 0..days-1][i in 0..nbCustomers-1] {
visitAtDay[t][i] <- sum[k in 0..maxRoutes-1][d in 0..drivers-1](indexOf(routeSequences[k][d][t],i) > -1);
constraint visitAtDay[t][i] <= validDays[i][t];
}
totalRoutesUsed <- sum[k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1] (routesUsed[k][d][t]);
totalDistance <- sum[k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1](routeDistances[k][d][t]);
latestArrival <- max[k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1](routeArrivalDepot[k][d][t]);
minimize totalDistance;
minimize latestArrival;
// modify results so can output to R (cannot output array with more than 3 index)
for [k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1] {
local r = k + d*maxRoutes + t*maxRoutes*drivers;
routes[r][i in 0..nbNodes] <- routeStops[k][d][t][i];
arrivalT[r][i in 0..nbNodes] <- arrivalTimes[k][d][t][i];
routeDepotArrival[r] <- routeArrivalDepot[k][d][t];
departureT[r][i in 0..nbNodes] <- departureTimes[k][d][t][i];
routeDist[r] <- routeDistances[k][d][t];
routeQuant[r] <- routeQuantity[k][d][t];
driver[r] <- d+1;
day[r] <- t+1;
}
}"
lsp <- ls.problem(model)
lsp <- set.params(lsp, lsTimeLimit=c(10,10), indexFromZero=TRUE, lsNbThreads = 4)
lsp <- set.temp.dir(lsp, path=getwd())
lsp <- add.output.expr(lsp, "totalRoutesUsed")
lsp <- add.output.expr(lsp, "totalDistance")
lsp <- add.output.expr(lsp, "latestArrival")
maxR <- data$maxRoutes*data$days*data$drivers
lsp <- add.output.expr(lsp, "routes", c(maxR, data$nbNodes+1))
lsp <- add.output.expr(lsp, "arrivalT", c(maxR, data$nbNodes+1))
lsp <- add.output.expr(lsp, "departureT", c(maxR, data$nbNodes+1))
lsp <- add.output.expr(lsp, "driver", maxR)
lsp <- add.output.expr(lsp, "day", maxR)
lsp <- add.output.expr(lsp, "routeDist", maxR)
lsp <- add.output.expr(lsp, "routeDepotArrival", maxR)
lsp <- add.output.expr(lsp, "routeQuant", maxR)
sol<-ls.solve(lsp, data)
length(grep("Feasible solution", readLines("output.txt"), value = TRUE, ignore.case = FALSE))>0
```
```{r daysPostProcess}
printSolution<-function(sol) {
cat("Number of routes:", sol$totalRoutesUsed, "\n")
cat("Total distance:", sol$totalDistance, "\n")
cat("Latest depot arrival (min from midnight):", sol$latestArrival, "\n")
cat("Routes:\n")
for (r in 1:length(sol$driver)) {
if (max(sol$routes[r,])>0) {
cat("Day:", sol$day[r],"driver:", sol$driver[r], "customers:",
paste0(sol$routes[r,1:(which(sol$routes[r,]==0)[2])], collapse = "-"),
"departure:", sol$departureT[r,1], "finished:", sol$arrivalT[r, which(sol$routes[r,]==0)[2]],
"distance:", sol$routeDist[r], "quantity:", sol$routeQuant[r],
"\n")
cat(" Details:", sol$routes[r,1], paste0("(d:", sol$departureT[r,1], ") ->"))
for (i in 2:(which(sol$routes[r,]==0)[2]-1)) {
cat("\n ", sol$routes[r,i], " (tt:",
data$travelTimeMatrix[sol$routes[r,i-1]+1,sol$routes[r,i]+1],
" a:", sol$arrivalT[r,i], " d:", sol$departureT[r,i], ") ", "->", sep="")
}
cat("\n ", sol$routes[r,which(sol$routes[r,]==0)[2]],
" (tt:", data$travelTimeMatrix[sol$routes[r,i-1]+1,sol$routes[r,i]+1],
" a:", sol$arrivalT[r,which(sol$routes[r,]==0)[2]], ")\n", sep="")
}
}
}
printSolution(sol)
```
Note there may not always be deliveries on a given day.
## Time windows
Finally, let us try to add time windows to the model above. I here formulate the time windows as soft constraints and try to minimize the total time not satisfying the time window.
