diff --git a/notebooks/how-to-finetune-paligemma2-on-latex-ocr-dataset.ipynb b/notebooks/how-to-finetune-paligemma2-on-latex-ocr-dataset.ipynb index 411ca28..f52af00 100644 --- a/notebooks/how-to-finetune-paligemma2-on-latex-ocr-dataset.ipynb +++ b/notebooks/how-to-finetune-paligemma2-on-latex-ocr-dataset.ipynb @@ -14,6 +14,7 @@ "\n", "[![GitHub](https://badges.aleen42.com/src/github.svg)](https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md)\n", "[![arXiv](https://img.shields.io/badge/arXiv-2412.03555-b31b1b.svg)](https://arxiv.org/abs/2412.03555)\n", + "[![Roboflow](https://raw.githubusercontent.com/roboflow-ai/notebooks/main/assets/badges/roboflow-blogpost.svg)](https://blog.roboflow.com/fine-tune-paligemma-2/)\n", "\n", "PaliGemma 2 is built by combining the SigLIP-So400m vision encoder with the more recent and capable language models from the Gemma 2 family.\n", "\n", @@ -67,20 +68,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "O_8BLW6R_x-z", - "outputId": "373534e4-564f-443f-a0c3-f81bd0acb7e8" + "outputId": "785d09a8-5ab1-4a59-ed6b-7fdba1f52420" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "Sun Dec 8 07:15:10 2024 \n", + "Wed Dec 11 13:02:13 2024 \n", "+---------------------------------------------------------------------------------------+\n", "| NVIDIA-SMI 535.104.05 Driver Version: 535.104.05 CUDA Version: 12.2 |\n", "|-----------------------------------------+----------------------+----------------------+\n", @@ -89,7 +90,7 @@ "| | | MIG M. |\n", "|=========================================+======================+======================|\n", "| 0 NVIDIA A100-SXM4-40GB Off | 00000000:00:04.0 Off | 0 |\n", - "| N/A 32C P0 41W / 400W | 2MiB / 40960MiB | 0% Default |\n", + "| N/A 31C P0 43W / 400W | 2MiB / 40960MiB | 0% Default |\n", "| | | Disabled |\n", "+-----------------------------------------+----------------------+----------------------+\n", " \n", @@ -120,43 +121,92 @@ }, { "cell_type": "code", - "execution_count": null, + "source": [ + "!pip install -q roboflow supervision peft bitsandbytes" + ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, - "id": "Wtvz4QZ9YuG8", - "outputId": "e54cb46b-3a39-42f0-bd0d-7019da14ef7b" + "id": "2A-B4zT3_T3Q", + "outputId": "f9e9b00f-e34e-429f-bfbf-a64839300874" }, + "execution_count": 2, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m43.5/43.5 kB\u001b[0m \u001b[31m3.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.1/10.1 MB\u001b[0m \u001b[31m106.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m80.9/80.9 kB\u001b[0m \u001b[31m2.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m66.8/66.8 kB\u001b[0m \u001b[31m3.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m181.5/181.5 kB\u001b[0m \u001b[31m13.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m69.1/69.1 MB\u001b[0m \u001b[31m25.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.0/3.0 MB\u001b[0m \u001b[31m83.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/80.9 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m80.9/80.9 kB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/66.8 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m66.8/66.8 kB\u001b[0m \u001b[31m6.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m181.5/181.5 kB\u001b[0m \u001b[31m17.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m69.1/69.1 MB\u001b[0m \u001b[31m32.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h" ] } + ] + }, + { + "cell_type": "code", + "source": [ + "!pip uninstall -y transformers" ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cZEiR39L_XvZ", + "outputId": "c6b664bf-77e8-400c-b750-4a794a0282f6" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Found existing installation: transformers 4.46.3\n", + "Uninstalling transformers-4.46.3:\n", + " Successfully uninstalled transformers-4.46.3\n" + ] + } + ] + }, + { + "cell_type": "code", "source": [ - "!pip install -q roboflow supervision peft bitsandbytes transformers==4.47.0" + "!pip install -q git+https://github.com/probicheaux/transformers.git@main" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Ku_9wFMd_b9Q", + "outputId": "ba9433e1-6bb9-410a-9a3a-fd563f64e35d" + }, + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", + " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.0/3.0 MB\u001b[0m \u001b[31m77.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Building wheel for transformers (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n" + ] + } ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "TGDFTYVnY4zn", - "outputId": "0dc33426-3a4e-44fe-eb82-efc0c9fbcd56" + "outputId": "d11fc59c-091c-4a22-ea92-4cb7cf7f7a8d" }, "outputs": [ { @@ -171,7 +221,7 @@ "output_type": "stream", "name": "stderr", "text": [ - "Downloading Dataset Version Zip in unsloth-latex-ocr-1 to jsonl:: 100%|██████████| 44290/44290 [00:03<00:00, 11852.87it/s]" + "Downloading Dataset Version Zip in unsloth-latex-ocr-2 to jsonl:: 100%|██████████| 75703/75703 [00:05<00:00, 13110.13it/s]" ] }, { @@ -186,7 +236,7 @@ "name": "stderr", "text": [ "\n", - "Extracting Dataset Version Zip to unsloth-latex-ocr-1 in jsonl:: 100%|██████████| 13981/13981 [00:01<00:00, 9656.00it/s] \n" + "Extracting Dataset Version Zip to unsloth-latex-ocr-2 in jsonl:: 100%|██████████| 23947/23947 [00:02<00:00, 10276.47it/s]\n" ] } ], @@ -198,39 +248,39 @@ "rf = Roboflow(api_key=ROBOFLOW_API_KEY)\n", "\n", "project = rf.workspace(\"roboflow-jvuqo\").project(\"unsloth-latex-ocr\")\n", - "version = project.version(1)\n", + "version = project.version(2)\n", "dataset = version.download(\"jsonl\")" ] }, { "cell_type": "markdown", - "source": [ - "**NOTE:** Let's read the first few lines of the annotation file and examine the dataset format." - ], "metadata": { "id": "CU-Ol8tE61fI" - } + }, + "source": [ + "**NOTE:** Let's read the first few lines of the annotation file and examine the dataset format." + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "WLhSenP5AtQe", - "outputId": "33e71721-51e0-4c48-b212-61f1300a2b01" + "outputId": "65f47ea2-9534-4997-f873-380f6e6f02bf" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "{\"image\":\"602d220b909f4973426fefbf6999e4cc_png.rf.acd4eada696860173db01f9716dacb7f.jpg\",\"prefix\":\"read in latex\",\"suffix\":\"\\\\left( \\\\alpha ( P ^ { 2 } + m ^ { 2 } ) + \\\\varepsilon m ( P J - \\\\varepsilon \\\\alpha m ) \\\\right) \\\\Psi = 0 ,\"}\n", - "{\"image\":\"880b59a23ee60a1a87fa42d15fd74c22_png.rf.acf3b6961a42e92d466a5b0eecefffcc.jpg\",\"prefix\":\"read in latex\",\"suffix\":\"\\\\vec { d } _ { e } \\\\cdot \\\\vec { d } _ { e } = \\\\vec { d } _ { m } \\\\cdot \\\\vec { d } _ { m } = 8 \\\\frac { 1 + b \\\\chi + \\\\chi ^ { 2 } } { 4 - b ^ { 2 } }\"}\n", - "{\"image\":\"c7b26159b532e5a3d3bd60e1dccd975c_png.rf.acdf8492321cdda95f97fa49fdd915c5.jpg\",\"prefix\":\"read in latex\",\"suffix\":\"( g f ) ( x ) \\\\doteq f ( g ^ { - 1 } x ) ,\"}\n", - "{\"image\":\"af3f191888dc917814619c1638e01f4a_png.rf.acd914b506089c2658490414f0611b39.jpg\",\"prefix\":\"read in latex\",\"suffix\":\"\\\\mu _ { 0 } = \\\\frac { \\\\pi m _ { V } ^ { 2 } } { 2 e ^ { 2 } } \\\\int _ { 0 } ^ { \\\\infty } d u \\\\frac { e ^ { - u } } { u + \\\\frac { m _ { V } ^ { 2 } } { 2 \\\\Lambda ^ { 2 } } } ,\"}\n", - "{\"image\":\"8f3f715794a25ce47756fdbfc99d27a7_png.rf.ad2669ad62643aff48eb6d1e3c30ac91.jpg\",\"prefix\":\"read in latex\",\"suffix\":\"[ L _ { n } , L _ { m } ] = ( n - m ) L _ { n + m } + \\\\frac { d - 2 6 + 2 2 } { 1 2 } ( m ^ { 3 } - m ) \\\\delta _ { n + m , 0 } .\"}\n" + "{\"image\":\"0eb741ce399e127abe1d390aa7612979_png.rf.3399c69af6a1019db9095a1ac1327be8.jpg\",\"prefix\":\"read in latex\",\"suffix\":\"L = T _ { 1 0 } \\\\int d ^ { 1 0 } x [ 1 - ( - \\\\mathrm { D e t } ( \\\\eta _ { M N } + F _ { M N } ) ) ^ { { \\\\frac { 1 } { 2 } } } ]\"}\n", + "{\"image\":\"2f3e2971f7cae6b0fc28b6ae6a58f3e2_png.rf.339a0574dace8f7a9bfad4083e558997.jpg\",\"prefix\":\"read in latex\",\"suffix\":\"\\\\Gamma ^ { a } : = \\\\gamma ^ { a } - i k ^ { a } \\\\gamma ^ { 3 } , \\\\qquad \\\\Gamma ^ { 3 } : = \\\\gamma ^ { 3 } + i k ^ { a } \\\\gamma _ { a } .\"}\n", + "{\"image\":\"193bab6f414f17dbfce0cb14f891edc7_png.rf.33adb0be7b2bea8e03d7fd03420400ec.jpg\",\"prefix\":\"read in latex\",\"suffix\":\"\\\\Gamma [ h ] = \\\\frac { 1 } { 1 2 \\\\pi } t r \\\\int _ { B } d ^ { 3 } y \\\\epsilon _ { i j k } h ^ { - 1 } \\\\partial ^ { i } h h ^ { - 1 } \\\\partial ^ { j } h h ^ { - 1 } \\\\partial ^ { k } h ,\"}\n", + "{\"image\":\"317dc5ccc58419fbeea610a84fd3d956_png.rf.33a4d3d873412bdeb07a8c4f6b453765.jpg\",\"prefix\":\"read in latex\",\"suffix\":\"\\\\delta W = { \\\\frac { m } { 2 } } \\\\mathrm { T r } \\\\Phi _ { 3 } ^ { 2 } .\"}\n", + "{\"image\":\"e2732e11e0a3e3ae53459a29bb7cdbd2_png.rf.3393a9604c0747703957faa7292e3473.jpg\",\"prefix\":\"read in latex\",\"suffix\":\"N _ { 2 2 } ( x , y , a , b ) = \\\\frac { 1 } { 4 a b } \\\\sum _ { n = 1 } ^ { \\\\infty } \\\\cos ( \\\\frac { 2 n \\\\pi x } { a } ) \\\\int _ { \\\\frac { n \\\\pi } { a } b } ^ { \\\\infty } d q \\\\left( \\\\coth q - 1 \\\\right) \\\\cosh ( \\\\frac { 2 q y } { b } ) .