-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
33 lines (23 loc) · 1.01 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import os
import torch
import torchaudio
from diffusers import EulerDiscreteScheduler
from custom_pipeline_stable_diffusion import StableDiffusionPipeline
torch.set_default_dtype(torch.float16)
audio_folder = os.path.join('data', 'audio')
audio_files = os.listdir(audio_folder)
audio_file = "data/audio/" + audio_files[0]
audio_path = audio_file
waveform, sample_rate = torchaudio.load(audio_path, channels_first=True)
# convert from stereo to mono
audio = torch.mean(waveform, dim=0, keepdim=True).tolist()
model_id = "stabilityai/stable-diffusion-2"
cache_dir = "./models"
# Use the Euler scheduler here instead
scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler", cache_dir=cache_dir)
pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16,
cache_dir=cache_dir)
pipe = pipe.to("cuda")
# pass audio array into pipeline
image = pipe(audio).images[0]
image.save("./images/generated_image.jpg")