```{r twModel}
model <- "
function model(){
routeSequences[k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1] <- list(nbCustomers);
routeStops[k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1][0] = 0;
routeStops[k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1][nbNodes] = 0;
departureTimes[k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1][0] <- int(0,depotLatestArrival);
arrivalTimes[k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1][i in 0..nbNodes] <- int(0,depotLatestArrival);
waitingTimes[k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1][i in 0..nbNodes] <- int(0,600);
constraint partition[k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1](routeSequences[k][d][t]);
for [k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1] {
local sequence <- routeSequences[k][d][t];
local c <- count(sequence);
routesUsed[k][d][t] <- c > 0;
routeQuantity[k][d][t] <- sum(0..c-1, i => demands[sequence[i]]);
constraint routeQuantity[k][d][t] <= truckCapacity;
routeDistances[k][d][t] <-
(c > 0 ? (distanceMatrix[0][sequence[0]+1] + distanceMatrix[sequence[c-1]+1][0]) : 0) +
sum(1..c-1, i => distanceMatrix[sequence[i-1]+1][sequence[i]+1]);
if (k==0) constraint departureTimes[k][d][t][0] >= depotEarliestStart;
for [i in 1..nbNodes] {
routeStops[k][d][t][i] <- sequence[i-1] + 1;
arrivalTimes[k][d][t][i] <- (routeStops[k][d][t][i-1] > 0 || (i==1 && routeStops[k][d][t][i]>0) ?
departureTimes[k][d][t][i-1] +
travelTimeMatrix[routeStops[k][d][t][i-1]][routeStops[k][d][t][i]] +
waitingTimes[k][d][t][i] : 0);
// If hard time window constraints
//constraint arrivalTimes[k][d][t][i] >= (routeStops[k][d][t][i] > 0) * timeWindowsLB[routeStops[k][d][t][i]];
//constraint arrivalTimes[k][d][t][i] <= timeWindowsUB[routeStops[k][d][t][i]];
departureTimes[k][d][t][i] <-
(routeStops[k][d][t][i] > 0 ? arrivalTimes[k][d][t][i] + handlingTime : 0);
}
routeArrivalDepot[k][d][t] <- max[i in 1..nbCustomers](arrivalTimes[k][d][t][i]);
if (k>0) {
constraint departureTimes[k][d][t][0] >= routeArrivalDepot[k-1][d][t];
constraint routeArrivalDepot[k][d][t] <= depotLatestArrival;
} else {
constraint routeArrivalDepot[k][d][t] <= depotLatestArrival;
}
}
for [t in 0..days-1][i in 0..nbCustomers-1] {
visitAtDay[t][i] <- sum[k in 0..maxRoutes-1][d in 0..drivers-1](indexOf(routeSequences[k][d][t],i) > -1);
constraint visitAtDay[t][i] <= validDays[i][t];
}
totalRoutesUsed <- sum[k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1] (routesUsed[k][d][t]);
totalDistance <- sum[k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1](routeDistances[k][d][t]);
totalWaiting <- sum[k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1][i in 0..nbNodes]
(waitingTimes[k][d][t][i]);
totalViolateTWCtr <- sum[k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1][i in 1..nbCustomers](
routeStops[k][d][t][i] > 0 && (arrivalTimes[k][d][t][i] < timeWindowsLB[routeStops[k][d][t][i]] ||
arrivalTimes[k][d][t][i] > timeWindowsUB[routeStops[k][d][t][i]])
);
totalViolateTWMin <- sum[k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1][i in 1..nbCustomers](
(routeStops[k][d][t][i] > 0 && arrivalTimes[k][d][t][i] < timeWindowsLB[routeStops[k][d][t][i]]) *
(timeWindowsLB[routeStops[k][d][t][i]] - arrivalTimes[k][d][t][i]) +
(routeStops[k][d][t][i] > 0 && arrivalTimes[k][d][t][i] > timeWindowsUB[routeStops[k][d][t][i]]) *
(arrivalTimes[k][d][t][i] - timeWindowsUB[routeStops[k][d][t][i]])
);
latestArrival <- max[k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1](routeArrivalDepot[k][d][t]);
minimize totalViolateTWMin; // total waiting time in minutes
minimize totalViolateTWCtr; // times we wait
minimize totalRoutesUsed;
minimize totalDistance;
minimize totalWaiting;
minimize latestArrival;
// modify results so can output to R (cannot output array with more than 3 index)