\"}\n" ] } ], @@ -240,42 +290,60 @@ }, { "cell_type": "code", - "source": [ - "!wc -l < {dataset.location}/train/annotations.jsonl\n", - "!wc -l < {dataset.location}/valid/annotations.jsonl\n", - "!wc -l < {dataset.location}/test/annotations.jsonl" - ], + "execution_count": 7, "metadata": { - "id": "PLehZP3xWCV8", - "outputId": "64aa3aee-8caf-4d3e-9db3-b6845ac985bb", "colab": { "base_uri": "https://localhost:8080/" - } + }, + "id": "PLehZP3xWCV8", + "outputId": "531fe319-45b7-446f-e8ee-f022c3fba689" }, - "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "9992\n", + "19964\n", "1992\n", "1999\n" ] } + ], + "source": [ + "!wc -l < {dataset.location}/train/annotations.jsonl\n", + "!wc -l < {dataset.location}/valid/annotations.jsonl\n", + "!wc -l < {dataset.location}/test/annotations.jsonl" ] }, { - "cell_type": "markdown", + "cell_type": "code", "source": [ - "### Set up and test data loaders" + "# !head -n 10000 {dataset.location}/train/annotations.jsonl > {dataset.location}/train/annotations.sample.jsonl\n", + "# !head -n 1000 {dataset.location}/valid/annotations.jsonl > {dataset.location}/valid/annotations.sample.jsonl\n", + "# !head -n 1000 {dataset.location}/test/annotations.jsonl > {dataset.location}/test/annotations.sample.jsonl" ], + "metadata": { + "id": "2Q8_r99-BT7L" + }, + "execution_count": 8, + "outputs": [] + }, + { + "cell_type": "markdown", "metadata": { "id": "-8I_k2o77WI7" - } + }, + "source": [ + "### Set up and test data loaders" + ] }, { "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "R8ceYFDy7W3U" + }, + "outputs": [], "source": [ "import os\n", "import json\n", @@ -309,15 +377,15 @@ " image_path = os.path.join(self.image_directory_path, entry['image'])\n", " image = Image.open(image_path)\n", " return image, entry" - ], - "metadata": { - "id": "R8ceYFDy7W3U" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "lR4rf1Uu7bvc" + }, + "outputs": [], "source": [ "train_dataset = JSONLDataset(\n", " jsonl_file_path=f\"{dataset.location}/train/annotations.jsonl\",\n", @@ -331,112 +399,225 @@ " jsonl_file_path=f\"{dataset.location}/test/annotations.jsonl\",\n", " image_directory_path=f\"{dataset.location}/test\",\n", ")" - ], - "metadata": { - "id": "lR4rf1Uu7bvc" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "code", - "source": [ - "from tqdm import tqdm\n", - "import supervision as sv\n", - "\n", - "\n", - "images = []\n", - "for i in range(25):\n", - " image, label = train_dataset[i]\n", - " images.append(image)\n", - "\n", - "sv.plot_images_grid(images, (5, 5))" - ], + "execution_count": 11, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 715 + "height": 675 }, "id": "NCznuPbs87H6", - "outputId": "bdbca914-d1a1-4136-a32b-dd3d353d398d" + "outputId": "9d34f13b-5bed-41a0-9920-0e717750b8e5" }, - "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ - "
" + "" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAAM4CAYAAAD4QH4wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3yUVfY/8M/0kt4L6SEQSAJIrxEQQVEURBSRtaxlBWy71nXX3+rX3nd1Ze2uiiIIWBAQ6YiU0EKHkIQEElJIz/T6+yOvc7kzJJBgHfa8Xy9eSsjMPDPzPPe5595zz1V4vV4vGGOMMcYYY4yxAKX8rQ+AMcYYY4wxxhj7KTiwZYwxxhhjjDEW0DiwZYwxxhhjjDEW0DiwZYwxxhhjjDEW0DiwZYwxxhhjjDEW0DiwZYwxxhhjjDEW0DiwZYwxxhhjjDEW0DiwZYwxxhhjjDEW0NS/9QEwxhj7/fN4PLBarTAajTCbzVCr1dDpdLDZbNDr9VAoFGd9vNfr9fm7y+VCS0sLIiIifB5LzwcAVqsVBoPhjOey2+3QarVQKBSwWCwwGAzwer1QKpVwOp3QaDQAALPZDK1WK/5+tmP0er3wer3idzweD5RKpfh/hUIBr9cLl8sFtVoNl8sFr9cLtVoNlUoFAGhqaoJarUZQUFC7r3Wu16fXcjqd8Hg80Gq14rn9ORwOOJ1OBAUF+TyH0+mESqWCSqUSz0XH6Ha7oVQq4XA4oNPpxGNcLhc0Gs05v0P22/G/fmTtfW/0vSqVSlgsFuh0Omg0GnF+KJVKcU7TeX+279/tdovfValU4nqzWq3ieqVrw+FwQK1u617K15FSqYTb7YZarf5VzjW6bun4PR6PeO8ejwdutxsulws6nQ5ut1tcN4yxwKXwnq21ZIwxxnC6k1hXV4fo6GgAbYFceHg47HY7dDrdOTvGFHg2NzeL55A7l/X19YiMjBSdZkIdbwrmjEYjFAoF3G43AIjOKHWim5ubERwc7NNJ7UxH2uPxiOegTr/8X4vFAqVSKTrCCoVCdPLp7/Q8FASo1WrRye/M68vBNXA6GKCOt8fjAQDxnP7Bhvxc1IF3OBxQKBQimKWAV6/Xw+12w2KxICQkpFPHyH4b5xPYOp1OcQ64XC40NjYiJiZGnDv0OHruswW39Hx0XtEf+jsFzy6XS5xrdrtdDJjQ+Uv/39lr4qeg9sHj8UCtVov3oNVqfdojpVIpri06RsZYYOJUZMYYY+ekUCjgcrkQHR0tOsBGoxEej0cETGfjdDrF/0dHR4tOp9PpFI8PDQ2FQqGAzWY747WBts610Wj0mX2xWCwi2HM6nfB6vQgNDQVwumNLjz0bm83mE1T6z2YBgFarFTPFCoVCBMAul0u8vtvthkajEb9rs9lgNpvP+fkAELNI9Pwejwd2ux0KhUJ0zBUKBZxOJ6xWK+x2u/h9u90Op9MpHudwOMQAgV6vh0ajgd1u9/k86fc78/2x3xadE+396ej3NRoNXC4Xjh8/jsceewyLFy/GzTffjGXLlolrpivoWqdrg66v1tZWeL1eeDweaDQaKJVKNDQ0iPOVAlw6v3+t+RSanQV8g3dCATYFtfJgGmMsMPFVzBhj7JxoZpWYTCZotVoxW3MuOp0OVqtVpAVXV1eLWUOTyYS6ujqo1WpYLBaR2kizu16vFzabDVqtFg6HQ6RYOhwOBAcHQ6lUwuVyQavVorGxUcxIKpVKEZyeC6VHyjOkFFhS8KhWq8UsD3XaaSaKZmZVKhVsNhvsdjs8Hg/0er342dn4z7ZSoEDBs0KhwJEjR3DHHXdgwoQJWLFiBXQ6nUgxprRlegx9hna7XcyiUZBBwSy9Z7VaDavVes7PiP126Dxu709Hv+92u+FwOHD8+HFs2bIFEydORHx8PLZu3erzWDlA7uj56Fy3WCyoqKhAXV0dvF4vFi1ahLFjx+L666/Hf//7X5w4cQLXXXcdpkyZgvfeew8Oh8PnuqVr5ddgt9tht9vFoBANOtEgW11dHVpbW2Gz2VBfXy+uO8ZY4OLAljHG2Dm53W7o9Xo4HA54PB6xtrOiogIff/zxWTve1FmkoNHpdCIxMRFOpxNmsxlBQUGoqanBe++955OGrNFoxCyuVqvFkiVLsHHjRp/ZVOD02r66ujqEhobi3XffRXl5uUifpkD0bGj212aziQCXAlnAN01Yo9FArVaL4FWpVKK1tRUOhwMqlUqs63W73SgsLMTq1atRVVV1zs+XZrzkda+0jtFsNiMuLg5XXXUVsrKyUFtbi5aWFjFzTamV/jNTNpsN27Ztw5IlS8Rx0cwtvS4Ft+z3i9Lk/f+c7bxWqVQwGo3IzMzEbbfdBq/XK66RrgZwXq8Xer0er776Ki677DLcf//9qKqqwvLlyzF37lxMnjwZL774Im644QY88sgj+PTTT7Fnzx4UFxcDaLv26dyWMyl+SWq1GtXV1Th06BDKyspw9OhRlJaWorS0FDt27MCf/vQnvP7666itrcXtt9+OlpYWTkNmLMBxYMsYY+yctFqtmKU1mUwA2oLaJ5980idQOhsqNqVWq7F06VL07dsXycnJ+OKLL2A0GrFkyRIsX74cJpNJpEoqFAqYTCasX78e7733HsLDw6FSqcQMb11dneiM6vV6eL1eBAcH48UXX0RlZSVaW1s7tW6uuLgYn3zyCdauXYvW1lbx+hqNxmetLqVSyjO4u3btwpw5c9CzZ0/cfffdKC0thVKpRElJCT766CMcPXoUMTExZw38/YMUWr9IM896vR4hISHIyMhAdHQ0jEYjjEajOBa5QI/X6xWpySqVCg0NDVi1ahXWrl0rZueo+BXNXnFg+/shp+zSgAedj/4BLZ0/9Hsul0v8Lv1/cnIyJk6ciLlz5yIqKgpjx471eU5aO0sZGfKgkXyOHjt2DN999x3mzJmDSy+9VKzrjomJwYgRI9CnTx/U19dj165dsNvtSElJQVRUlBisouwHOZNCXo/e2ewKmfze6TOjNHyLxYI1a9bg5Zdfxptvvol//etf+Ne//oV58+YhLCxMBPjr1q0TA1Lnk6LNGPv94DsZY4yxc5Ir8AYFBcHr9eKdd97B3r178corr5zz8a2trQgJCRHP8cgjj+DYsWNITU2FxWJBYmIiZs6ciUcffRSDBg1CYmKiT7GZu+66C48//jhycnKgUqkQEREBj8cjOs4ulwtGoxEqlQpTp07F559/jv/7v//Dk08+iZCQkHMGtgUFBXjzzTcxfPhwZGdni3WpKpVKpD7La/Ao4HQ6nVi4cCFWrFiBlpYWUaipubkZH330EQDgiiuugFarPWunfefOnVi+fDmcTidsNptYS+x0OjF8+HBcdtllCAoKgs1mQ21tLVJTU32KSVGw6nQ6YTAYRCBhNBoxYMAAHDhwAI8//ji+/PJLxMTEiPRkSg3/tQr6sI7JxcuAtsrX9P18//33aGxshMlkQnBwMLxeL3r16gWtVotvvvkGgwYNwrZt2+BwODBmzBgcOXIEHo8Ho0aNQlRUFF544QVs2LABN954I4qLi5GbmwsAIuikmXt5xl8ObhUKBVauXAmlUombb74Zer0eSqUS06ZNwyuvvAKXy4U//vGPcDqd+OCDD1BQUIDs7GyfIm5ydW75XKNzkdLuu4qez2azYfPmzVi8eDHy8/MxefJkjBgxAj169IDBYBADPWq1Gnq9HvX19bjqqquwePFihIaGYvv27cjPzz//L5Ax9pvjuxhj7DdBs1FUOZY6V3LBD/l3gdMdLDmVTS7205WOkf8smbw+0f85/GcWqNNHx9rZLTMCmUajEevllEolTpw4gQULFmDdunVitkSuTkwBIXVgg4ODRXD7448/ora2Flu3bkVCQgIiIyOh0WhwzTXX4KOPPsKiRYtw5513QqfTQafT4fnnn0deXh7Gjx8v1uVSR5YCTvlz12q1ePTRR/Hwww+juroaCQkJPpWD5e+Ttie56qqrMGzYMISEhIiZUDofaBaI3jsAsV6QUhtnz56Nm266CZGRkQgODsaKFSvQ2tqKCRMmICkpSbyu/2wVpUvbbDaRCk3nt91u95m5pfceFRUltjjyP4flwlb09/j4eFx22WXYuHEjvv76a9xxxx1Qq9U+3xmvLfztyVtKaTQaaDQaNDY24uOPP8b3338vtrmKj4+HSqVCjx49sG7dOqxevRqrVq3C7NmzsWHDBjz++ON47LHH8M0332Dr1q34+9//DqPRiEGDBuHUqVPIzs72aW/pj8lkOmOrKjovPB4PFixYgH79+iEoKEhUH7/88suRnZ0Nr9eL9PR0qFQqXHTRRTCZTEhMTERQUJAI0GlNt0qlgsPhgMPhEK9H7e/5tJ8qlQo1NTV47bXXUFRUhFmzZmH58uXo1q0b+vfvj6ysLLEkgZYIWCwWTJo0Ce+++y6SkpJw6tQpxMXFcQEpxgIcB7aMsd8EdeIosDjbdjHUuSdyAEXrEikdTU7LPBc52KHHdrR1hsfjgc1mg06n8wmk/AMCuYruhYQ6p7S1z1dffQW9Xo/w8HAxewNApAC++OKLGDVqFC6++GJotVrY7XYEBQWhpKQECxcuhMvlQkREBBITE3Hq1CkxOzp48GB8++23uPnmm6HT6eBwOLBhwwbccccdCAsLg1qtFunFCxcuxCWXXILIyEgsWbIE/fr1Q+/evaFWq5GdnQ2FQoGSkhJkZWXBaDSK46M0YgogdTodPB4PEhMTodVqYbVaoVarxWwZdco9Ho/YG1en06GmpgYFBQUoKytDXl4eYmJiYDQaYbVasXv3btjtdqSmpvrsxUtFoDZs2ICkpCSMHj0aWq0WAwcORK9evUT1WPpdKkCl0+lgMplQXl6OQ4cOQaPRoLm5GeHh4VAoFKiqqsIPP/yAxMREpKenY/fu3YiKisKwYcNENdvMzEzs3bsXVqtVVEKmzj7P1v4+yGnvLpcLDocDISEheP311zF37lyMHTsWarUaY8aMQUlJCY4dO4bQ0FBMnDgRI0eOxMqVKzFlyhRcdtllWLFiBdRqNWJjY/Hwww+Lc8lgMMBkMomCawaDASqVCsHBwe0ek9frRWNjI+rr69G/f38xMBMWFgYA6N69u/iZ3W5HTEwM0tLSALTtRU2VxGlWmNbbarVaAG3rwCnL4HxYrVbs3bsXCxYswN/+9jd89913OHXqFJKSkny2BpPb7eDgYNx+++24/vrrYbVaxeDahdp+M/a/otN3MhoVppQP2heM0Cgj7UdIo9nUUNEm8YTWcrRXtKIr+w0CEOlg8nYINDJ+rn3ZOvua8poVuUMOnE6DodQ0/+0i/PdFPN90m3Oh70AudkLHJ89q0HFQp8n/eNo7NrlKJ3B6HRe9Lv2d94BjXUGda71eL2akKFXVnxzYytcSALFus6vXlkKhgNVqFRVkz1YRlFLYCgsL0dDQALVajaFDh3Z4vBca2o+S2r2CggIMGzZMBLW0p+3atWvx2GOPYejQoXjttdfw6KOP4scff4Rer4fNZsOmTZtw4sQJ9O7dG/Pnz8fEiRORm5sr2u8ZM2Zg4cKFYs3biRMn0NjYiDFjxqClpQXR0dGoqqrC7NmzERcXhw8++ABAW5pjS0sLFi5ciO7duyMyMhKDBw/Gzp07MXz4cHFfooJMNTU1WLlyJQ4fPgwAMBqNYo9cOg/i4+MxYsQIMROlUChEB9xsNuPw4cPYtGkTlEolTp06hY0bN6Jv374ICQmB0+lEr1690KNHDxGguN1urF69GosWLQLQNliwaNEi3HbbbRg8eDDUajUMBoMo0EX75VJmQ0NDA8rKyjB8+HCEhIRg8+bNGDlyJMrLy/Hiiy+KKtKnTp1CTEwM6uvrMWfOHMyYMQPJycnIz8/Hf//7XzGTTvdympGm64D9duTASqPRICoqCrfccgu++OILlJaWIjMzUwSKGRkZuP766/HYY49hwIABcLlcqKurQ7du3VBfX4+vv/4a999/PzZv3ozVq1ejrq4Oc+bMQd++ffHxxx9j+/btmDVrFgYNGuQzKNjeoN2GDRtgtVoxdOhQnwJQcuo0rQWnvgi1yf6zsfIsMBVp83/vXaHT6VBRUYHIyEi43W4MHz4cY8aMEWtmKZCmc53SoVUqFQwGgyhQR+0DYyxwdXp4TF770VG6CK3XkRs8KjcvB0KUVkVbKpzXgUsje/Lr2O32X2TEjYor0Giq3EBTgNjR+hQ6xl9jJFD+TGnmpL0AX06Lo+M915549PvyzAzdCGk/RMa6gq4L2pKBght//teOf7tht9uxbds2WCyWLge2tPaRruGOiofY7XbU19fjhRdeQENDA55//nkcP37cZ3btQmez2eDxeNDQ0ICCggJERkYCAGpraxESEgKXy4V7770XcXFxePjhhzFo0CAcPnwYZrMZVqsVCoUCkyZNQkVFBYYOHYqbb74ZiYmJosKwQqEQabt1dXVwuVxYvXo1mpqaAAARERFQKpV49NFHMXbsWDz++OOoqqrCkCFDMGbMGHEfoPMlJSUFp06dEjNTNJBCAUB1dTXq6+vR0tKCpqYmlJWVoaSkBBUVFSgqKkJ5ebnPgB21r5SW3K9fP2RkZKB379644oorMHjwYERGRqKkpAT79u2D2WwW7aZer0dJSQm++OILxMTE4Nlnn0Xv3r1x5MgRNDQ0iEFJuTiVXMBKrVYjISEBN9xwA/74xz/i6quvxsiRI2E2m7Fy5UqoVCrcc889iIqKQlBQEKZNmwa9Xo8ePXqI9js1NRXNzc3tdt65aM5vj+6n1B7RDKfL5cLChQsxatQohIaGYt++fWhsbIRWq8Xx48cRGRmJuLg4NDQ0oKqqCj179sSqVavg8XgQGhqKkydPQq1WY/369UhOToZSqURhYSH69euH5ORkMSnRXn+M+gpHjx6F2WxGcnKySF2mGU46x+k6kVPkaS9dAKL/ID+GMiB+ylY7Xq8XBoMBGRkZGD16NIYMGYKvv/4aFRUV4jVpgIj6KhRsU8YOBbV8HTAW2LqUe0SNw9GjR2G1WjFgwACff1coFHA4HGLtk8FgEDO3FBQ7HA5s27YNe/fuRVVVFe666y4kJyf7zCR2JgCU19wdOHAAa9euRV1dHWbOnIlu3bpBqVSKFBRZR2mD52pQqSNAv+d2u8V6Fwrs5NlKel6qSkifHTX+Z3O2WaOz/Q7dKOx2O/R6PaxWK3bs2IH+/fsjJCREPAfNLAPwadj9R1PbC4TlWVoaoKAZEMbOh8fjQWVlJVavXg2r1Yp77rmn3fPJ6XSitrYWiYmJYrSdKnmuXr0a77//Pj799FOfGYSzoXWNDQ0NiI2NFT/v6PrTarUICQnBtGnTkJSUJGYw/1fQIAC1l2VlZeKzDg8Ph8vlwrvvvotjx47hs88+Q2hoKACgR48eCA4OFo91Op0oLi7GuHHjEBYWJtbrUVoi7U1LAWVpaSlMJpMYOLVYLOjevTtmzJgBi8UCj8eD8ePHIy8vD9OmTUNaWpoYpGhsbERYWJjYMof2lKVKsdOnT/dpn6k9lIPKuLg4MThL/0ZBgEajQUVFhQjsjUYjlEolqqqqUFNTI9ZJAm3n1dq1a1FRUYEpU6YgISEBer0ekZGRIgWa2mH5MXKKvFqtFoWfKFhvbm5GfHw8cnJyoFar0dTUhHHjxuHqq6/GsGHDEB0dDbVaDZ1OJ6pX0/VB2UYKhYJna38HaCZUrmyt1+tx7NgxnDhxAuPGjcPx48fFnsV0z8/NzUV4eDgOHjyIlJQU9OjRAw0NDUhLS0NZWRlmzZqF7t2748svv0RwcDDWrFmDhIQE3H777QgKChKZaGcL6kpLSxETE+OT1kuZa/JjKeiVZ3HlSREKNGtra7Fx40aUlZXhzjvv7DANujMUCgX69u2LgoIC/N///R+SkpIwcuRIJCYm+vRraOCU+mXy9UZVwrkvw35ucoapXJuD/k7/9Z8kk2sxUFaDnHFJ7YWcJSpPPrY3efW/oNOBLX24zc3NmDt3LubMmdPu76lUKmzcuBEulwtjxoxBWVkZDh48iJiYGJjNZmRmZqK6uhrZ2dnYt28fTp48ieTk5DNe61xfgDzDWF9fj+TkZJw4cQKHDx/GyZMn4XQ6MW7cuHYbKTlw6+wXLW9w7/F4sG7dOhgMBgwYMAAHDx5EbW0twsLCYLFYMHDgQNGZqqiowIEDB2A0GjF48GCxzuuXYjKZMH/+fFx77bUICQlBeXk5jh07hptvvtmnME9xcTGOHj2K0NBQ9OrVC1FRUWcNuOlzolHkqqoqHDhwACNGjBApmp0NKAJRe7Pv8nuVPx//z1HOVADOzDaghs7/uTqDOhjtkb+Pzj4npSTSCLr/YIf/PpldOdazDVqZzWaEh4ejuLgYXq/3jKUFAFBXV4dFixbh7rvvFima1Mnyer1ipo8GbuRZBCJfx16vFzU1NZg/fz7mzJkjUorlGQX/vUH1ej1GjRqF5557DldddRXCwsLOuDFdqOi8sFgsoqiTnGKr0+lw7NgxGAwG9OrVC0qlEp988gmuvvpq0Wmkqqh6vR5ZWVlifTV911qtFg6HQ2xBQ1WPgbZ1dPT93nPPPYiPj8fcuXNht9vFej4KkinoDAkJgdlsPiON3eVy4cSJE9i1axdqampEACEXtVEqlYiIiMCYMWOQkZEhlpvQ+UMDek6nE8nJyYiNjRXBIQW0/ktxbDYbVCoVQkJCcODAARw4cAA9e/ZEz549xSySPIBIwSzdf6kglzyzFxERgeHDhyMmJgY7duxAdXU1IiIixOw0rYumgRij0QiHwwGDwQCPxwOHwwEAHNieA60xt9ls0Gq1ot2h71jONvEPEuWg7lzkrDBaz5+SkoIVK1YgLCwMPXv2xJgxY0RK/JVXXonLLrtMtE2DBw+GwWDAqFGj8PXXX4sBubi4OHi9Xnz55Zf48ccfceONN4rrhc5VuZgZHYPX60V1dTVOnjyJ/Px8MQAjVzqWj5seR4+l2Vq5Y+9yuaDX6/Hxxx8jKSlJ7I9Nacz0+5TFIM+utkehUCArKwtPPPGEyP4JCgryyUzwT7H2fy75+6NjlIMPujYBwGKxiCUDHV03cnE6xmw2G+rq6nwGW/x5vV60tLTA7XYjMjISZrMZFosF0dHRoq2R7w/0GJfLhYaGBkRERECj0aC+vh46nU6sgf9f0+kohG66+/btQ7du3ZCRkeGzbxj9f21tLVasWIH+/fuL1MK3334ber0eZrMZ99xzDy699FKUl5cjIiICvXr1Eq9BX9DOnTthNpt9ntt/9AKAaIBHjBghOkiDBg1C37598fXXX6O2ttbnsR6PB7W1tdi3b5/PTYc6sPT6/rOScsqtSqVCWVkZNm7ciH79+kGr1aK0tBRLly5FSkoK1q1bhzfffFOcuGFhYViwYAFKSkrOSKWUn59uKP7vlX6PHiN/5vINgB4XEhKChIQEfPrppwCAK6+8Et999x1qa2uhUqlgs9nw+eefw2Kx4P333xeDAYcOHfJ57/LzyjMZSmXb3owvvPACamtr8dxzz4n1XxcyeYQXgM+sDn1PZ0vHppskPcZut4s0Rfl5zudzpJF9/2uRsgqo49pZGo1GpGxRIAGcDvjON3iT36uc9qZQKJCdnY28vDyfNVnydeFyuWC321FeXg6n0+kToKpUKmzbtg12ux1PPvkk1q9fj7fffht33HEHjh8/DqvVivXr16OwsFAEBvJ3UFtbK5ZG0OtZLBZ88MEHuP3227F582bY7XasWbMGBQUF+Pe//40DBw5g7969aGpq8ukE0vu8EMkdNKPRiPz8fNFxkzv5ubm5UCgU+OGHH1BRUYEhQ4ZAp9OJz/7rr7+GzWbD8OHDodfrodVqRcALQKwvDQ4OhkKhwMUXX4yEhAQEBQWJAG3jxo04evQo9uzZg+HDh0OlUmHp0qX49NNP0dTU5BNgUHo6HSddK62trSguLkZRURHq6+tRWlqKAwcOoLy8HLW1tSgvL0dZWRlaW1vF9U3rAem97N69G+Xl5cjKykJCQoL49549e6J3795iFppmhGw2G7Kzs9G3b1+UlJSgvLwcMTExojIsnUOU7iwXvJGXgdDP6Do9duwY1qxZg/379yMoKAiTJk1CUVER3nrrLdhsNnFN08w3vZ9Dhw5hxYoVKC0t5RTMc1Cr1SIgIyaTSXxPDocDVqtVtCvA6S2h5Iw1Grix2+1n/KHnkoNAGlCKioqCRqOBXq8XW+jQTHtQUJBYLxoeHi4yIKKjoxEaGirO99TUVMydOxcTJ07EsGHDfNp2eTZVbsNogL6qqgopKSmizQXgc99rbzkTvX/6fZPJBK/XC6vVCpPJBJVKJfqSdJ0BpwcgaTaYjqMjlBYdGhqKmJgYMbDjX/OEdHS88oAEBbrt9b9oEJTqBtA9Rf7Tmew89r+jpaUFr7zyirjmZHSOlZeXY8GCBXjmmWewdetWvPLKK3juuefEgL/H01bAsri4WJyPSqUSW7ZswRdffCH6PwsWLMBTTz2Furq6C7Y/cjZdHkr67rvvMGHCBKjValgsFmzbtg1HjhzBpZdeioiICGzatAm9e/cWqWkmkwlhYWHIyMhATU0NLBYLfvjhByxZsgSDBg1CeXk5cnJyRKfXarVi8eLFiI+PR3x8vAhebTYbvvzyS6SlpWHPnj3o3bs3amtrkZ2dDbfbjQ8++AAXXXQRysvLMXDgQAwZMgSbNm3Ctdde67Nm6ejRo9i1axdyc3PFc7tcLhQXF2PlypWwWq24/vrrsXXrViQnJ/u8Vo8ePZCbm4sffvgBAwcOFKOLJSUlGDRokJi9oRFKp9MJs9mMhoYG5OfnixF0eYYCgBg1p45jWVkZvv/+ezQ0NGDGjBkICgrC+vXrAQD5+flwuVz4/vvvkZKSgkOHDiEvL0+sq+nXrx8uueQSPPTQQ2hubkZYWBjS0tJQV1eHuLg4qNVqHDlyBPX19QgJCUFkZCT++c9/4uGHHwbQ1ni3tLSgtrbWJ+UhNDRUlMIvKipCZGQkpk6dijvuuAOVlZWiuMqFyn9ghRoYCmq/+OILTJw4EYmJiR0+HsAZgxINDQ344YcfkJycjAEDBnRpxtt/0MXtdsNsNkOtVsNkMmHx4sWYPn26SEPvyvPSOdzS0oK1a9ciMTERQ4YMEanncuBwPuRia3KKJ3XWqUPT0NCAPXv24NSpU2htbcWxY8fwzTffQKVSYcSIEYiLi4PdbkdxcTGuvvpqaDQaLFiwAPfddx8OHDiAt956C8OGDcPBgwfxpz/9SXx/69evR2trK6qrq1FSUoLly5dDr9fjoosuQlpaGhQKBYYNG4YjR47g008/hd1ux+bNm3HHHXfguuuuwxVXXCHSWX9qwB9IPB6PmF3p1asXDh486DPj06NHD2zYsAGff/45PvjgAyiVSowYMUJ0UlUqFaqqqsQotFKpRGtrKwwGg7g26Pt2u91wuVzo1asX1Go19u/fj9GjR+Pw4cOYO3cuYmNjsX//fmRnZ+Obb77Bvn37cN111yE0NFS0RevXr0dGRoYIMKmjS1ulhIaGwuFwiBkh+Tqn7zMlJUWkUVNwArR1pqurq9HS0iKqFtN7SEhIQExMDE6ePImamhokJiZCqVQiLS0NFRUVmDdvHgoLC6FQKERFWfl6lguhtTeDRrOHLpcLR48exYcffoji4mKEhobCarXi22+/RXl5OXr16iUCnZaWFhQWFqK5uVlUlv7qq6+wevVqzJo1y2eQmZ2JZu2oM1lZWYk33ngDN9xwA3Jzc/Hf//5X7JlKs5pKpVIEaQBEqnhJSQlsNtsZrxEUFCQG+Oj35ZnLjrJkztZ5peMIDw/HyJEjUVFRgREjRohBGDkNmWb15dfwer0oLS1FfX09hgwZ4jNzKafNt0euXk9ZHcuXL0d1dTUOHTqEAwcO4MUXX8T8+fNRWlqKm266CcnJyViwYAFGjhzp0776Z0md6/3/lHuUPIEivwf5+ag4Fi1Hkwc2L9QsHv/MF+D0+z1b/88/+0s+x+Q2F/CdWfcnf650DF39fP2fw9/5puz6z6LKg5SbNm3Ctm3bkJiYCJ1Od8Y5QpqamhAcHIyYmBi89957CA0NFdk41PZYLBYsX74cc+bMEdfDiRMnMHr0aPz9739Hamoq+vbtix07dqCsrExkPBE5y0/+LvwHszr7nv2vM/m9/1bnfqcDW+o419XVISQkBG63G4sWLcLhw4cxaNAgvPDCCxgyZAiOHDmCCRMmiE7A1q1b0djYiBdffBEKhQLPP/88MjMzkZGRAaVSidTUVHi9XpjNZpw4cQIulwvNzc0oLS2F2WxGSkoK1Go1Nm3ahB9++AEFBQVITU3FW2+9hT/84Q94+umn8dJLL+G5556Dy+VCamoqlEol+vTpg+3btwNou6iqqqpgtVpRVlaG+vp6FBUVwWg0iuB54cKF6NatG9LS0rBt2zasW7dOFN547733cOONN+Kpp57CO++8g507d2LmzJmiE75jxw6EhobixIkTooQ8NXoVFRVQKNqKmNDJUlNTA5vNJjpUKpUKsbGxIthdvHgx9Ho9cnJy4HA48NZbbyErKwtVVVWi0EhjYyMiIyORnp6OuXPnYurUqXjjjTfwzjvvQKVSISEhAU1NTYiKikJ0dDR27dqFzMxM6PV6pKSkoLGxUVwoZrMZqampANpO+u3bt2PTpk2icqBCoUBOTg6mTZsm3jPN4NKMgXzDvxD5z5qUl5dj3rx5OHr0KBoaGlBcXIyUlJQO98GjDgRdR99++y1WrFgBt9uNXbt2YcSIEejTpw88Hk+n09Xl1EWVSoWKigq88cYbqK6uRk1NDaqrqzFkyBD069evyzfYhQsXYuPGjXA4HNiyZQtuu+025OTkiHVQtL6vK+RGlNY7UqeN1uJTlgdxOp2oqKjAqVOn0NLSgubmZpSXl4vtYygVtL6+HgMHDsR///tfREZGIiMjA1deeSXuueceVFdX44UXXkB4eLi4wZaWlsJisaChoQENDQ2orKyERqNBVlYWgLaR+NTUVEydOhV33303mpqa8Le//Q3x8fGIjY2F0+kUs5DtfS8XIhoEpM7vVVddhU8//RSnTp1CdHQ0FAoFxo0bh5CQEKSmpiIsLAypqamIiYkRHVuXy4Vt27ZhzJgxoh6APLNCg3ZDhw4VqcE6nQ49e/bE2rVrMWLECMTGxmLatGnYt28fHnzwQVgsFlRWVuKaa67ByJEjxXVaUlKCEydO4KabbhLBrtxpioiIQEREhM8sDf1/e2sC6fjov263GydPnkRERAQSEhJ8Zqe8Xi+6deuGgoICHDlyBPHx8XA4HMjPz0daWhrMZjOKi4sRGxuL9PR0cczyLJL/zJl8bHJdhKSkJFxyySUIDw9Hjx49oFarceLECaSnp2PKlCnQ6/VwuVxoaWnBrl270L9/f5FSPnr0aDQ3N6O6uvqCPW9/LhTs0H2xpaUFq1evxuTJk1FSUoJ//vOfGDVqFE6dOoXjx4+jvr4el19+uU9Kq9vtxqFDh/DVV1+JWV1ZfHw8EhMTRRtD5xPNCPsfz7lotVpxv1YqlRgzZowYhKF+l5wJQNuuARAz+263GydOnEBTUxOCgoLgdDpF23+ue75CoRBp/RqNBuvWrcPTTz+NO++8U2yxc+zYMSxbtgwAUFhYiMjISDz//PN47733kJKSAqfTKQZyOio22l6K5vlm0FCfjI6bitoZjUax3ZvZbEZkZKRP30d+Xf9r90LRUcDuPxjoT263/H9Hzlo8W3Dsn70pZw6cz/uQJynka+CntIP+9xEAKCkpwaJFi5CZmYmkpCQRj3z//fciyMzKysLQoUPRu3dvREVF4V//+hdyc3Nhs9lQXV2NgoICjB07FsuWLUNFRQW2bt0qgt6ePXti+vTp2LBhA0aNGoUbb7wRBw8eREZGBrp37+5zv/BfS0/ZE5Qh1dX3T88pVxmnz/VsAxS/tE4HthTRazQahIeHAwAWL16MJ554Aunp6Xj66adxzTXXYPv27eIkob38pk+fjhtuuAFut1s0iFFRUaKTqVAo0NTUhLVr18Jms+HgwYP44YcfEBYWhquvvhrdunVDZmYmrFYrbr75ZmzduhVXXHEFmpqaRDGDrKysM6rcAaerp+7duxdFRUWoqKhAWVkZwsLCkJ6ejnHjxqGlpQUVFRUIDg7GgAEDEB0djdWrV+Oaa67BwYMHcfHFF8NmsyEmJgZNTU1obW0VM3UnTpyAw+HAs88+i5CQENEZO3ToECIiIrBv3z7k5OQAOD1qdejQIezbt08U89DpdBgxYgTy8vLEPoWJiYlISUmBw+HA7t278de//hW7d+/G3//+dzz33HP48MMPMWPGDKxdu1YMJAQHB4tOJn0O9Ke5uRl6vR5utxsTJkzA008/jYqKCnzzzTcYO3as2AtRpVIhNDQU/fv391mAHhERIWYj5Bk7WtRO61ouZHKab3JyMv7yl7/AZrOhqqoKVVVVGD16dIcNLaVs0uc1efJkTJgwAVarFZs2bRJrlalT0VnyervExEQ8+eSTANrOd5fLhezs7PPaxuP666/H5MmToVAosHLlSowePVpsh6LVakX1yM7eWKhzJwewdH7R2sOysjLU1NSgsrJS3AASExNxww03iOqfZrMZ9913n0+KmtvtRkJCAkwmEw4ePIh//OMf0Ol0yM7OhlKpxM0334zIyEiflLY77rgDHo8HpaWlcDqduOOOO8SWD3Tz1Ov1CAsLg9vtxs0334ysrCxxDtD35D/6fCGjdp0qrQ8cOBAhISFYs2YNrr32WixYsACbNm3CK6+8guLiYpSUlOCyyy4Tn81f/vIX5ObmYteuXbjzzjvF3pk2m03MHh04cACrVq3C3LlzxTpvoG1JxYcffojW1lYkJCRgxowZqK2tRWpqKkwmE44dO4Y+ffqIbXacTifef/999O7dG3l5eWfMqgC+N3C5I+qf8ktokE+lUuG///0vqqursXPnTiQlJaF79+4i3Zc6xHl5edi8eTNKS0sxduxYrFmzBkePHsX48ePhdDpx9OhR5ObmIjk5ucN9nNs7r+iaoYAlMTERkyZNQr9+/URWTnV1NaKjoxETEwOn0wmbzYaCggJUVlbi73//u8jCSU9PR0tLy08q3PO/Qg5Y3G43SkpKkJSUhKysLCxduhROpxNhYWF45plnkJ+fj9raWrz22mtiZoXSVXNzc8VAsj+VSiXqc1Dbum/fPrzxxhs4duyYz8xKZwMnq9WKiIgINDc3IyIiQizroNlWm82G66+/HrfddptP0TIa2LFarSKzLj4+XnRi6XjPhta603X8/vvvIyQkBDNmzEB1dTWCg4NhtVpx6aWXYuXKlUhISMC3336L0NBQ5OXlwW6349FHH8WOHTsQHR0Nq9Xa4Xfj/5mcb2BLAb3D4UBQUJBYvqDX60VfJzw8HG+++SYSEhJ8+rE0UEuf44V2X6CJkLq6OqSlpflkEpwNBZLUhsp9RY/Hg+LiYiQkJJxzTajX27YGValUdjkTzf95GhoaYDQaxSAPZal1dcC+o+cnlDlJGTp2ux2xsbG4+uqrxedCg7unTp3C3//+d0RGRqK5uVksUaHrbcyYMaitrUVLSwuuvPJKhIaGwuVyYevWrXjzzTcxZMgQFBQU4I033kD//v1FZqbZbIbT6RQDvNTHofuk0+nElVdeiR49enT6fQFtA2GNjY1iYLuxsRFeb9v+1r/lud/pSIRGFmw2G06ePInU1FTodDqUlJTg8OHDiI6OhkqlQt++fdHS0gKn04kDBw7g2LFjuPXWW0VVRmqYKaWRovxu3bph1qxZsNlsaGpqwk033YSEhASfWcPW1lb06NED77zzDu655x7MmzcPSmXbfoTJyckiaACAqqoqMZOlUChw2WWX4fLLL8fmzZuxa9cu3H333QAgRvZTUlLQt29f/PDDD7j44ovR2NiInJwcLFy4EDfffDMWLlwIpbKt2mX//v1hsVjgdruxbds2kWJnMBgAtF2oS5YsQVxcHJYtW4Z7771XpC17PB6MGzcOl1xyic8oHwXjtbW1iI6ORn5+PrZt24b+/fuL8v4bNmxAZmYmQkND0dLSgtjYWBQXFyM/Px8ffvghDAYDKisrERkZiYaGBp90mqSkJPEdJiQkYNasWbj//vuRlJSEP/zhD+LiBtqCEFrjTB07g8EgOnUpKSlYtWoVdu3aBZVKhdbWVrzwwgu45ZZbRBGXCw3NtMqdyrq6OvzrX//CtddeK2ag/G+m7QU+dA3s3bsXixYtwoMPPojIyEifUa/2+I+I0g1V7pQfP34cb731Fu68805kZmaKTvrZntcfjdK/++67CAoKwi233CIaQ7phyyP1ciqKnHIkv196b06nExs2bMDmzZsxbNgwDB06FAaDASdOnMDJkyfRs2dP7N+/X3TQAfhsx+MfcHg8bdtZDBo0CAsWLMDDDz+Mvn374uDBg/j+++8xYsQIHDx4EPn5+aICrPydKhQKmM1mn9QZeu7jx49jyZIl6NWrFzZs2IDx48f7tDHy5y53OC+0zozMarVCo9GI7/PJJ58UHTybzYZPP/0UU6ZMwTvvvIPs7Gz84Q9/EMWLfvjhBxw4cABhYWG47LLLoNVqffa6bGpqwueff46LL74YgwcPFvvjOhwOTJgwAWvXrsUbb7zhs6WN0WhEWFiYT6qWWq3Gzp07cfjwYcyYMaPDLAp/5/reqINhtVpRWlqKlStXQqfT4eqrr0ZaWprPmjyv14usrCwMHDgQhYWFWLduHY4ePYpVq1bBZrOhvr4e4eHhuOSSSxAZGemThtzZ45SDn6ioKISEhIjPgGbJqTNZXFyMH3/8ERMmTEB2drZYRrFmzRrU1NSIJS4X+uDkT0GDD9SZ//bbb5Geno6IiAisXLkSM2fOxL59+9DS0oKMjAwMGzYMjz76qOiU0kDNxo0bsWbNGtGRloWFhWHq1Kno27cvnE4n9Ho9cnNz8eqrr4qK1u0Fth2dNxS4GgwGUXzN4XAgNDQUJpNJVPEGziz+ROejyWTC0aNHkZSUJLIV5AreZxvgpMwWyvSqr6/HqFGj0NjYiIMHD6JXr17IysoSn2FaWho+/vhj5OTkoKGhAcnJyXjooYcQERGBhoaGDvcMp+PtzGdyLnSf0ev1aG1thUajgU6nQ2NjoyhKZTKZRFBLM+/BwcFntDMXWiqy1+vF/v37UVZWhsTERMydOxcajQY33XQTwsPDOxxEWLNmDVavXo0777wTGRkZ4rmAtv5GQUEB0tPTRcZNR8/T2tqKzz77DNddd12XB3hkCoUCx44dQ2lpKaZOnYrGxka8/PLLGDJkCCZOnHjGREBnBkno2qKq/nQeZWVlISsrC9nZ2UhLS4Ner4dCoRAThPLsplKpxPTp0+F2u9G3b1+sW7cOXq8X+fn5YvLK5XKJdeQ0+BQeHo677roLISEhiI6Oxm233YbQ0FAkJibC6XTis88+w8SJE8VyScp002q1GDJkCN59911cddVV4t/8ryP/NGv535YtW4ahQ4ciLS0Nb731FrRarai2/nPtCd3Va6hLVZG9Xi/69Okj0leefPJJFBQUoEePHnjkkUcQExOD0NBQrF27FuPHj0d0dDSefvppxMbG+nTuqdGgi55uvrROy2g0+hQnoJNg9uzZCA0NxXXXXYeMjAzccsstOHnyJPr06ePTIbXb7diyZQsmTZokfkY3bL1eL0YQ6Wfdu3dH9+7dceDAAeTn56Nbt2646667EBwcjMmTJyMjIwN33nknDh06hP79+8Pr9aKgoABDhgxB//790a9fP5+qgiqVCpdffjn279+Pv/71r+jfv79PehmRbwZ0sqSkpKBPnz7YvXs3Bg0ahJycHMyZMwclJSWYOnUqjh07hri4OMyaNQvR0dGYOnUq8vLyMHv2bJw8eRK5ubk4cuQIdDodEhMTYbPZcOTIEUyaNMknDSQpKQmvvPKKKEQhH9eoUaMwYsSIM05g+q769OmDq6++GiUlJXjmmWeQkpKCjRs34tSpUxdsYCuPyFIjFBoaik2bNmHGjBkiGJSDMDq/qQMjV4ClwYO9e/eK2UQahKABBTntijqs8jHIx0avaTQasW3bNsyePVsE4XIBMmq4AIjBJXpNOY1EpVLh8OHDuOiii8QIpty4UyeYnk/e1kpO4fQfDNi+fTvmzZuHadOm4bPPPoNarUZ+fj6ys7PRo0ePdlOV6LMPDw/HhAkTRMYAXU86nQ4PPPCA+H2LxYLXX38dN954I7Kzs/H888+jR48eyMrKQkpKis97iYqKEumachpoVVUVXnvtNYwdOxajR4/Ggw8+KIrixcbGisZfbtcupA5Me2jpBL13pVKJqVOnYt26ddi9ezemTp2KJ598Eg6HA0OGDEF+fj769esnsjkee+wxNDc3IzQ0FDk5OeI81Ov1cDqdqKyshNfrxb333guNRiPWtdpsNiQlJWH27Nl4++23UVlZKQZS6dyj9Givt62Q2uHDhzF58mSMHj1atG9dCRrP9u8qlQpTpkxBWloagoODkZ+fD6PR6LO1HVW1vOKKK9DS0oKioiIMGDBA7NnrcrkwadIk5Obmisd1hn87RPcyj8cj2h7qYCkUbdsz2Ww21NbWIikpCddff72YHXe73UhMTMQdd9yBHj16iLXtrH0ajUYUcnK5XNi1axfGjRsn1rLpdDpUV1dDr9cjKioKp06dEucLtX80iN+7d+92O8nBwcGIjY31yTqj2SmqYAyc7hfJg2l07soziBRM7tmzRwRoI0aMEMGtHHhRuy9natGEQmlpKUaNGoWoqCjRKQYgBqU6QgE1bf0YGhqK5uZmLF++HBs3bkRDQwOcTicuu+wyJCYmoqamBrt378awYcOwdOlS3HLLLUhNTYXT6UR6enqHryPf32gAk66Fjq4tukcTuU33eDxYs2YNCgsLYTabceWVV+Kiiy4Sz0WfXXl5OT766CN0795dVMmX75MX2j2B3n9KSgpUKhVOnTol6hpQ9pj8vunvNNiTkZEhJrbo2tBqtejZs6fIInC5XGJmnvpUVMF927Zt6NmzJ9RqNQoKCuBwOJCUlIS0tDSfTAJ6baDtez5w4AA8Hg9aWloQFBSE6Oho5ObmYvXq1aKIWXV1NfLz80X/Qk7X9R+07Oh7pYKDl1xyiejLhIWFYebMme2mp/vHBDExMRg/frx43RtvvPGMYDM8PBw33HCDzwB7Xl4e8vLyxPP07NlTtBF79+5FaGgoIiIisH37dvGZ2mw2dO/eHRs3bkRsbCyam5vPyAiRZ4upXgQtcXQ4HOjXrx+GDBmCzZs3IyUlBSaTCddcc42YTW8vIJb7TfKEhf9nK/fHuqpLqcgKhQLjx4/Hhx9+iFGjRqFnz57Izs72aVwtFgtWrlyJPXv2YMiQIUhLS/PpTNPv+f+XviSdToebbroJUVFRPm8sPDwc48aNg8fjwWWXXQYAyMvLQ69evXxu9E6nE/v370dMTAwGDx7s8zoAkJubi6SkJJ89ofR6vdjPkBpCOjHHjh0LtVqNyMhI9OjRAw6HA3l5eVi5ciVKS0uRl5cnvnzqaAHAgAEDMGDAgDPeu/9nAPjuVajVajF58mTRWXO5XBg9erQ4uXJycuDxeHDJJZdAoWhb06ZQKNCnTx/06dMHdrsda9euxdSpU6HT6VBeXg61Wo34+HifYCAmJgbR0dE+3618PGe7WSmVSpFOp1QqUVdXh5aWFvTs2fPcJ1KAootOqWzbf+/IkSPYsmUL0tLSxMyovC6HfpcaF5p5UqlUOHbsGHbs2IEtW7ZgxIgRPnuD0vdOFe+am5tFg0/UajXCw8PhdrtFUFBVVYV9+/bh0KFD6N27N1JTU8+YKaD34R+AUseLZi937tyJ4uJi1NTUIC8vTwTACoVCrHWSAxyPp63CcHNzMwD4bO1CM2oARHGduro6BAUFiXQ8GmSiDnpHDVlISAguvvhicW7Ka9dkJpMJc+bMQe/evWGz2WAymWA2m0URBblRDQsLw5gxY8Tr0npfvV6P2267TbRvDz/8MJqamkR2BnXsqLNLKf8XMuqIULAZHBwMt9uNhx56CJWVlUhISMDdd9+NlpYWTJw4UQRX1K5Nnz7dp7CevMcrncvXX3890tPTRftMVZDdbjcGDhwoRqcpA4gqd9P5S/eC7t27o2fPnqJarPwefiqtVot+/fqhT58+Ikik90DPT8eTlpaGa6+9FhaLBVlZWWKLEP8OTWdnHeg90uCXf8BOP/MvCJSRkYH09HRR60Gn08Hj8WDkyJEiG+dC64T/EqiNqKioQHV1Nerr67Fp0yZMnToV+/btw5AhQ7B161afWVKa4aQ2Ji8vD/369evw+em88J/tkNM5AeDo0aMoLCzE8ePHMXToUAwYMAAGg8FnwsBms+GNN94QGWVr167FihUrEBoa2m7bSc9P54PL5RJr2Lt16yYG8Kmf1JlMILpOlUolbrvtNixatAgnTpzAlClTYDabMW3aNOh0OkRGRuKrr77C7bffjr1792Lo0KGi3sS5ZsrkYF7+rDozwyZfR/Iazl27diE9PR0LFy5EUlIS+vTpAwA+gw4GgwFqtRp79uzBNddcI647+kwutGtKDj5MJhOqqqqQmZkJk8kkBocB+ASZHo8HO3bswJQpU2C1WkV/Q/7eZNXV1Vi1apW4x0ZFRWHixIlQKpXYvXu3WPL43nvv4fLLL0dBQQHuu+8+OBwO7Ny5U2Q2BAcH46KLLkJlZSU+/vhjJCQk4PDhw5gwYQI+++wzPPnkk4iMjMSpU6dgtVoRFxeHoKAgWK1WkWVAfaWmpiYx4UbHTW0wFevcs2cPSktLUVlZCa1Wi0GDBsFoNOLkyZM4cuRIlz5jIp/P/j/rjMzMTBw4cACxsbHYt28f3n77bYwdOxarVq3CpZdeir1792L8+PFoaGgQg80nT57E4cOHxXOkpqYiMTERa9aswfr16zFgwABRbdloNCIzMxPr16/HkiVLYDAY8N1336Ffv37i81MoFKLAon9WI907aamMTqcTkynyudbVvlWXi0elp6cjMzMT+/btE4EjNZAKRdtU+axZs9DQ0OCTNni2ND15VM3r9Yq1pfLP5PWz1JjKs0HUICuVbdX/brnllnYL3Oh0OsTGxvqkz9DIpvwByo03USja1qRERERg1qxZIoWRjkGeSZMvCv+gsaPPQG5c/feGo+eXR2/oeOXUAofDgcmTJyM1NRVWqxVLliwRaQH0/P4jJp0dWaTvkD5vGtmKiorCX//61wuuEZfRuVZXV4eHHnoIffr0wYYNG9CrVy8EBQWJmyR1aOl8LCsrQ2RkpEg3LC8vx0033YSbbroJ69evxzPPPCNGmClQo3Pz1KlTeO+991BZWQmFQiHWZMfGxuKmm24S+7bW1NTgz3/+M8aPH49FixbhuuuuE4EWHYd8w6Vr2W63o7KyEqmpqSJd9IMPPhCNV2NjI9LT032CD5ohks9v6gQsXrxY3Ljo+hw6dCimTZsmguG8vDzYbDbcfvvtuPjii9G3b1+43W5RlMNisXQ4a0RrcSlwbm8EFGgb0QwLCxNpcFOmTBHv32KxiPWWVHxK7sjRc+p0OjGQpVarcemll4rXMplMItiSZ64BnNHBupDIGQd07SuVSlF0D2hr96Kios6Y/aM2m9pk+bOj86pbt27Q6XRizS1weu9Q+lwHDx7skw1AN0d5UFKr1eKiiy4CgDPay5+C7kHya1GbKrfF8iCVStVWfVlOO6UlK9Rxay9LoT3y4Jp/Z57aHepw0eALBbEZGRlndPrpfkbtD8/Wnp38/a5Zswbh4eH429/+BrVajejoaJw8eRIejwc//vgj5s2bh9bWVvG5y/f1cxXIOdvr03VVXFyM999/H5dffjkqKyvxt7/9Dc8995xPphVdXwkJCWLQeeHChWddQ0jnsRyMl5eXo0ePHkhJSYHL5RKDIrSf79nQ8VJF5HHjxiE9PR3BwcEIDg5GY2OjqKdw9913w2KxICEhARUVFUhPT/fph53tGqaf0zVH9+OOalZ4vW1Fc2w2G8LDw9HY2IiwsDCxNZZWq8X1118vtkakwTS5IrrVakVMTAxiYmJEjRL6NzqmC23Wlto76tvQuufvv/8e4eHhoj+Rn5+PhoYGxMXFwWQy4dSpU+jWrRvWrVsHnU6HQ4cOiUBx5MiRPq9B9wZq5+12u+gTUf8oJSUF6enpiImJQXl5OWw2m8/gJs0Ku91uxMbGIiwsDKNGjUJ1dbWopVFbWyv6Ejt27EB2djZqa2uxbt06mEwmGAwGjB07FkajEYcOHUJycjK0Wi0WLVokBkx79+6NIUOG+PSp27v/d+Uc8A9m/Zecne9zZWZmIioqCllZWWJQzuv1IiMjA3379vW5v8ivQddUcnIyBg4cCK/Xi1GjRuGLL75ATU0N0tLS4HQ6RU2N7du3Y/78+XC5XCJT7vDhw4iLi0NwcDC++OILGI1GKBQK9OrVC0OGDEFJSQmKiooAQGRoJCcnd/mzI11KRabO9cyZM8VIl9y5pXTMiIgInwJG5yJH9vRc8ii4f4dBnhGTTyJqQNPS0sSodXuvRb8vvyY9Vv4Q5dQceZQOaKteSI+lgFoeIWzvJJFPfpm89s8/OJZHHtvrzMtBhkqlQlBQkCh4oNFocMstt4i8euoMyR2Yzp408uu3F2BT5+pCt2XLFpSWluL5559HYWEhBg8eLD7XhoYGhIeHi8612WzG/fffj5kzZ+Laa6+FRqPBf//7X/Tp0wfDhw/HkiVL0L17d6jVatTX10OtVou0SZvNhrCwMEyaNMmno0Idj6ioKPHZL1++HA6HA9deey2++eYb9OjRA2azWTTaNNNK5wadAz/88ANefPFFfPXVV3A4HKiursbChQvx5JNPorKyEsnJyYiNjRXryVtbWxEWFgaLxYLQ0FBR1Rhoa4xuuukmAPC5Vo1Go7jhmEwmrFu3TqRtffbZZ/j6668RFxeHL7/8UrQp/tchoVlx6lDJ22jI6LWpg+afTUFFd6iDBkCk5vgPLtE6FHoMBfn0b5GRkWJmlzpFF1JHRianu1JQSe2BPMMqt+EKRVuxDOpIAr5plNQBoe1+AIj/9y9MQtcUDcKoVCrxedP6bWrLKUOCsiF+rvcvd5yA0zN41P5RZ0oeKKH7g9zx9f8s5Zm6s70+fa50P5KPg4JaeWZPXnZDr0PZIPT9+A/OsPZRO69UKnH48GFcd911ovNls9mQkZEBp9OJxx9/HEuXLkVFRQVmz57tU2ivvcHurqAB/927d2Px4sWYOnUqxowZgyVLlmDRokUYOHAgtFotmpubRX9gzpw5KCsrw1/+8hdcd911YmClI0qlUrSvHo8HS5cuRXBwMBISEkQgS+eg3Pfo6DMDIALMxsZGZGZminOZan8oFApER0eLAaH09HSfyQq6jtrrY8ifpdwnbK8YG3G73fjqq6/w3nvvISEhAWazWazfjY2NxeOPP47NmzfjrbfegkKhQGpqqrg/UVCr0+lw+PBh7Ny5E3/84x9F5gMNftGA24WUySMPqJWVlSEnJwc//PADoqKiUFdXB4fDgc2bNyMnJwcffPAB7rnnHhw/fhy9evXCgQMHcOrUKeTm5qKyshJKpRJJSUnYv3+/zzaJ3bp1w/Tp00U7Rns3A0CfPn1QXl6OzMxMjBgxAlFRUSI93mg0YujQoT7tM3C6uGRERARycnIQFhaGbt26ITw8HFVVVeJcj4yMxKpVq9CrVy98+umnyMjIwN69e1FfX49Dhw4hNjYWF110EYqLi9GtWzfExcVh9+7dGDhwoKhQTJX2R40aJb73bt26ITExsdPXvMfjQW1tLWpqasRWowUFBcjJyUFWVlaXngdoy/I8cOAAHA4HcnNz4Xa7MXjwYBw/fhxGo1EEmfS8cXFxPhme8kDo0KFDsXfvXmRkZCAlJQWJiYkoKSmBSqVCnz59sG3bNlx++eWYP38+UlJSUFBQgJKSEhw6dEgUpT18+DAyMjIQERGBnTt3ikk4ynhsbGzE9u3bRfr2+ehyYKtUKkUKGuBbZt1//ZX/Y8/23IBvgOsfxNL/+8/WAqe/QP8bfUeNII1A+Od1U+ov3eTbC6gpeJcbW//3TMflfwPr6DPwn9GWL0p5tNd/9tj/JikH4NThpJuFfFNt7zPpDOoU+c9OXKhpNzJ5xikrKwsnT57EyZMnUV9fj/3792PHjh1i+4777rsPQFsqzFNPPSVSbumm3aNHDzQ0NCA0NBTLly9HY2MjvvrqKygUCsyePRtJSUnQarUoLS3F/PnzYTabxQ0FaOskzJ49W8wE2e12dO/eHYcOHUJLSwuqq6vxn//8B7t370bv3r1RXl4uAui//OUv4nzLy8vD3LlzERQUBLVajdLSUrhcLnTv3h0LFixASkoK1q9fj3Xr1om9OGtqatCtWzf069cPEydOFLNvO3bswJo1a3xSuQwGA7KyspCQkIDg4GBoNBrs27cP1157LUaPHo309HRs3rwZ1113nagK7X8NySh9lWYTKJBpjzyrS4EOBV00Ow6cngWhdSfyIB3NZtHz0OvL15HX6xUpNvLPLlRyyja9T+oQ0s+8Xq9P+jt1pGm2hz5LORuFUsDl9Evq1NC9hmZ96Hepk+1faZO+MwocgZ+nbZK/d5ptldtEuS2Wzwe5faT37t9W+z9/e+jeIL8edaLp85IDbDmdTp7ZpsfTd0mz710pMPe/iD4fhUKB+++/H3FxcWLgiwaTFQoFEhIScMcdd4j2zOFw+AzWy/0Uf2c7T+12O4xGI7xeL/r164ebb75ZnAdKZdvyIq/Xi/Xr12PZsmU4evQorrrqKgwcOBBPPPEELrnkEgwYMAANDQ0ICwvrcCDa4zld2Zc6/NnZ2cjMzIRC0Zb1QoGG1Wo9a0VtrVaLlpYWhIaGwu12i2wOeQCQ2mC6puS0bdo1wm63nzUgpwEyui+4XC6ftGx/brcb9fX1ohpsZWUlVq9ejfvvvx9r166F2WzGFVdcgSlTpgA4HcjT/ZY+86ysLLz55pvt1tYAOr8faKCg/u6xY8dw/fXX+7QXFOCuWbMGbrcbKSkpMBgMIvWe2rfjx4/jyiuvFBV7LRYLDh06hIyMDDEg0FHF44EDB2LevHkYOHAgrrjiCqhUKgwbNkz8e3vtl0qlwu233w4AYju/gQMHYteuXcjLy0NSUpL4d6BtkOrUqVNiouHKK6/E3r17kZ6eDofDgaamJigUCsTHx6O0tBTA6ftiUlKSWEZJOprFPZuSkhKsW7cOWVlZeOeddzBo0CA89dRTePPNN7tUcdjr9Yq95T0eD/7whz+cMdnmf47Sv/n/d8yYMQCA/v37AwD++te/wmazYd68ebj88suRmZkp7tV9+vRBTEwMjh8/jmnTpuHgwYOivgnto56QkIBDhw6J9f/URmZmZoqdZM5XpwNb/6CqowtW/jDkTkVHX4T/h3e256UgSg6m/MmPb+915Q5Qe8ck/1t7Qan/5+B//P6/3xn+s7DtPVd778v/+PxTv/0f4//3jvgH1+d6TTn4v1CDWwrg4uLi0NTUhLfffht1dXXYvXs3IiMjsXDhQvTt21dsCQO0fQ9UOIw6oD169MDy5cvxww8/4NSpU6ipqcHrr78uRhRpxtbrbUvJv/feewH4pg8qFAoxY0vrCVetWoV3330Xzc3N2LNnD/Ly8uD1enHJJZfglVdeQX5+Pj7++GNRaRMAEhMTfdL74+LikJKSgldeeQX79u1DVFQUhg8fDp1Oh7CwMGRnZ6OhoQE9e/YUa7cBiLXoNHstN5p6vV4U2lAqlejVqxc++eQT7Ny5EydPnsS0adOg1Wp91ue0d916vV6xVou21FKpVKipqUFERAS0Wq3P+hcqTkffAzWa1Hk6evQoTpw4gbFjx+Krr77CiRMnUFxcjD/+8Y8YNmzYGQE2Bert8T/3L7TODKGOnVKpRFhYmJg1JbROVh4IVCgU4jMPCQmB1WqFVqv1meHVarVwOByi007PRbOtlI7svy6XAjrg9Gy+HMTRa/9c7ZLcIdDr9SItkQrj0OvS4Id/u0jnRXuz3e21ue29Pj1eDqTpnkiPp7aGAn//gVO6VmQ0+Mk6plS2bWFINSvoHAUgzjMK2GgAAWi/qvv5oAwTl8uFjIwMPPbYYwCA+fPnQ6VqK1hZVFSEv/3tbxg/fjxmzpyJV199Fc3Nzaivr0dxcTGKi4uRl5fX4XHQcep0OlHh9fvvv8fVV1/tk9VCKcYGg8FnX1t/brdbBL7y4CBNLsj9Cmq3abCI0uhpuzr/gS/5mOXBNIVCIR4nD5bKtFot+vfvj40bN6J///549913ceutt4r7wKlTp1BbW4vCwkLk5+cjPj4eX3/9NZKSkjBmzBjxfdMx+X+/P9fyh98bhUKB3NxcsWOJ/P4oDT47Oxsul0vc26mtp/+mpqYiOTlZtEkul0vs5nG2gUiv14vIyEhMnz7dZzb+fD5jpVKJ9PR0cS3Iz6HT6TBp0iSfyaQePXqInUMmT54sXnfIkCE+2ZxBQUFi4u+nZGYMGjQIu3btgkajwbRp00RqdFezIqkPNmPGDJ/vS74/03vp6PGkvd9RKBSYNGmSqNdDk4JXX301AGD48OFQKNq2Y6X7zjXXXCOu2UGDBuHEiRMi7ftsMVVXdKl4VFd1ZSawq8/5U950ewFrZ373fP79fI6ps/9+tmC6M79/Psdztue90BpxGaVBDR06FH/9618REhICtVoNrVaL3bt3IzMzE8OGDROjuYQ+E+rcz5w5E927d0e/fv3EfspPPPEEhg0bhtraWthsNnFx63Q6dOvWrcNjolSxSy+9FDExMQgLC4PL5UJQUBCWLl2KnJwc7NixA3379sWRI0dQUlKC4uJi9OzZUwSG9Fperxfx8fF46aWXcPz4cTz33HM4cOAA+vTpg1WrViE/Px+rVq3ChAkTsH79ejQ2NqKurg5xcXEA2ta1Uvn69ni9bdVqr7vuOvTp0weHDx/G+PHjkZOTI2aS5M+rvcfTLCr9//bt2/H000/j+eefR05OjuhIdpRBQI93Op1YsWIFampqMGbMGFRWViI3NxdmsxmbN2/G8OHDxePlwORcg0H/C+Qbq//6NXmLBPnzkDujVAzG/znov/Q4+bmp0+zfeZY7kfLP5L//XNsN+L+O/zH6dzjOFsB0dU9p/+ftaIBSHnyVB2H8f6e9APZsg8WsjUKhEHt50wAB1Qaw2+1iiw+5qIz/4+Xstq6Sl1RQe7l582YsX74cDz74ILKzs/HPf/5TzJAWFRXhqaeeQnJyMkaMGAHg9D65ZwuyKWCjwZOGhgbRgd+/fz82bdqEhIQEZGVlibXsZ+Mf9NFSEv9sOOoU07moUqlEIaBzoYEk+lyWLl2K0NBQjB07tsNjMpvN6NGjhxikGD9+PFasWIH6+nrYbDY0Njbio48+QnR0NKKiovDaa6/hxRdfFANaNOBGnX8a+JMHrS60a0qpbKvQHRwcfMY9kd6zUtlWrZ3Of3n3BeDMyS+VSoXU1NQzJnjao1AoRGZCVwaJ5OOk16BA2v+55MxQeqycZk4/kwdW/Qcmf8r3TgM7FDBHRUVh4cKFIqDuLHmQIDIyEkqlUgxMd2WSy/855Z9ptVoxQ91epin9Lg1aywM+8jI2OYvl57hmLvxFkYz9DCiVVaFoq0Atp1pGRUWJFKjevXv7XNByeiBd1MOGDYNCoRBl6x999FFs2rQJI0eOPGtw2N4x0UzVwIEDxRogAOjduzdCQ0NhNpvFjKtCoUBiYqIYqaPOCx0fbf9BxTwuuugiuFwuXHrppaKia2ZmJhISElBXV9elYwVOBya0pxvpTAokNYQUBB8/fhyffvopampqfNYyyZUY5e9BviEpFG3b+fTs2RM2mw233XYbdu7cie3bt+OZZ57p0ntijP1voLZEHmDR6XRQqVRiwEZe4ynznzU/H0qlEmazWWQyFBYW4m9/+xvuvfdeuFwuLFmyBBaLBRkZGWItbUlJCdLT031qClBmQ0doRtXr9YoiWYMGDYLD4cDTTz+N6dOnw2g04vPPP0dcXNxZB1/923W6b/rPaPp3hGkdOC1FqKurw+bNmzF+/HgRQNLgDQXCcpX8H3/8EWlpaaLiPX1+wOlAe8CAAejVqxf0ej1ef/11xMbGYtKkSRg6dCgyMzPR0tKC3r17o6WlBe+99x7uuusujBo1SuwNTPfNjt5vZ4vCBZKOvi95BlAewJEzS2TtBVadCVblAbifMiMuL//oqL9G/0a/T0E4XcftzZ7KgzPny+Px4NixY6ioqEBpaSmWLl2KQ4cOQalUYty4cZ1+Hvm7oHNRLvr4c0xWnmv5mP/j5ODWPyXa/7z5KTiwZawT5GquFFBSalVISAjGjh3rk/rnT15/Q42jXq+H2+1Gr1690L17d9Fod+WilsvmA6dvrKNHj/YpNkVrZ+n4KX2MAka5wQFOjxp6vV5MnDgRKpUKGRkZYuS1q42j/2wqAJ9iTPQ7dCNs7/Oj9+l0OvHtt99i4MCB2L17t0/BHPoduinJMyQ0W+t0OsXjHn30UQwdOhSLFi3CxIkT0dLSckGmkDHGfpr22gRqz/yXKHX28V0hrxstLCzEn//8Zxw6dAh//vOfoVQq8eGHH0Kr1aKwsBAWiwVr167FoUOH0L17d0RFRYlK+P5bYPmjNlKr1WLLli0YOnSoWE7S3NyMyy+/HEePHhX3DYvF0uE627N9Zh1lnNEsONUzsdlsmDNnDrzetu2LLr/8cowbNw6zZ8/GjTfeKIJ2uRI4/T8N9voXR6MCjLSHfJ8+fUS2U0hIiLifjhgxAi+++CKmTp2Ku+66Szyegmq6r51teduFpDNLEOX/duR8MgrPlqHYFfLj/K+Dzvzbua7vn3oOKBQKpKen47HHHoNarRbL0QB0qRhie9/Vz31+niuTraPX7+i7/LmOjwNbxjqB0lMoUKQbH3UA6Ebsn95LKA2WAjfqZNDMqbw+qCvHJK/lkyufUjAnp5QBpwt10AyzPJNMj6P3QX8oUKT3eD7rxShQlj83OQWZnu9sN076N9pDcty4cZg7d674d6/Xi6KiIqxZs8YncNfpdMjOzsbQoUOhUqlQVlYGAJg9ezbeeOMNfP755+jfvz/q6+t/0roYxhj7pdDAnEqlQkREBO68804EBQWhqakJISEhyMvLg0ajQVVVFR577DGMGTMGf/7znxERESHSQWmd4Nna7kOHDuGTTz4R9Qdeeukl6PV6NDY2inuO0+mE3W4XBeF+TjSzTDNMX331FdLT01FeXg6n04mysjI4HA5RzEaj0aC1tRUbN24UadQHDhyAxWLB8uXLYTAY0LNnTyQmJopB5dLSUhQVFYk1/7Q+Wl6b7nA4sG/fPrhcLsTFxWHLli3wer0IDg7GwIEDxa4AciFNxn4qhUIhaoRQX5H6aD91nf7/Cg5sGesEClj991ClirDy1hoyOX1NLpagUqmg1+t9Ku129cYop9HQscnbRikUCnGTlo+LKsvKKXVyyg3guz6DZlX99x2l99EZSqVSfAY0ok4Ntvy6/qlBhB7ndDqxYMEC7NmzB83NzTh58iRWrVqFHj16QKvVwmg0IiEhwafyq7zmkDormZmZyMzMRFFREe6++26xrdKFtiaKMXZhoNlBhUKBtLQ0JCcn+7TX1DbfdtttuOOOO8RgHw0KUpt+rnQ/g8GAzZs3o6CgAMOHD8fYsWPh9XrFOsOysjJYLBa4XC6xr/XPjdpul8uF3NxcxMfH4+mnn0bPnj2xceNGUdOB7hVWqxWFhYXinlJXVye2RbLb7QgJCUFiYqK4d23duhUffvih2IOeqh3Tcheq/EwFi5544gmYTCbEx8dj2rRp6Nmzp0/GU1dnrhg7G3lyRE715XOscxTec63WZoyx35jX6xWdqJqaGjQ0NGDPnj145ZVX8Oqrr2LYsGEiMO2oaAd16L799lusW7cO2dnZKC8vx/3334/Y2Fif4J5vIIyx3xNaQ0qFDE0mk09RlubmZlHAirJh5HWq/stc2mvjqMgfDRzm5eWJCvwA8M4772Dfvn1obGzE0KFD8ac//QlarbbDqsjnQy5eRW36li1b8Mknn+DFF1/E9OnTMWTIEKSmpmLKlCkICgoSGUG0FdgTTzyB9PR03HHHHXA4HD6FvbRaLU6ePImysjIRDGdnZyMuLg4qlUrsevDggw9Cq9Vi7dq1WLt2LS655BJ8/fXXeOGFF0RgS4H0hbielrFAxTO2jLHfPZqRAIDo6GgEBQWhuroajz32GIKDg30KSHU060r/PmbMGBQXFwMAHnroIbH+TC4+xRhjvye0tIQG74xGo5iJdblcCA4ObjezyGKxwGg0QqFQiOUvZwtEPR4PBg0aBIvFIjJdaF/k22+/HRUVFXA6naKa6c89YytXqqVAPigoCBUVFXjiiSeg0WiwfPly/OEPfxBbiNC+5DqdDjqdDgaDQQSyckVbjUYDs9mMsLAwzJ8/X2wL9J///AcbN25EWFgYXn75ZaxevRqPPvooUlNTMWDAAHTr1g2NjY3QarViJ4DOFM1hjP36OLBljAUM6px4vV7k5+fD7XaL1OqzlbCnGQeLxYKwsDDcc889ACDWGnMKMmPs94wCVEp99Xg8IouFgsDW1lYEBQX5BK4UeFJbSQFfRwGpRqOB1WpFUFCQmBXWaDSw2+3Q6XTo3r27eD7glylIQ208PXdubi4eeeQRVFZW4h//+AcWL16MW2+9Vewnq1KpxPY7JpMJLpcLYWFhMBqNYssgWlITFBQEs9mMiIgIJCUlITs7G5s3b0ZwcDDq6+tRVFSE/v3744knnsCnn36K3r17o7KyEg8//DDuvvtusXctvfb/SuEoxgIFpyIzxn73aI2wvOaEUu1oNoF+x78CJj3OP5WPOiVUkEGuysydFMYY+/2jojpyFfxDhw7BYDCIILy9x9hsNpSVleH//u//EBMTgxdeeAEbN27EgQMHkJOTg4ceeghff/01FAoF/vWvf8FsNmPAgAG44YYboNVqxYACwOsfGfs94RlbxljA8A9AAYi0M/9N1mXyGjOanfXf31AuxMKdFMYYCwxUFIqq7ffq1euMwU1/J0+exCuvvILs7Gzk5eXBYrGgrq4OvXv3xuDBg6HT6bB69Wpcf/31eOqpp8QsMi1ZkXcd4Iwfxn4/uG40Y+x3j1LtaFsjOUil/9KfjvZOpMfRc6nVap+q0vL+xIwxxgIDpQNT+0/p1h0Ft06nE/Pnz8fKlSuxdu1avPzyy6iqqsKGDRug1+tht9sRHR2NVatWoa6uDkaj0SflWN6znoNaxn5fOBWZMcYYY4wFJNp/nQY/bTab2GKuvYFOj8eD2tpa2O12MegZERGBmpoaREREwGg0oqKiAh6PB3FxcbBarYiMjBSvJT8nFfTiAVHGfh84sGWMMcYYYwGJ1tlSDQZabwucuSyFfp/+ndKXKa0YaJsBln9Oaci0HZJOp4NKpRJBLi9dYez3gwNbxhhjjDEWcKgLS/+VayfQmtj2HkO1GqgIIRUUpKKClMqsVqths9mgVqvF8hX5sRRIc3DL2O8DF49ijDHGGGMBTS4AeK7UYLk+A6Uxy/M88owspSvLqN4Dzw0x9vvCM7aMMcYYY4wxxgIar3ZnjDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBljDHGGGOMMRbQOLBl7ALm9XphNpvhdrvF300mE1wul/i7y+WC1WqFzWaD1+uFx+OB1+uF2+0WP+sqp9MpHut2u+FyucSf83k+xhhjjDHGzkbh5V4mYxcMr9cLh8MBtVoNpbJt3MrtdkOlUkGhUIhAVqVSid/V6XQi2FQqlWhpaYHBYIBGo4HH4xE/VygUnXp9l8sFhUIBhUIhjkFuZrxer8+/McYYY4wx9lNxz5KxC5hCoYBarYbH44HL5RJBLoB2Z07pZ16vV/w539eVA2s5cKafORwOnr1ljDHGGGM/C56xZewC5H9Z2+12EWAGBQX5zMRSqjAAaDQa8TP6ucFgEDOwnX1dCooVCgWsViuUSiVUKhXUarX4md1uR3h4eKeelzHGGGOMsbPhwJaxC5Db7YbH44Hb7YZOpzvj3z0ejwhu1Wq1+DkFo9QsyEFnVwJbl8sFj8cDrVYr/s3lcqG6uhpBQUEwGAzQ6/Wdfl7GGGOMMcbORn3uX2GMBQoKLGl2ltKO5X9TKBRwOp3wer3Q6XRwOp1wu91QKBQiCKagV6VSwe12d3qNLVGpVD5raE+ePInDhw/j888/R0NDA3r27Inhw4fjiiuu+MnvmTHGGGOMMQ5sGbsAtbemVf470Ba82u12EbzSTC0FsDSrez4zqvQYSkkuLy/Hjz/+iF27dqG8vBzNzc2IiYn5Se+RMcYYY4wxwsWjGLuA0FpYKt6kVCp9CkdRwEkzszU1NVCr1aKKMq21pSrKra2tXZ6tpRRoeZ3unj17sHLlSmRkZCA7OxtxcXE+KdCMMcYYY4z9FNyzZOwCREGsWq2G1+uFVqsVM7InT56EWq1GeXk5vv/+e/z5z38We84ajUa43W5otVqo1WpERER0ecaWAmRa37t3717s3bsXjY2N+OyzzxAaGgq73Q6n0/kLvXvGGGOMMfa/hgNbxi5AtC6W/l+hUMDhcKCxsRFffPEFmpubYbPZ4HA4MGfOHKjVauTl5eHuu+8WKci0Rpf2ve1sgOv1esVr22w2FBQU4Pjx41Cr1YiMjBTBM6VHM8YYY4wx9lNxYMtYJ8l7u8rpufLWNnLwRwWY5LWrv3QFYHltrfxaXq8Xra2tOHr0KFatWoXQ0FDExcUhOTkZH330EaKjo8W2PiqVSgS28vs7n2Pwer3YuXMnmpqaEBsbC51OJwJmjUYD4HTg7f85ya/f0efWXtDNVZYZY4wxxv738BpbxjrB6/WKtao2m038zL8KsfzH7XaLdFvafsf/d36pY9VqtWKrHdqbtqqqCt999x1Wr16N/v37449//CNmzpyJsLAw5OTkoGfPnrDZbGesz6XHd5ZCoRDrbA0GA9avXw+3242RI0dCo9GImWJ6/3JaMlVrloNamt31D7S9Xi/MZrP4N5oB5h3MGGOMMcb+9/CMLWOdQKm9Go0GarUaVqtVBFIqlcqnEBKl8iqVSjH7qVar4XA44PF4oNfr4XK5xL//3GjWlVgsFqhUKhw4cABvvPEGJk2ahPz8fPTq1QtOpxO1tbWIiIhAcnIyDAYDTp48idDQUGi1WjidTgQFBXVpFpTW9jqdTpSVlcFms8FoNCIqKsrnd4C2oFYOnLVaLRwOB5xOJ5xOJ8LDw8V7ocfQIAEAhIaGip8rlUo4nU6o1WqetWWMMcYY+x/DgS1jnUDpshSAUYALnE77lYMpSsOlNFqv1ysKOQHo0prVrqDnNJvNANqqH1P6L806R0REQK/Xw2KxoKSkBADQrVs3REZGory8HNHR0dDpdFCpVOcVeLtcLigUClgsFuzfvx92ux1RUVFIT08XASmhaswejwcOh0O8plKpFMGxSqUSx67RaMRnR1sRuVwu8f+/1OfKOkafvdvtFmuynU4n9Hq9GOChgRygbVZeq9WiubkZERER4hpxOp3QaDQdfn9erxcmkwlBQUFioImuM3p+hUIBk8kEg8Egzi3GGGOM/W/guz5jXUDpxGq1GhqN5oxAy39drbwPLAXG9LNfMgCj9F2Px+MTnCqVSkRHR0Or1aKhoQFbt24VAUBrayv27t0LrVYrAobz2ZKHgmiHw4GjR4/C5XIhOjoa6enpYn0tBRx0bP7p2SqVCjqdrt30bf89euViV13dmoj9dJQGTunnAMRgCp3rSqUSVqtVDE643W4YjUZYLBbx2LN9b16vF3a7HUaj0SeIpTR0OheUSiWCgoLgcrk4JZ0xxhj7H8Mztox1gk6nE+s/KdWWUBBHs7oGg8EnXZZ+B2gLwmg2C/j5Cx3R64SEhIg9ZJ1Op1jv63K50KNHDwQHB+Po0aP44IMPoNfrcfDgQdTV1aGpqQn5+fni2EJDQ7v0+gqFwqcoFAW2iYmJ6N27NwCcMQvscDigVCrF3rqUOq3T6aDRaETgolar4XK5YLfboVKpxGdIM+GdKTbFfn6Ubq9SqURgazaboVKpoNVqUVtbi8cffxx1dXXo27cv7rzzTnz55ZdYtWoVUlJS8MADDyAxMbHdFHL/ddUVFRVwOBzo3r07gLbsAP89mI8dO4bXX38dt956Ky666CI+FxhjjLH/ERzYMtZJ8qwQALFmloIw+llVVRW2bt2KpqYmOBwO6HQ6jBgxAvHx8QgJCTmvWdCusNls0Gq1PqnEZrMZYWFhyMvLw/vvv4+vv/4aTU1NOHjwILxeL/bv34+LLroI06ZNQ3Bw8BnrWjuL0kIdDgeqq6uxcuVKmEwmmEwm1NXVQa1WIzQ0VPyeWq2GVquFzWZDc3OzSCH1er2wWCwwGo0+z0//RsflcDjEjCCtYz5bOiv7+VG6uN1uh0KhwP79+/HCCy9g3759eOmll1BXV4fevXtj/PjxuOOOO/Dtt99i+vTpePbZZ7Fv3z7Mnz8ff/7zn6FUKmGxWBAUFAQAZwxW7N+/H3fddReuu+46zJo1CwaDwee6o0yAiooKHDp0SAS6jDHGGPvf0Okett1uh1arFZ1Kmp0C4LM9hzxyT2vjXC4XNBqNT/Gc9jqe9Lu0Vs5ut4t0RKAtoKCOrEajEeuturqOSt7KhI6TRvzptenntJaLOuFmsxlGoxEqlQoOh+O81nFRyp5c9EZeo+b1ekURHJfLBa1W65O+Kn8e1HnzPwb6PXpu+t4o6JHfv0ajEc/ZUdAlV/mlx9NnQp+TvEULHROliVL6If1dp9MFVPAhd5yB07OCFDy63W5UVlaiqKgIy5cvh8ViQVVVFZqamuD1evHjjz9i2rRpyM/PF2sPf6l0ZPo+5XWntE/tww8/jKVLlyIuLg7h4eG45pprUFpaCoPBgIyMDFx00UUiqJVnl7tynJSa7XK50NDQgB49eiA+Ph5KpVJsKUSz3nSO0Hn/0ksvoaGhAT179sTFF1+M3Nxc8bwOhwNff/01du3aBYPBgP79++Oyyy4Tx0bnYyCdVxcCuXq2y+XCunXrEB0djT59+gBoG2jJyspCWloa5syZg/vvvx/V1dWiYJnFYhFtqf9ABnA6wM3NzUVdXR3y8vIQHBws2kwAotq21+vFkSNHEBMTg6SkpF/1c2CMMcbYb6vTga1cgIY6ppRCSMGQ/xo4CiCpMIxCoRAj7B2RAyONRgO73S6qx8rP6/F4EBwcLALPrvJPKZWDAAryKAWSAjqVSgWDwQAAohN1PsV1aP0iVcsFIDpo9H7UarVPh5/+X17DCZyewZKLG8mfOx0jbVVDnU95DaU8A0bBcHufl38BJDpG/2Mi9F7aC3gDDX3+/mtn6TOvra1FYWEhduzYgV27diErKwsejwdmsxnV1dUoLi5Gnz59MGTIEJFC+0uhQQ06f+kcSE1NRXJyMk6dOoW4uDikpKSgR48e2Lt3L1wuF8LDw5GQkOCzXljeZqezASO1DWazGRaLBd27d0dcXBw0Go1oR4DTAzpyheiioiJs2bIFRUVF0Gg0yM7OFp+72+1GUVERli1bBoVCgdraWowbN04MtNB3wqnIvy6VSgWr1QqdToeysjJ8//33eOSRRzB8+HCoVCoUFBTg+++/x8GDB1FfX48XX3wRK1aswEsvvQStVouRI0fCYDCI9kn+/ux2O0pKSlBSUgKz2QyDwYA+ffqgvLwc4eHh0Ov1YiBnx44diI+Px9atWzF27FhERkae9bjl+xn9nc59/3b9bOt15TW+/qgNlNvVn3puyu2q/P+MMcbY/7pOB7Yul+uMaqRqtVoEfTRzR4EYdagB+FSvPBt6nP9sEwVuNBtDnQ6a4ewqeXaRZqJpBlYOBMxmM7RarUiXpEDGbreLTtD5BGkUMNAfmpGVO/rUWfOf1QVOFyZyOp1QKpU+RVUsFouYFVOpVGJ/0BMnTuDtt99GVFQUZs+eDYPBAKvVKvY8pTWiFLj7kwu16PV6McNCnUDq3MqFh2iGHYDPuWI0GgOuI6bX630Gbfyvhw0bNuDDDz9EfX095syZg+uvvx4OhwPHjh3D/PnzsWjRIjG4cL7nTWdZrVYYDAbxGvKxKhQK3HrrrT5b7AwYMEB8l2azGeHh4QAgZli7Gii6XC4RzDudTmRmZiIhIUEE9HJhH61WC6vVCrVajeDgYLz66qt4+OGH8eOPP+Lxxx/HtGnTEBISApVKBY1GgwkTJqCoqAi7du3CsmXL8MgjjyA2NlZUcW5qakJQUJDYw5f9OqgdLi4uhtVqRWxsrPgOBg8eDIPBgKNHj2LChAno3bs38vPzUVBQgKSkJPTt2xcAfNo8ypDYtm0b5s6di4svvhjvvvsu8vLyoNfr8f7772Pq1Kno0aOHOIaXXnoJV1xxBSZPnoycnJxOp/w7HA5otVpxnQCn960GfANRyliRBw3PhtpyqvhM7TXdT7qCrhu6R8oZTRzcsl+bXGmfBs9/yXubvCxB7hvJky3ydUtZJHR9OJ1OeDyeMzLgAPD1w9gFpNMtkHwDp8CQCtNQg+J2u0W6MXX4CwoKsHXrVp/KpR0FuNTQUCfcbreLrTxoprCpqQnfffcdqqurxWxqV8kBMu0p2traesasDwVgra2tMJlMogHVaDQoKirC5s2bRZDb0Z+O0M2AZpsaGhqwbNkytLa2+ux9qlAoUF9fj+bmZlitVp/0O1pTKKdO63Q6uFwuEUTSZx4XF4eMjAwcOXJEVCKl2ZGqqiosXrxYBB7tvQ+Px4P58+dj9uzZqK6uFt8PBf4Wi0Wk2LpcLthsNvEZL126FJWVlVAoFOL9BmLFUqfTKQYAdDqdOCdNJhNOnjyJU6dOwe12IycnB06nEwaDAQkJCcjNzcX/+3//D5dccglCQkLE+lEadPi50Xkrz6w7HA4xcGOz2cR5QWuAacaU1jfSPrLnc8NXKBSoqalBcXGxGACj6tEtLS3ivKfzJiQkBEFBQdBoNAgODsbs2bMxZcoUKJVK/Pvf/0Z1dTVcLhesViv69u2L0aNHY8CAAYiKikJsbCycTidaW1vhcDgQFhYmilexXwcN1FksFtjtdhgMBgQHB8PhcIhrndZv5+TkwOv1IjU1FdOmTcOIESPEGmu6f3i9Xmg0GrS2tuK5555DdHQ0Zs6cCY/Hg759+2Lnzp2w2+2IjIzE5s2bsWzZMjidTgwZMgTHjh3D5ZdfjvT09LOusaVBOhowtdlsPoNO/lkF9IeCVHqOc1VzpiU41FY0Nzef997V8rIHudgad8jZb0UeaPk1zkNqT+Tt9Oj1qTgi9Umpf0iDQJQJR/0n/5oZ7Nza69tSf9Ptdos++6/Zv6NlcVTbg/ppdD7IE0nnei8/5zHJmZN0fL/Xfq9caFQ+Vorb7Ha7iO1IZ2Od30Knr2hqOKjD3NrairVr1+Kxxx7DI488gvnz56OsrMzn94uLi7FgwQKoVCq0traKQKojcgeisbERK1aswL333ostW7aID0+r1aK0tBQffvghWltbz/uN00VAlVvfe+89PPTQQ9i+fbu4EGgm7h//+Ac+/vhjNDU1wWq1Yv/+/Xj99ddFZ7yrQW15eTkefvhhvPnmm6ivrxezrHv27ME///lP8dpOpxP19fUoKCjAc889h/nz56OxsVFcrCdOnMCbb76Jhx56CD/++COamppQW1uL2tpaVFVVoaqqCrW1tWhtbYXH40FycjKMRiN0Op0YnKirq8PDDz+Mbt26ieq57b0Xs9mMffv2ITY2FkajERqNBgaDATabDQ6HA0ajEdXV1XjppZfw4IMPitlwh8OBhIQEPPjgg6itrfVJZQ40cjEmeZ027bcKAFVVVXjttdewb98+NDc3IyQkBAMHDsTQoUPRrVs3KJVKmEwmkeFAjTJ9Xq2trWhoaIDVaoXJZEJLSwvsdjtMJhPMZjOsViusVqvP90QNjnzeyanlcgBNI9b077SWXV63TQEtBYjy99WZc50K+Ozbtw8qlQoDBgxAcnIyAIj1uvQYWnstZwMkJiaKNFKLxeKTvaHRaFBeXg6Hw4GhQ4f6ZIrIs9Ls10ODmE6nEwsWLEB6ejr0er1IO6fzyGKxiAEU6nTS4JjRaIRSqYRerxf/ptVqcejQIQwfPlwUlRowYACqqqrQs2dPREdHY+HChVi3bh3sdjsqKiowbNgwcV2da9kLcDo41Wq1YumL3GEGTp//NpsNTU1NYsCxM/UVaMCRCmuFhoae94AsdTrkmSnulLPfEg0O+S83+qXIy2Pk+5/c9pvNZnz11VdoaWnBihUrcOzYMSiVSrzzzjs4deqUz17n8qwvO3/+n+OvWbhPDh7lNlvuV8gTa78WhUIh+l40WfV7PM/k7FM565Z+Lve/KAPz967Td0X5TS5btgzLli1DWloaqqqqcOLECQwYMAAmkwmrVq1CQ0MDHA4H1qxZg5iYGGRnZyMiIkLMOPqjbVTkEzA4OBijRo2CzWbDmjVrYLFY4PV6ERwcjKuuugrLly/Hrl27fNbI0slMJzk9H/1Mfg2NRiM6KGlpaaivr8cnn3yCwsJC0UAeP34cr7zyCtauXYuMjAwYjUZ4PB4sXboUF110Efr06eOzrYucKuM/YiP/TlxcHLp3744vv/wSdrsdQUFBCAoKwk033YRly5Zhz549ouMUHh6O6OhofPvtt1i+fDnMZrOYLf3666/x8ssvIzg4GFlZWaipqcHcuXPx3HPP4Z///CdefvllvPDCC9i2bZvPOkQ5dej9999HRkYGBg8eLI6fOl3ye6ipqcH27dsxePBgBAcHA2hrvHQ6nUjji4mJwdixY7F69Wps375dzNQNGjQIUVFRmDt3rrgJBmLwIR+3PFuj0WgQGxuLhIQEeL1eLF68GGvXrkVhYSGqq6uRkJCAlJQUhIWFicZOvhE4nU6UlZXhwIED2LlzJwoLC1FYWIjdu3eLNbuFhYXYtWsXduzYgT179qC2thZWqxUAzghq/X8mp13R4JC8FpWuFbnDLBdUo+PsLI/Hg+rqapSUlECpVKJXr16Ii4sDAJ9G0+v1+qwhp2AiNDRUzP7L1ZmVSiUaGhpw5MgR2O12DB8+XDynfD2zX5fX25bd0tLSghMnTiAjIwMxMTHi32jghbagomwAjUYj0gKB03svU2eEtn3SarX4/PPPcfLkSezduxdffvklDh8+jE2bNqGgoADh4eH44osvUFxcjNGjR4vZnHN1rqj2Q2trK7Zv3w6LxSKuDXkAi2Ykdu/ejb/+9a8+A0ntdbTlP+Xl5SgoKPBJw6ftqrqKsh5oZJ0Ghbj6M/ut0HVmMpl+8fPQ4/GgoaEBGzduhNVqRXNzM5qbm8WAFA38rlmzBk1NTTAajfjyyy9RX18Pt9uNxMRErFy5Eg6HA9u3b0dVVZW4hlnXyPdZ6tPQkkTg158Fl2v9qFQq2Gw2UReHBgD9l0P+0n0Fi8WCXbt24eTJk2KZy+/1XKP+n7zTh1zsVS4QSX7Pfa1Or7GljiXd6P/2t7/h9ddfR1JSEtxuN4KDg/HQQw+hV69eGDp0KFpbW7F69Wo88MADMBgMWLp0KbRaLTIzM6HRaFBaWgqVSoXhw4f7jPZR8KzRaGA0GjF+/Hi8+uqruPnmm5Geng4AiI+Px7hx4/DNN99gxIgRIr3EfzaQbvrUSe/oi9BqtWhoaBBroLzetvTS7777DiaTCQMHDsTo0aOh1+tx9OhRHDx4EI888gjUajUOHDiAEydOID4+HtnZ2fjxxx+hUCgwYMAAREREiNkv6uhQGuvFF1+MefPmYcuWLbjmmmvgcrmQkJCAMWPGYMGCBcjNzRWpuzQbQulnbrcbJSUl2LNnD9xuN2bPno34+HjodDpMmjRJpN3QyZqcnCy2X7HZbKirqxPfQUFBAf79739Dp9Ph8OHDOHr0KIxGI4YPH46DBw+ioaEBw4cPR0NDA+Li4nDRRRf5HI+czqNUKjFw4EB0794dr776Ki6++GJxscyePRv33XcfamtrERsbG3BrWmhGFWibdaT1bfS+Z86cCY1Gg8jISKxbtw7/+Mc/kJ2djaFDh+KPf/wjevfuLWZBIyIiUF9fL7YrMZvNeOaZZ0TAGhERAYvFIjqwdrsdcXFxaG1tRWNjI+Lj43Hfffdh5MiRyMvLE+cEBYoAxLFqtVrodDoxE0WjcjQ773a7ERQUJFLc5SrI1GEJDQ095wi3/HfKHKDRcaPRKM5j6ojQHrU2m00EsTQjFRoaCp1OJ9Lb5SrL3333HQ4cOICcnByMHz/eZ+3ir3nTYqdRO9Pa2ori4uIzqnLT9ktym0HtPM1oyp0PykgxGo0YNWoUli9fDqvVipCQEBQWFmLixIlYuHAhfvjhBwwePBhffvklwsLC8NhjjyE0NFQswThbSjqt/3e5XHjttdeQkJAg9saVB3GB02t/N23ahK1bt55x7p/tXAsJCcG//vUv1NfX4/LLLxczybRWt6uf84kTJ0RxtaFDh2LgwIFd3muanZ/21lzLOxnIg4X+azgB37WgXdVee/tbDhBTQLh582bs3r0b+/fvx8yZMzFq1ChxbL+Euro6rF+/Hjk5OXjppZdgNBrxwAMPwGKxYNasWbjttttQVFSE22+/HVarFY2NjViyZAn27t2LCRMm4LXXXsOMGTOwY8cOBAcHIzEx8bwLkHZEnu0iF8r9yP98BuBz7+2oYGhHz/FzHhP1b2w2m08gS30Hug/JscYv+b0UFhbim2++QWhoKO68806Eh4efNWPxtzpH5NhOHmj2nwH3/5n8+N+bTge2tBbP6/XiiiuuwAMPPCCiekrRLS4uxi233ILg4GAUFRXBYDCIwjQffvghdu/ejXvvvRf5+fl45JFH0K1bNwwfPhxeb9va2YiICACn15/q9Xr069cPISEhKCoqQnR0tChsc9111+G+++6D3W4XF5Pb7caOHTuwbt06UaSIOuperxcZGRkYO3YsQkJCYDKZYDQaYbPZsH//fkRGRmLGjBk4cuQIAGDlypUoLi5GREQEYmJixHM0NDQgLCwM2dnZUKvV2LNnD/7+979j1KhRePHFF/Huu++irq4Ozz33HIYPH+4zOwqcXt+blZWF3NxcfPXVVxg/fryYBZ0xYwYef/xxtLS0ICwsDA6HAxs2bMDVV1+NsrIysZZw3rx5cLlcyMzMRFRUFOx2O4KDgzFo0CDxWVCgYzabxdYzer0e+/fvR2pqKkpKSpCRkYGwsDCYzWbs2bMHTz/9NJxOJzZv3oxvv/0WH3zwAdauXYuoqCjceeedSEpK8hkooBt4a2srwsLC4PV6MX36dDz22GMoLy9HamoqlEolunXrhqioKBw6dAixsbE/5zn8q6FCLZQ+qVQqUVlZiWXLliEuLg4DBw7EJZdcgqqqKsybNw9r167FF198gW+//Rbbtm0TKYnBwcGIiIgQ6fARERH4f//v/4nUeJPJJAqa0WCG1Wr1SQ8OCQmBVqsV6Z000+TxeGCz2VBSUoLS0lIcOXIEjY2NYhsVm80Gi8Ui9qp1OByikBitw42KihKjnVFRUbjjjjs6LCrWHv9Zubq6OsTFxSE4OBjh4eEiyKEiV/LaelojTvvdVldXw+Fw4NSpU9i1axfuv/9+3HXXXRg/frxIV6YBI6/Xy7O2vxGv14vS0lJER0djyJAhcDqdPlt60c1T7vTIW6353+zVajXUajWeeuoplJWVISwsTAwKpqamYuDAgXC73UhLS0NJSQk0Gg1ycnJ8ZlvPhu4ZBw8eRFFREWbPni1mlOVOEbXdtbW12LVrF+68805x3fgXlGtPZGQkpk2bhueeew79+/dHTEyM+Cy6yuVy4aOPPoLFYsGgQYPw8ccfw+VyYcKECV1+Lnb+/CtR00CyvDOBXPQSgE8H8acM6rZ3vv1W7Z3D4cAnn3yCqVOnwul04uOPP/5Fq/7L1010dDR69+6NiooKBAUFYcWKFZgyZQrGjRuH7du3w2AwoLS0FHa7HU6nEyNHjkRMTIxYI099V/o+fq5gXM6Qkme6znddfSBoamrCv//9b9hsNsyZMwdRUVEdfp6/1LlKA6J2ux1NTU148803odPpcPfdd4vBcQA/2/fcGT169MCECRNQVVWFjRs3ol+/fmJyzt/voc9C92Wn0wmTyYQPP/wQx44dE7GaXDiRft9/oOD3osvb/dCIiF6vR0VFBTweD6KjowFABJMejweLFy9GS0uL6Ny++uqrGDhwIJqamtCzZ0+MHTsWhw8fbjsItVoEcZSeRtsDmc1mKJVKfPLJJxg7dqzoDEVFRYn1RjRj5XQ6UV1djaamJigUClgsFrG2l2amaMQkKChIrG1tampC3759UVJSgm+++Qbl5eXYvXs3pk2bhltvvRW33XabmE1aunQpmpubYbPZoFKpcMUVV2DFihUiSHnqqafwhz/8QayF9K/AJ6ewKhQKrFy5EhaLBWq1GgaDAREREaKIDnXwT506hSFDhmDbtm0wm80oKCiA0WiEXq/HgAEDRBomsdvtYu0h0FZMKD09HbNnz/ZJ9zty5Ajq6urgdDoRGhqKyZMnY+nSpVi/fj2USiXGjBkjZktycnKQlpYmbgo040fbdISGhor3RTOaK1aswG233QatVouWlhbEx8fDZDIF9LowunFptVrs3LkTe/fuxb59+xAWFibSaIOCgnDttdeipaUFjY2NqKqqEhkFdP1QFV+6WYeHh4u/19fXiwEcujnKW+JQYSp5+xD5M9VoNGhubkZ1dTWOHz8Oh8MhRjGp8adrx+12w2w2i++TrpuWlhbxfmnvY/+1SXIHS/7/ffv2obq6WgxsRUVFiWCAUqEpAJVHUqmDQbPUDocDcXFxqKmpwbFjx7B48WIMGDAAI0aMQGZmJmw2m0jPlEdtf08N7IVMnploaWnBnj17oNVqfc5N+byU08rpXkLk70z+vaSkJJEVJAfBubm54ryJiYnx+d7ltfDycQIQKYthYWFobW3FG2+8gcsvvxwxMTE+qZRyOrHdbkdxcTFaWlqQn58v2la5HafsCpoppj3W1Wo1+vTpg+joaGzbtg1TpkwRxyjvZS5nLsgdBqVSKTIXjhw5ghUrVuD1119H3759UV1djTVr1mDEiBEIDQ0VA27y5+n/ObPzJy/RoHZZroxfUlKC2NhYhIWFAWgbiCgoKEDfvn2h0Wh8KtF3Fb2GPFN7vrtC/Fy0Wi3uvfdehIWFYePGjWIQ+5cir/UD2u5zJSUlOHHiBIqKinD//fdDrVZDr9djz549MJlMuPHGG1FUVIT9+/fD4/EgLCxMLMsCzryP/Rz8s5oupPuRnN5LTCYT8vPzRVo6LVGjbEl6DHC6bafrp6PMA/rs5N+jrC55hxL/IEur1cJsNmPq1KloaWmByWRCSEiIT9ak3L5S+yjXK/Dv18g/lzMziHzOy89jMBhgNptF4dfm5mafwQ55pxfg9GwoXdtnGwDzzx6Rj1PeYk7+vOW+mzz4Qj+n9oS2BB09ejRGjhwpvle5rSO0NIbawvaO2z+rhX7Hf0mafBw/tbBbpwNbOiin04ng4GDcfffdWLZsGUJDQ+FyuTB//nzk5OSge/fu0Ov1Yv1fUFAQlEolgoOD0dLSIjr1kZGRqKur8ynWIe9xSSfCRx99hODgYOzatUvMWnk8HjGiT+tz6QTp378/srOzxZdKef9yo9jS0iICQ6fTidLSUsTFxYmKsAUFBejevTvq6uqgUqnQq1cvERw3NzeLqp8ULLjdbrF+2Gg0wmQyiRln4PRsN3XEW1tbMXfuXDidToSEhGDFihW4/vrrxdri2tpaqFQqqNVqNDU14fjx47jhhhvgcDhQUVGB77//Hn/605/w7LPPYurUqWfM0FLRFMqXl4t2GY1GUaWTUv7kgQHqpCkUChG0yus1tVqtT3EhuqAoMNq0aRPef/995OfnY9WqVZg5cyaUSqVYg2cwGAKy6IncOaaGbevWrfjxxx9ht9sRGhoqBhf0ej2GDBmCnTt3ori4GM3NzVAoFKJDbDabRRozNRTl5eXiHG1oaEBERITPjYIGZOi7SE5ORmhoKAwGwxmdG+pE6fV6REREiJs93ZDkvWnpvdH7ogGWpqYmuN1uhIWF+azL9k/jkT8X+m9xcTHq6uqg1WrRt29fREZGipFy+WYCQJyLFNjS+UbBrU6nw549e7Bjxw5s2rQJ/+///T/07t0bkZGRYnBJDuzbSwNjvyyXy4Xg4GAsXrwYGRkZ6N27N4Czp3p19HP6/uSUJ2oL5dkv6pxScQ7/rX3o3KQbstfrxZ49e/Dvf/8bJpMJl156KaZMmYIDBw7gP//5j7jOXn/9ddxzzz3i3uB0OjF9+nTMnDkT9913H1JTU306BEqlEi0tLfB4PHj33XexYsUKjB07FmVlZYiLi8M999yDsLAwDBkyBEePHhXraykor6ysRGVlpc96eQBiWUP37t1hNBpFJofVahUDl3q9Hrt37xbtKt3naM38+WwpxDpGnTL5vKZZ2aKiInz22Wd46KGHRDvt8Xhw5MgRlJeXY/r06eKcPN/vRG5v6R76W36/VD9h48aNMJlMuPvuu3/RQFsuwONyuZCdnY2vvvoKCxcuxFVXXYXg4GC43W5ce+21WLx4Me666y6RqeT1evH555/j6quvFoMTchG3n6s/4t82yINXFwL6DqidmjdvHo4cOYKcnBwMGzYMn332GVwuF0aNGoVhw4ahqqoKn376KRobG9GzZ09MnTpVFAikgLe9z8fr9fpsv+lyuVBUVIQVK1YgMjISkydPRnR0tE9wTIOQ+/fvx3fffSeee9KkSRg2bBh27dqF77//HqGhobjkkkuQk5MDg8Egio8Bp7dGpGNoL9iiwrkHDhxAfn4+Bg0adEaFeq/Xi5aWFhQWFqK8vByhoaHYs2cPXn75ZTQ3N+Pjjz9GbW0tsrKyMGnSJISFhfnUH5Gvbbm/TJ87TQIeOXIEy5Ytg9FoxBVXXIGUlBSfgQCr1YqgoCCfoFI+zoqKCnzyySfo3r07pk6ditLSUixevBjNzc1oaWlBcHAwrFYr0tPTcfvtt6O1tRWffvopjh07hv79+2P8+PEiA1MeNKDrVA6G5fbL6XRi9erV2LVrFwYOHIhRo0b5LO2Tj/F8dGmNLXVMPR4PZs6ciZaWFixfvhwWiwU5OTl4+OGHRdGQ7OxsHDt2THRObTYb1Gq1CF4LCwtFlN/Y2IiysjJkZmYiMjISXq8XjY2NePbZZ2Gz2fDMM8/g5ptvxqJFi3DrrbcCOJ0WKp94VqsV69atw9atW8WHKVfyysjIwKxZs2A0GsWH29jYCJPJhMGDByM5ORlvvPEGSkpKcOutt+Kll15CRkaGGIlUKNrWzq5duxZWq1WsXaT3oVarsWXLFpEuWlVVhYqKCnTv3h1eb1t10IaGBsybNw+rVq3Cc889h6CgIMyfPx9TpkwRQWdoaKjYBuXHH39Ebm4ukpKSkJ2djXfeeQezZs2CxWJBXV2dWPNKJ5DcsZf3cKPvkI7D6XQiNjYWBoNBbP1DDRbNolVUVKCpqcln/0Ram0ZrcTMzM0VjV1BQgBdeeAE33HADcnNzMWvWLOzduxeDBg2C2+1GSEiImNUINPL7V6vVMJvN2LBhAzZs2IARI0ZgyJAhIhW7ubkZ4eHh6NatG3r27ImTJ0+KxlyhUCAkJMTn3DWZTHjooYdQVFQktpWi0TwaPaNZcLvdjujoaEyfPh0jR47EoEGDxBpY+u4osB46dKhPACuvY5XTczoaaKBrpDNrAeXRNwBilphegwai6PUogJU73/RY+l2Xy4X169ejsLAQOp0OQ4cOxW233SYKQ9DnbTabxedFKeLs16NWq2EymXDs2DHk5uYCOL0u9Xw7ujRoSany1MmhwiD+qZ20ppzIs7dUMfmBBx7AxIkTkZqaig8++EAs/6Dz5ptvvkFFRQW8Xi+OHj2KsLAwhISEoK6uDkqlEpdeeqkYFKIAlQYACwsLER4ejpaWFjQ1NWHOnDl44IEHMH78eIwaNQrJycnYv3+/GBCkzJ3t27djy5YtYusrOn/dbjd69+6N+Ph4MYCo1+vFwBO1HzSwJWc80O/LHWz201H7VFlZKVLzqLO4ceNGXH311VAqlViyZAkOHz6M8ePHY/z48XjttdcwefJk0eaeT3BL9wTqs8TFxbW7jvfXRGtsn332WVx66aX44osvcNddd/1iwS19bvLsX0lJCcaMGYO8vDzRb0lLS8Odd96J4OBgcf4rFApcdtllYpCIjl+pVKK1tRUulwtRUVE/yzHKgYXL5UJLS0vALr/yJwddNGmyfPly3HDDDYiPj8fhw4eRlZWF1NRUvPXWW4iMjERcXByWL1+Oe+65B/PmzUNGRgYuueQS8XwdVYinwXy32426ujo888wzmDx5Mnbt2oVvv/0Wf/jDH3wG3DUaDU6cOIHPP/8cTz75JCIjI3HffffhxIkT2LRpE2bMmIGdO3fiiiuuQGhoKP7973/jpptuQmRk5BlZlXKASfcd6h8vX74cO3bswMiRI/Gf//wH3bp1EynG8ozm8uXL4fF48MILL2D58uVYuXIlPvvsM7jdbsTHx+OTTz7BXXfdhRUrVsBoNGLSpEliNwB5JlmOceg1VCoVrFYrXnzxRYwYMQI1NTVYsGAB/vznP4tYTalUinsFnYtyppxKpUJERATKyspEhqBer0dqaipOnDiBwsJCPPjgg2hpaUFDQwPef/99REdHIzY2FvPnz8eDDz6I5cuXIy4uDhMmTBCfFbWLCoVC9AHlwQKn04lDhw7hs88+w4wZM7BgwQLo9XqMGjXqjAmT823bOh3Y+q8VDQ4OxtixY7F9+3YcOnRIzMzQ7wwfPhxLlixBa2srFIq2dOG0tDQcPHgQb7/9NtavXw+VSiW+1GeffRb33XcfJk2aBKVSiX/84x9oamrCc889h+7du2P06NGYN28ebrrpJmi1WmzcuBGtra0+FV71ej1GjBgh1r/SbC19oUql0mcWVaFQ4JtvvsF3332H3r17Y/DgwVCr1ejfvz+KioqwYcMGDB06FEeOHEHv3r3hcrnQt29frF69WqQxa7VadOvWTeynOG/ePNTW1mL9+vVoaGjA66+/jocffhjjxo2DQqHA0qVLsXjxYjzwwAPo1asX/vjHP+K6667Djh07MG7cOPz4448i9Wzv3r14+eWXMXToUDGzOnDgQCQkJGDevHlQqVTYt28fevbsKRoC+cL0Tx2lDhONWKampuKHH36AzWYT21EkJiZCp9NhwYIFWLlyJU6ePInXXnsN//nPf0SauVqtxqxZs3DxxRfj2WefBQDU1tbiH//4B/Lz83HVVVdBqVQiLCwMW7ZswdChQ2Gz2XDgwAFcfvnlAdnRkkfPaC1sbm4uysvLsWrVKtx666247LLLMGTIEOTl5eHvf/87CgoKAABPPPGESNOQg0n6nkJCQvD8889DoVCIwk3079SwyYEuDRIEBQWJtbLA6Rs/pSTKgTPNxlIVa5ph12q1aG1tFfvyAm3pmtQJo4rX8khae+TAtrCwEDU1NQgKCsKwYcOgVqvFWnh6TnmGjUb36EZJQYPBYMD69euR9f/Zu+/wqKu0b+DfKclMJr2SQggJhJbQCb0jTVGwINjFVdfdVazoPu6qq7vqyq76uOJaH3vBXhAFqYJKlU5CS0hCIJCQXmYy9f0j7304MwQFxHUHv5/r4qJNZn7zq+c+5z73yc7G1KlTccstt6jtdDgcqhDZihUrsHz5cixduhS33HILJk+ejA4dOpz5k4BOaOPGjQgLC1NF0oDjR1FPhcfjwfr16/H555+jvr5eFRqTFDfpYNIzdoR+z3vwwQdhs9nwxRdfICwsDLNmzVLLx5WXl6OhoQFWqxVNTU1YsWIFrr76ajQ1NeGpp57ClClTMH78eGRmZiI6OtovVUx6l+VcTU5ORlJSEpxOJ2666SbU1NSgtrZWVfOXZ5DObDZj4sSJGD9+vJpeICO30skpDRN9xLqpqUl9P7kf6Z1DelBPZ4506r7xxhu49dZbsW3bNnz77beYPXs2jh49iqSkJOzevRurV69GeHg4CgsL0adPH3WeSieyPIel4Rr4rAb876f6+VxeXo5ly5bhmmuuUc8CfXRHr0wr7xM4inimMlq83tYlB/v27Yvy8nJceOGFbS4R91PI++gj5dIGzczMxAUXXIAZM2YAODbYIc844FhnvsFgQHJystpu/Rn7zTffqOXj3n77bYwbNw65ubl+AwKBnQiyDXrwEXisAKCmpgbvvPMObr31Vr9GezC2gQD/FT+MRiP27duHvn37wmKx4MCBA9i5cycuvvhiJCUlISIiAh999BGuvvpqREZG4siRI3jvvffwwgsvqJHEhoYGNDY2HtcxGRISguTkZLW/mpqaUFlZiWHDhiE1NRUPPvggLr30Ur/sROkQr6+vR3FxMSIiItC3b19MmjQJN954I3r27ImoqCgkJyfjxRdfRHh4OCIjI1Wg6HQ6UVFRoTrd5RharVZV8NTn8+Hrr79GTk4OJk2ahFWrVmH58uW49tpr1XUoQeP+/fvh8Xhw6NAhxMbGYsyYMYiJicG8efPwl7/8BXFxcaipqcHLL7+MefPmqYw+p9MJu92O6upqAMdGyWWVFIvFAovFgsOHD6OoqAhz5sxBU1MTbrvtNlx99dVYu3Ytdu3ahWHDhqFXr14oLy/HihUr0KlTJxw9ehSTJ08G0DplbNeuXWrqpsvlQrt27XDxxRdj9uzZGD9+PIYNG6ayDFeuXInnn38ef/jDHxAdHY2jR4/irbfewjPPPON3PVVWVsLhcPiN4BqNRqSmpqpspa+//hpxcXEYMWIE9u3bh0WLFmHIkCHq/vFT708n3fKQh6QcPIfDgfbt2+Ovf/2rKoAjPWQGgwExMTGIiorChg0bMHHiRCQkJOCzzz7D6tWrkZiYiEceeQQmk0kNQZ9//vmqMnFLSwsGDx6MKVOmICEhAWazGXfddRc+/vhjdYP78MMPMWbMGDUCLJ+bmZmJzMxMv5uMfnOX7ZfvMHbsWAwcOBDJycmIjIzEp59+ivj4eDQ0NOC5555DdHQ0YmJi1ByohIQEeL1ebNu2DWPGjEF4eDj++Mc/Yt26dTh48CAeeeQRbN26FZMnT0Z8fDwOHjyI8vJyFRi0a9cOd911F8477zyYTCbk5ubiz3/+M+Lj41Vv0IgRI2C1WhEZGYl///vf8Plal9O4//771cPxmmuuwaWXXqrWlNVPBL1XOPAGKg89g6E1bfv5559HZWUl2rVrB5/Phzlz5uDyyy/HsmXLMGvWLIwfPx7Z2dkqpVzmTzzyyCNYvXq1Ks4lyxVdeumliIyMhNvtxp///Gc1Qrhnzx54PB4V6AQbCS6lcWmxWNC7d29UVVWhuroaW7ZsQUtLC7Zt24a0tDTU19djwIAB6NChAwYNGoSIiAi/RoXe6+l0OpGZmalubJLlIFW95c/S8yUpPPqcW+m4kV5O6bGTEa4dO3agsbERYWFh6Nu3rzpvAPg1egCoRrQ8vPVsgB+74fh8PuzcuVM19HJyctRotXxnvdGmzzMJ/L+QkBCMGTMGo0aNwsCBA5GYmKgeYJJq7XK5EBcXh6SkJERFRaGiouK4hyT9vFwuFyoqKgBAVb1vaGhQz4NTJT/ToUMHXHDBBX5THmSahHSCmEwmVUAt8Of136uqqjB06FCYzWasWLECiYmJGDBgAKKjo9HY2OhXqbimpkYVPFu+fDmqq6sxZMgQdY7KMkSyLVarFWlpafj8888RGhqK5ORkbNmyBdHR0cjMzFQdqjLqLJxOJ5588kl8+eWXSExMRE1NDUJDQ9U8sX79+uH3v/89MjIyVNZMRESEWjbM4XCoyuoyui2pl3rDjM4MuUc2NjYCAHbv3o3m5mZ1D6uurladw0VFRTh48CAqKipUETV9cEBPg20rCNSDWj0QkhFbPZgNrOorwXJgmqa+QsTpfn+d2WzGpZdeipkzZ/plYZ3poFYCf+mMBVq/c1RUFO6991713JTnov75+nvo30Mf6WtubobdbofP58OaNWswY8aM4zoV9EEB+bv+GXrQLdsrr5epCmdDR5N+T21ubsaWLVvQ1NSEZ599FocPH4bB0FoYVaZS6O2KI0eOwGazISMjQ+2L2tpavPDCC6ipqfH7nPj4eNx8882Ij49XHdlyfKWeAXCsY0GOr9VqhdVqxXXXXYecnBw8+uijiI+PV1M1pM1x6NAhXHDBBWp01GAwoLCwEG+++SYaGxtVm8rpdCInJweXX3454uPj1bUmQbQEoXrHv2REDhkyBPfeey8+/vhjXHLJJbjnnnuwceNG1SZuaWlBQ0MDfD4funTporbN5/Nh+fLlWLlypd/zLiIiAmPGjMGECRPQ0tKiOrb08//AgQN46aWXMG3aNDz00EP44IMPUF1djaeffhq33347li9fDoPBgKNHj+LQoUMYM2YM7Ha7X8er2+3Gtm3bUF1djfr6eoz+/3Ntw8LCVEeu19u69JbX60VWVpY6FocPH8Zrr72mMp/k+CQkJOCGG25QmS4Sx4WHh8Pr9aqsKPFTO99OKcLQbw5WqxXJyclISUnxG1GSjYuKisKAAQOwadMm1SPdsWNHdOrUya9B39zcDIPBgNWrV6v5KVarFdOmTUNKSgqA1ptYQkICfv/736uU1507d2LZsmXqJnIy9B1nNpsRHh6uUgjkxMzOzgYAREdHIy0tze//6uvrERcXh549e2L37t0YPnw4jEYjkpKSMH78eNjtdkRFRaFnz56Ijo5GdXU1Fi1ahAcffBBA67zhiRMn+jXiLRYLrrjiCpjNZqxevRpbtmzBP/7xDzidTnTs2FGtc2swGFRRCp/PpyrPAW3PZWvrpNADfaPRiNjYWHTr1g0ffPAB2rVrh4SEBJVqICMQMhoiPTpywkkquVyMsbGxuOSSS9TcY6vVinHjxsHnay0+9Nhjj+Gqq65SIxGnutTFL02+pzQYLRYLevToAZfLhYaGBmzatAmVlZWora3F9u3bMWXKFAwePBhdu3ZV53FgMKen7UoQ4PV61VxsOV+lV1InxySwwSIPa5mj6na7UVZWho0bN+LQoUPqQdOtWzdV1El+yU1IHsr6fL+TaazIa8rKylBfX4/09HSkp6cDgF9DTBrp+khWYGBrs9nQsWNHzJgxA2PHjlXnu7xeUjI9Hg/S0tLQo0cPFBYWqtF0+s8xGAz47rvv/K6JiIgIVTn4VMk9JyMjA+np6Sq9yel0oqamBvHx8bBarX5LBZ3oGeDz+bBv3z588803GDNmDFasWIFFixbhr3/9K3r37g2r1YrGxkYVeN59991qXem//e1vKCgowHPPPacyKaqqqpCQkIB3330Xs2fPxldffYU+ffrA4XBgz549CA8Px7Jly/DKK6/glltuQXZ2tro/yJyniIgIlYZ/yy234KabblLzZuW6k/oGskSE1+tFt27dkJubi48//hihoaFYtmwZJkyYAJvNhp49e+Lcc8/Fww8/jMjIyNPe9/TD5P7vdrtRWlqKQ4cO4bXXXsPo0aPx8ccf484778SkSZNUrYv9+/ejQ4cOqmNT0mUDg1udPGMD58PJvVvvIDQYDGrZKhkNkfeQ3/WOy8DAT//M0yHPMTlHf8p7BdIHIvQRK31OY+B3OtG9IHCbcnJyEBUV5ReMHDhwANXV1XjnnXcwceJENa1CAie9/QT4j+RKQ10PwAM7iM8W0u5zOp04ePAgHn30UeTm5uKjjz6Cz+dDZmYmDAYDRo0ahZdeeglbtmxRGTg9evTw67yWqvGBxyckJEStmBB4TOW6kWxMqSlSW1uLwsJCvPTSSygpKcFjjz2GDz74AA899BAuueQSfPHFF2qFkKamJtXWl2smLS0N06dPV58jQazJZFLzt+XzJcNRglu5J8i+KSgoQF5eHhYsWIBVq1Zh3rx5uOKKKzBgwAAkJibi22+/RUhICL799lu/GEQ6bHv37o1OnTr5XVMGgwFJSUlqoEGCe307ExMT0bdvXxQWFqKurg4+nw/Z2dkYPnw4LrzwQnz33Xdobm7G1q1bMWTIEAwbNgwffvih6nwzGAxYuHAhkpOTcf/998NsNqs4IC8vD3Fxcdi4cSNaWlqwfv16dOvWTV1/EgdMmDBB3W9kdQQ51nKcLRaLWoVDit9KfKEH7KfrlH9Sv9noxZ4C019CQkJw4YUX4qmnnsK3336rhpnlJtHS0qJ6m9esWYO+ffti+PDh6kROSUnxu6HITaKurg7ffPMN/ud//gfAsdGkU6HfmPQAQf5PblCB/x4VFYWGhgbMnDkTf/3rX9GtWzeMGDECHo8HVqsVoaGhquCOx+PB9u3bMWDAAHUxh4WF+U2Yl96P0NBQHD58GN9++y3uvfdev3U/5cLRgxvZvp9CHoR//vOfccMNN+Drr7/GpZdeCgBq/8vJJTn6cgO32+3Yv38/5syZ47eGqCyXIQ0q+bnPP/8cQ4YMwSWXXKIuwGAbTZALUN/vkh0wffp0NDQ0oKWlRaVCRUVFqZu3kHO7rq5OLfcj1bol2AOgRmT0whPSc6cXGJD/089VeU+LxYJDhw5hxYoVWL16NaKjo1FVVYXNmzfj448/xh133IFx48ahe/fuah1MObYA1Hy+H3KiBlJUVJTqzWtqalL3CunMkBuxjE5JNVq9gTJmzBj06tULubm5foUZJDtB0l6sVivatWuHtLQ0pKam+gXQdGZJI1k/TnIurl+/HlarFd26dVP3A70ivNDvqfq/yXsFfp7cLw8dOoTFixejtLQUHTt2xNSpU9XSUW2lA8o54nK5UF9fj9jYWDQ2NmLp0qV4+umnMWzYMBiNRuTm5uKdd97BzTffjIceegj3338/Bg0ahC5duuCNN97APffcg9GjRwM41sFqMBgwcOBATJs2TaXYV1ZWYv/+/ejbty++/vpr/Pa3v8WUKVNUI2j9+vWYNWuWuqb0e6YEJ/q6u3qjWZ65ERERuPvuu/H444/jjTfewKRJkzBt2jSEh4fj8ccfR3R0tKqsLCnMp9LxSz9Mz/zyer3YuHEjbr31Vrz66qvo1asXzj//fLhcLpWl4vG0LoV40UUX+QWq+tQOh8Ph9zzXr5XA0cbAEQ2v14vy8nL885//RENDA4YOHYpLLrkEGzduRHZ2trofHjx4EHv37vXb/tMZtW3rfq9/rzN9nukZQ5mZmUhJScGBAwdgsViwatUqtR9lSk3gyPUP8flapyLExMTA4/HA6XSisLAQnTt3Rnp6Ol577TX87W9/U+1D2Wf6c9dut2PNmjVoaWlRS25VV1dj2bJlMJvN6r4RjBlqJ6JnCaxatQoJCQlqIGfDhg3Iy8tT/2+z2TBnzhy8+OKLKCoqwsSJEzFr1iy/9WSPHj2KV155xa8iPdA61fG6665TwZ3FYlH3NKk4X1ZWhkOHDmHo0KFwOp0oKCjAF198gfvvvx/du3dHRkYG+vXrB5/Ph6lTp6K6uhrff/89Vq1ahd/85jfo1auX39Sw4uJivPHGG6qQoJxPKSkpuOaaa1ThQD1jpr6+HgkJCSgqKlKrq/h8Pnz44Ye47LLLkJWVhby8PHTq1AlRUVEq8/LZZ59FSUkJAODee+9V561kIC1ZsgQFBQV+bW+z2YyhQ4fi4osvVgGwpN/LdLKNGzfiu+++w2OPPYbS0lLs2rVLteXlGpF2lMQXQOs5WlRUhKioKMyfPx/XX3+9ClqlA1myU//973/j0KFDMJlMuOuuu/wGGw4fPox33nkHjY2NKmaTDLsbb7wRXbt2VR1U8t61tbWIj49Xz1CJA3+KUyoepf8uJ4OeJgP434TT09Nx4403qp2qpwzIl5KegMGDB6uf13vf9JuJHODzzz8f6enpaiTpTDZk9aA3sPEmAUN6ejpmz56NiIgIlcoQOAJlNpsxcOBAjB49Gg6Hwy9lQF4rBaekIXLhhRciKytLzXGUEd0T9fjp23qq9AbWgw8+iJqaGtXZoE/+lknnesp3aGgo/vnPf/otASWV5fSgSxrBWVlZOO+889TxkgslmAKQtiqM6g3RiIgIv+pzbY2iA1AT9iWwa6tjSH5OX8ZJ/3/9c2XbhD5Pdv369XjiiScwe/ZsjBo1CrGxsaiqqsLgwYMxf/58NDY2onPnzn7Xr8xhleWrJO1GrofA0XbpIJEb8po1a1BVVYU+ffpgwoQJMJlMKhVZBI5S6A0ig8GAiIgI2Gw2pKWlHbff9bLz8p4rVqzA0qVL8dVXX+Gtt95Camrqcfudfjq5v+kNPY/Ho+oo9OzZ0y9NXr8Gfuha14Nf/Z4rnWAHDhzA//7v/2Lw4MHo3Lkz/u///g92ux2zZs064eiMNAiMRiMKCwvhdrv9UtvkHJo5cyaeeeYZXH755UhISMCLL76oGl7nnHPOce8tPeWyDnp4eDg8ntb10/fs2YOLLrrIrwKu1+vF4sWLVRqZvryDvu1tZWW09d3S09Mxd+5cNUomI2ZTp049bh8H6zy+/1byHJYOQKPRiMTERNTX1yMqKkrVupCOFqPRqAr4uVwuHD16FBs3bsSUKVNUQFhRUYFXX30Vd911lypq6XA4ALTe548cOYI1a9bA4/H4rVcsz9k1a9ZgyJAhGDFiBF599VXcdttt8Pl8qvaFNMClozFwdFUEdj79EP35Lt9XH0HT56bK69uid0QFjojKvUMa4u3atQPQWpG2trbWrzNLD4D1zz/R95NjqQcMLpcLGzZswIQJE1BYWAiLxYKFCxeqaQSjRo1S7R29