for [k in 0..maxRoutes-1][d in 0..drivers-1][t in 0..days-1] {
local r = k + d*maxRoutes + t*maxRoutes*drivers;
routes[r][i in 0..nbNodes] <- routeStops[k][d][t][i];
arrivalT[r][i in 0..nbNodes] <- arrivalTimes[k][d][t][i];
routeDepotArrival[r] <- routeArrivalDepot[k][d][t];
departureT[r][i in 0..nbNodes] <- departureTimes[k][d][t][i];
waitingT[r][i in 0..nbNodes] <- waitingTimes[k][d][t][i];
routeDist[r] <- routeDistances[k][d][t];
routeQuant[r] <- routeQuantity[k][d][t];
driver[r] <- d+1;
day[r] <- t+1;
}
}"
rm(lsp)
lsp <- ls.problem(model)
lsp <- set.params(lsp, lsTimeLimit=c(20,20,20,20,20,20), indexFromZero=TRUE, lsNbThreads = 4)
lsp <- set.temp.dir(lsp, path=getwd())
lsp <- add.output.expr(lsp, "totalRoutesUsed")
lsp <- add.output.expr(lsp, "totalDistance")
lsp <- add.output.expr(lsp, "totalWaiting")
lsp <- add.output.expr(lsp, "totalViolateTWCtr")
lsp <- add.output.expr(lsp, "totalViolateTWMin")
lsp <- add.output.expr(lsp, "latestArrival")
maxR <- data$maxRoutes*data$days*data$drivers
lsp <- add.output.expr(lsp, "routes", c(maxR, data$nbNodes+1))
lsp <- add.output.expr(lsp, "arrivalT", c(maxR, data$nbNodes+1))
lsp <- add.output.expr(lsp, "departureT", c(maxR, data$nbNodes+1))
lsp <- add.output.expr(lsp, "waitingT", c(maxR, data$nbNodes+1))
lsp <- add.output.expr(lsp, "driver", maxR)
lsp <- add.output.expr(lsp, "day", maxR)
lsp <- add.output.expr(lsp, "routeDist", maxR)
lsp <- add.output.expr(lsp, "routeDepotArrival", maxR)
lsp <- add.output.expr(lsp, "routeQuant", maxR)
sol<-ls.solve(lsp, data)
length(grep("Feasible solution", readLines("output.txt"), value = TRUE, ignore.case = FALSE))>0
```
```{r twPostProcess}
printSolution<-function(sol) {
cat("Number of routes:", sol$totalRoutesUsed, "\n")
cat("Total distance:", sol$totalDistance, "\n")
cat("Total waiting time:", sol$totalWaiting, "\n")
cat("Total time window violations:", sol$totalViolateTWCtr, "\n")
cat("Total time window violations (min):", sol$totalViolateTWMin, "\n")
cat("Latest depot arrival (min from midnight):", sol$latestArrival, "\n")
cat("Routes:\n")
for (r in 1:length(sol$driver)) {
if (max(sol$routes[r,])>0) {
cat("Day:", sol$day[r],"driver:", sol$driver[r], "customers:",
paste0(sol$routes[r,1:(which(sol$routes[r,]==0)[2])], collapse = "-"),
"departure:", sol$departureT[r,1], "finished:", sol$arrivalT[r, which(sol$routes[r,]==0)[2]],
"distance:", sol$routeDist[r], "quantity:", sol$routeQuant[r], "\n")
cat(" Details:", sol$routes[r,1], paste0("(d:", sol$departureT[r,1], ") ->"))
for (i in 2:(which(sol$routes[r,]==0)[2]-1)) {
cat("\n ", sol$routes[r,i], " (tt:", data$travelTimeMatrix[sol$routes[r,i-1]+1,sol$routes[r,i]+1],
" w:", sol$waitingT[r,i], " a:", sol$arrivalT[r,i], " d:", sol$departureT[r,i], ") ",
" tw:[", data$timeWindowsLB[sol$routes[r,i]+1], ",", data$timeWindowsUB[sol$routes[r,i]+1], "] ->", sep="")
}
cat("\n ", sol$routes[r,which(sol$routes[r,]==0)[2]],
" (tt:", data$travelTimeMatrix[sol$routes[r,i-1]+1,sol$routes[r,i]+1],
" a:", sol$arrivalT[r,which(sol$routes[r,]==0)[2]], ")\n", sep="")
}
}
}
printSolution(sol)
```
All time windows has been satisfied.
# Pitfalls
To summarize some of the pitfalls I experienced during coding:
- All input data must have be of the same data type as specified in the model (e.g. integers).
- Remember when index from zero, this holds for all variables/data.
- In `set.params` the parameter `lsTimeLimit=c(10,10)` must have the same length as the number of objectives. If e.g. `lsTimeLimit=10` it corresponds to `lsTimeLimit=c(0,10)` (only the last objective is optimized) and not `lsTimeLimit=c(10,10)` which seems more obvious.
- You must specify the dimensions of output. Hence, when you run a new instance, you have to add output expressions again.
- The dimension of output arrays cannot be more than 3 for some strange reason. So you may have to transform your output.