hklkZCS++eYbjB8/Hj6fD6tWrUJ5eTlSU1Px3XffoV+/fmpKkRQE1b9jsJEO5bKyMnz77beqw1wCfKC1pod0lnfq1AkDBgxAY2OjmkahxwwpKSmYM2fOcRl8BoNBLdMDAO3atUPfvn3x7rvvYt++fZg1axa++eYbvP766/j0009hsVhQUFCALVu24OGHH1bvI1PfjEYjevfujV69esFmsyE9PV0tRSrnTOfOnTFnzhwVcwDH5rfqa/NOmTIFL7zwAl566SUAwDnnnINPPvkEK1euxKuvvorGxkbs27cPzz77LFJSUnDw4EFcfPHFquBbcnIycnNz1brvcXFx6ntKttqMGTP8aicArddZWFgYAKglNseNG4cPPvgAVVVVmD59uso0/eSTT1BXV4fnnnsOAwcOhNPpxOrVqxESEoKKigpMmzYNH3/8MUpLS1FUVASTyYQlS5bA4XAgKSkJgwYNOm6OeUhICLKystCzZ0/U1dWp4opy3YWEhKBdu3a48847j6v7IiO2cl2PHTsWX375JV588UUUFhbitttuw5YtW/Dkk0/i448/Rnh4+E/qKDul4lF6Y1LoDZfA0Smg9cQG4DckrY/ayQ6z2+2qOJF+o5SGhLxfTEwMYmNjVcrh6fSGtdWIku1v66Yo/+Z2u1WALiMT+r6RRrzMA5SLVS+WI+kDEtRKqkpUVJTqPdTTbGTb5MTRt/t0b4zywJBjkpSUhMzMTDXCERISogIYfeRF39/SMaGn8ng8Hr+flYIvvXr1Uu8tOfXB5scelqdyLAIDuRM5UXB8om3Q31/mflRUVGD58uUYMGAAOnXqpK6xffv2Yd++fWqOtDTCW1pa8NVXXyElJQXJyclITk72K4cfeOwk3cTn86GxsRGlpaVwOByIiopCamqqXwNfXq9XyWvrO8j/6wG8NET03l65DqKiopCRkYG8vDykp6czBfNnIvcCvZCL0WjEpk2bcOjQIVx55ZWqRoJ+Dwt8D/3+q//SH+7SURIaGoojR45gw4YN6N69O8aPH4+FCxdixYoVuOSSSxAWFqYqidtsNtjtdjQ3N6sAVnr7p02bhsTERBUIGo1G2O12DB8+HFu2bMFzzz2H22+//UfPHelYqa6uRq9evZCVlQWn04mqqioMHDjQb31vn8+HkpISrF+/Hvfcc49KEf6p8xyloaZ3PgZjIzmYmUwmtGvXDl9++aUa/f/+++/h9XrRs2dPlUoubQCv14v6+nosXLhQpSrL/Mvy8nJs3LgR/fr1g8ViwaZNm9CxY0ckJSXhyy+/RHV1NQoKCtChQwdVi0OO/cCBA2GxWJCQkIA5c+agoKBAVaLV22AdO3ZEXV2dKvTZ2NiI6OholRIo2xk4KhkYwEphHY/Hg7Vr1yIvL0/N625qasLGjRvRv39/NY9QrwZ8okEDeYbIvcPtdsNms2HPnj1wu93o3r27Ot+lmq6QIFM61+vr61V9kkOHDqGhoQGdO3dus06Eft0YDAbEx8ejoKAAxcXFuPHGGzF37lzk5uaioqICGRkZWLVqFerq6mAymZCUlIRzzz0XiYmJfinlTqcTKSkpqu0kI2M7d+7EM888o4oEBdtULCGDF8nJyXjwwQfV4EVaWhrGjRungi+5p0dHR+Oqq67CDTfcoKbV6R0QJpOpzY5o/bkgbYE777wTO3bswOTJk9VynNu3b1cxw5QpUzB69Gjs378fZrMZQ4YMUW0bo9GInj17Yt68eaqGgRTRlLZsWFiY6lySDozANggADBw4EDExMTh8+DBmzJiBuLg4TJo0CWVlZQgJCUFUVBQeeOABuFwulJSU4KKLLlIro8iI72WXXYYbbrgBDQ0NqrNDYgjZb4Gdw9KOkhFXs9mM3/72t9izZw9sNht69OiBkJAQdOvWDeXl5bj99tvVtCBZdnPUqFFqwCwnJwf79+/HpZdeqtpV5eXlyM3NRWRkpN8gpeyP8PBwXHvttbjpppv8CuLJ9WU2m/2ybfXzRvah1+tFUlIS5s6di7179+KSSy5BUlISkpKS0K9fPzXC+1M6f05rxLatwCqweIB8MTnxpZql0+lUC9c7HA51gUtlSllLVorfSA8jALXzDYbWNF5JfT0TKTCBQbn+d+lxlR5JvaAPcPyi0/LQkgniEuzJRaLPr5TPkxuz2WxWhVdk38l3PlHP5+l8Vz34kWqccrHIBaZXXJRgWO9w0HtN5fvL95O/6yO9gP8i1PTzkH0bFhaGpKQk5Ofno6amRq1rbDQaUVdXh5qaGnU86uvrUVdXh8rKSixcuBDZ2dno0aOHSrEPXEYnsLfe4/H4jQxERUUhMTHxuCBUHwHWG2g/Rm6sMoKrp2mnpaXBaDSiQ4cOKsWFzjx9Lg9w7JjI/WTChAlqNNRut6t7u378A4914IiuHFufz6caSF27dsWjjz6K9PR0Fbx2794dbrcbV1xxBYqKilS2iYyu3H///QBaz7fhw4cjIiICFotFjRwAUJ2QN998M2pra2G1WuFwONQzKJA0wL1eLwYOHIiBAweqbZwxYwamT58Oq9WqOvnkvnfnnXeiQ4cO6n74U+e/tpW2Sv8Z8vyTCtstLS3o1q0b/vnPf6KsrAxpaWmq07qwsFDd53JycpCdne33XHe73cjPz0d+fj4WLlwIq9WKffv2qeU3MjMzMXHiRJSUlGDz5s1ISkpS6YNybrVv3x7AsXnpPXr0UJ+pF8txu9147rnnMHnyZNTW1uLOO+/E/fffj27duvkVnzQYWosCNTU1qaBU7vEbNmzARx99hOuuuw4dOnRQ7zl79mx4vV68/PLLqsP///7v/2Cz2fC73/3uuPuxy+VCdXW1KlgJtJ7TxcXFWLhwIQoKCjB06FBccMEFePDBB/GHP/wBaWlpfnUn5Dvr7aKKigrcfffduOeee9CrVy+sXbsWb775Jt577z31M/o1o7enQkJCcM0112DdunW48cYbERkZiejoaIwePRp/+ctf0NjYiAkTJvh9D6vVipKSEtTV1aGhoQFffPEFQkJCsHfvXkRGRiInJ0d1hGVnZ+PBBx/0q0MTjCRIlPa8BPD6/UzP6JHz3WAwqCBTf51ezDTwc/R16s1mM6KiojB48GD1PocOHcLw4cMRHh6uCtgmJCT4ZXPKCiMAVK0an8+H2NhY9TnAsTar3sEqQaZeewRobftkZ2eja9euqu1z9OhRjB8/Xh3fDh06IDQ0FDk5OWo6lmRiut1utfSljHjqHUjStpa2kX6OS4esTDmJjY1FXl6eX2dwu3btkJSUpIpYyf9Jx7TEM1JLRz8eGRkZ6thJ/CV/l45iWYlD2mInimdk0E7P+JPXOxwOpKWlISUlRbVBy8rKcM455/iNAJ+uUxruDOxpD2yUBjZS5GYrD3mZ5K2TnWc0GlUqp6R/AMfSneXgSG9hVFTUSa+x+VPJ95ADJvNeJYVFTmY9JUYaMXLQ9BFPGYGVRqI00qUHSXpL5HN+6Duebq+GNBwBqB5SfXRYHwkPLEwhvat6VUcZTdMDXT0lK/B3+vlIddQRI0bg8ccfR25uLmJjY9WcLK/Xiy5duqBz587qGH7++edYunQpvv76awwdOhTz5s0DAFx99dW48847VeNHjp0EydKQt1gsiIiIUI2+rl27qocQcOw6Bo71/OvZCT9GGmjCaDSqNKLU1NQ205bpzNKLiBkMx9ao27x5M9xuN2JjY/0K3ugB2I9lJvyQiIgIjBgxAi6XC19//TUOHDiAO+64A88//zxGjRqFiRMnqsb4ddddp+5rQOt5Ij3iHo/nuCIgEoTExsYeV8cgkPR0S2eqzKkHcNza1PJ7RkaG6vSRaSVSzfunPLv0hgTvp/850qg3mUzo27eveqbFxMSgX79++PLLL1FSUoL+/fsjOTlZtX1sNhvq6+tVY7ugoACpqanYv38/0tLSkJGRgejoaKSnp6Ompgbt27dHdHQ0ampq8Oijj2Ls2LF+9SvaesbqmRTSkJV79pYtW2AymZCTk4NDhw7BYrHAarWqNXn1juc9e/ZgzZo1+N3vfqc+S0Y0IyMjVW2QIUOG4PPPP0dFRQVcLhdKS0tx/fXXIywsDA0NDejYsSOKiorQvn17VZzG5/PhyJEjeOONN3DHHXeoucherxfLli1DXV0drrnmGtx4442YNGkSBg4ciDVr1mD69OltDmLItsnIW2hoKCIjI1FUVASDwaAKGQWS9qRe9CkxMVGtRexyuTB9+nT07t0b1157LTp06KACfX1gIDIyEpdeeqm6xjt06KA6igcOHKiCP1kWUk9zDUay7TKaKee3zJGV57IEQVI7RE9rleOoH8/AfRKY2Sk/K21qs9mMvn37ol+/fgCgKsMHdpxLZ4jeAasPvOnHI3CEUkYXhZxnANR7S2d7//791WfIPV7eUzpQ5fXyHJDBAj0Gkp/RA+nAjmF9CUb5TkDrtSsBr95W0kc/5ftIrCHXj0wx0p9JeuyhD0LIsZMYQY6j/hly35Ff+qiuHmDL9nk8HpXZabVaf/LKFqc8Ygv8eFpm4L+dKF1YGiA/FBwH3sj0NMaTbRSfyMk2ttp6nXy2vn1t9TDIvwU2YvTX6r1W+vpr+uecaFtPpyEf2NAMXDsq8HucaE6nflxPNEom/36mjhn9OAlCk5OTVYPd5/OhqKgIS5YsgdFoxLhx4zB+/HhERERg2bJlePPNN1FfX4/7778f48aNwx133IH8/HzExcWph5SePaGfp9I4qK+vx6JFi9DU1KQ6QhobG/3Off18OJWRVUnzB44V0pIHn965IyOFHLX9eejBmwR5Bw8exIQJE1QGjaRK6Q9nvde5rZREnXQUyuio0dhagGndunWYN28e7r//fnTq1AlxcXGIjo7GP//5T3Tp0kUtgyINBz3TR0ab9U444Fi1bn2pgxP1FOs90DKNQ76jvC8Av0I2epaLz+dTwfDpBLX6/gvsXGaHzs9Pjv2sWbNUA16OSY8ePTBs2DAcOXIE7du3R4cOHZCenq7uU3L/HTFiBA4dOoSamhoUFhYiOTkZ06ZNw8qVKxEbG4vOnTvDYDAgKysLSUlJ2L9/P6ZPn646aGJiYlQgJe0wPXNKHxnRG7I7duxA7969YTabkZ+fD6/Xi1dffRUHDx7EU089hfDwcJUG3NzcjObmZrV+tFQEz8zMRGxsrGqgWq1WpKeno7a2FgcPHkRmZqZaF/3AgQOIiorCc889h3/961/o2rWr6sysra1V65e63W61FMs555yD+vp6VFRUIDk5GSEhIejSpQsWLlyoBgraOiYSzOTn58PhcOC1117D/v37cc011yAuLu4Hj6fB0Fq9FzjWzpH7w+jRo2EwGHDVVVcdl60mAzV65dp+/fohOzvbL5PQ4/GoNYclAAzmZ5M+9Uw/t9tKHQ1MpRX6yB1w4jasnhavtzX1EVVd4D1Vb2Po79VWxmDgs0gCuMDPCPyeck7qdRv099fbKfpnBrZbAvebHuQG/r90xgbS2/HyvPmh9rb++ra2I/D/9X3UVts/8D0Ct1nI9unvJ6+Va+mnxglnT7k2IgJwrKGjp4YfPHgQW7ZswaJFi3Deeedh1KhR6NKlC1wuF958800cPXoUnTp1wpAhQxAdHY0LL7wQgwcPRs+ePY9LNdEbTvrNuaWlBbt27UJWVhZSUlJU76F+o9fTx/Tg48foN77AB4I8BIKxKFmwkWMpS1IdOHAARUVFuPjii1VDTn9Y6cWk5JjrwaPM2ZNgWB85koDU4/Fg+fLl+POf/4xx48bhyJEjmD9/Pq677jps3boV1dXVSEhIwHfffXfciJZe/8BgMKhMm8AiN3JO/lCjUzJoZD9IZo6+XyQbQf98qTVgtVrViMNPEdjIoP8M6axJTk4+rhF9/vnnw2g04uabb1YdgIH3qU6dOiE7O1vdmzt16oQuXbrAYGhd+1POvW7dusFms8FsNiM7OxtZWVl+aZGyfJw+wKDfX/U5cZLWt337diQkJAAAtm/fjoKCAsycORO5ubkq9f6TTz7Bhg0bUF1djbKyMhw+fBg5OTm46KKLVP0PCU7lWrbZbGhpacHu3btV0Hbw4EHs2bMHiYmJePnll9X0kBUrVuDLL79EU1MTtm/fjpaWFqSlpWHWrFmIi4tDeno6ysrK8Mwzz+Bvf/sbIiMj/daXbivbSzqPjEYj9uzZg3379mHmzJm45ppr0NTUBKvV2uYzQW/MyzIk+giYjA7qnXPyuz5CpXcuyOih3Mvk32VJTP29glVbQUtb/xb4fz/2byf6rDP5LP+h7TzV7TrV9z/d/XA6P/dj37MtpzpYeaYEbuuZyj5iYEt0FtEbOLJOdEhICHbu3ImNGzdi7969eOKJJ5Cbm4vo6Gg0Nzfjgw8+QM+ePZGTk4NOnTqhpqZGpWQ1Nzcflz4lDQn9oQ60BrYHDx7EmDFj0L59exWY6A0LfdTpdIqI6SMV0nCUAEPSvhjY/jz0UUJJZTp69Cg8Hg/69OkDwD/7RI69pDy1tLTgt7/9LSorKzF06FDceeed+Oijj/DOO+8gMzMT999/vyp6I3OJwsLCUFhYiGeeeQZFRUWorq4GAPzxj39EZGQknnzySXTt2hUxMTHYsWOHmlOlN+wDe6HbGuU82YJu0mCVnvvAJXrkvQKzX2TUS0YBfso5yvP7l3GiUZyTyVzSX2cwGNC7d+823x+AX8El4PjGXluf0Vbgpt+3e/bsqTqkCgoKcOWVV2Lp0qWoq6tDUlISrFYrzj33XIwdOxY7duzAunXrMGvWLFitVthsNrjdbjgcDtjtdtjtdnXvlqlYHTt2RFlZGTweD/bv349hw4ahpKRETW2JiorCoEGDkJubi7KyMnz44Ye4+eabERYWpqaVHT58GHfccQe6du2KJUuWqKkyUn+krVEcCabdbje2bNmCyy+/HAsXLkRjYyN69eql1lH/oWumrSBN34eA/zEOHGn8sca4fl8gop8fA1uis5DJZFILnOfn5+Nvf/sbYmNjsWDBAmRnZ2P+/PlwOp0YOXIkbDYbunfvroLa+Ph4NSKkB7BC5gsaDMeqdTc3N6u048zMTERFRcHhcKC2thZxcXHHFf443Qa+BAoej0cVDAKOFXgL1mqTwUCCQbfbjSeffBI5OTk4fPgwEhISkJqaCpOpdb3ZDz/8ECUlJQgNDVWVjYcMGQIA6NixI+666y7cfvvt2LRpE3r16oWXX34Zn376KV588UU88MAD6vNk9DUrKwuvvfaaSvGV//N4PLjpppuQmZmJ5ORkPP3004iOjlbFmWTk9GRHF052H7T15xO95kx9bls/ywA3OP2nj5vX60VWVha2bNmC4cOHIzk5GePGjcMzzzwDi8UCi8WiCv1EREQgJiYGVqsVycnJKvvH5/Nh7969MBpbq6BnZGTAZrNh+/btmDJlCnr27IlVq1apNe7PPfdcbNu2Ddu3b8ekSZPg87Wubx4REaGmi8TGxsJms6lrtLCwEB07dkRDQwOys7NhtVqxd+9exMTEqO8ROEotWSLNzc1ISkrChAkTUFxcrEaXi4qKWNeD6FeGgS3RWUTm8bhcLlRWVmLnzp2444474PP5EBkZiQULFiA2NharVq1Ceno6zj//fLVcSUNDA2JjY+Hzta6PeODAAZhMJowfPx5hYWGqx9lms/n1ZHs8HmzZsgVLliyB0+nEmDFjVMMkMTHxuAIQsp0SOJ9uClDgPEP2iP+8ZBTU4/Fg+/bteOaZZ9C7d29ccskliImJUXN6ZJknKWbhdDqRnJyMlStXIicnBx07dsQ111yDxx57DO3atYPD4UDfvn3x/fff+xX5kM80GAxISEiAwWCA3W5X67e63W5MmTJFjf6PGTMGwLH5S/qasUS/Zr1798aCBQvQ2NiIhx9+GD6fD//+97+Pm1JiMrUu3TJy5Mjjir9JVo9c2+vWrUN6ejrS09PhdDoRFhaGffv24aabboLBYMCIESNUJ5M+epyQkIAJEyb4Zdd4vV4MHToUeXl5KtBuaWnB6tWrcdNNN7XZCaoXFY2MjMR9990Hk8mEuXPnqtHdnj178rlA9CvDwJboLCMNlAMHDuDTTz9FSUkJYmJiUFpaisWLF8NisSAuLk6tt5ecnIzm5mbs27cP3333HVpaWrB161Y4nU4MHjzYb91MCUalF18aHFVVVThy5AhSU1ORmpoKm812XOU8vWiPbOfJCpxPqM9jkr/rc4EZ0Jx5cvzNZjMeeOABzJ8/H7169cLw4cNVwzUqKgrTpk1Tx0Gqh5pMJkRHR+Pll19GSUkJ6uvr8ac//QkfffQR7rvvPrUuJHBsvqrMRZW5jVJoRp+jKn8OnO+mV50n+jULCQlBfHw8Lr/8cmzYsAHt2rVTc1b161T+LOuXBxbT0bN3WlpaUFdXh9/97ncwGo0IDQ3Ftddei2+//Rbdu3dXBQv1asgSIEdERGDYsGHqGtczMfR1RIuLi3HppZciKyvLLy1Yp8/dl5RkeQ7ISG1gUSMiOrsZfKxAQXTW0EcxFyxYgAceeAB2ux0A1DrSXq8Xs2bNwjnnnIO8vDzccMMNqK+vR3h4OLKysuB0OlFXV4f09HT87ne/U6nJ8v4GQ2sF5JaWFkRFRcFiseD111/HggULUFtbi7feeksVG5F1Pl0ul/r76TQy2rpNBc7b1bePDZkzT46jzHfTlxcJXMZMlgqQ4lAWiwUOhwOFhYUoKSlBRkYGunbtipKSEuzbtw9RUVHo1auXWgJBGqfSQNUrC+sjSfraf7IMmfxd8FygX6vA+2ZbabltBX6Bha8C30d/zshr5P1/KO0+8LN+KOgMrJ7eVmDbVqX1tn6e9wCiXw8GtkRnEWlwyAippI7qD3l90XMJFjZt2oSCggLs3LkTPXv2RF5eHjp06OAXwEjDwuv14qOPPsKuXbswYsQIDBkyBH/84x/x3nvv4Y477sANN9yg1g4NbBSdbgPjZAPbn/o5dGJSKMbr9ao/u91uNTojx1rOPeBYkSVZ+1JfLkGOkcyFNZlMcDgcqjCVvqyBngZtsVhUB42+vnhdXZ2ajyc/w0YtERHRrwcDW6KzSODoJYDjAls9rViCA1lXsKGhAQkJCQgPDz9uTWWPxwO73Q6DwYAnn3wSH3/8MZqamnDeeedh7dq1aGxsxPz585GdnX3CtUApeElHib5+p1QeFvp6jwD8zjEZ0ZWOFT1tUH5GXz5HPlP/fFlDVpYQEoHLSJ1slWMiIiI6e3COLdFZJDAFU1I39YC3rfUPbTYbLBYLoqOjYbPZ1JxGn8+H0NBQv4W5PR4PUlNT0aVLF+zfvx+NjY3o3Lkz4uPj0b59e85rPEvpc+zkvAlch1iyAE5E7/DQ04blfQPPHf3v8ue2Kl/r6Y+sgEpERPTrxMCW6CzSVtqvXvlSp1cSlj9LUCDLJUjBJ/lZmTfZv39/REZGYt++fbBarUhJSUHHjh1VCjIRERER0X8SU5GJziKBgW1ganLg3yVwlTRTl8ulCjzJ0kEyUufxeFBXV4e4uLgTpndKcRKmfxIRERHRfxJHbIl+JQIL6ejLPUgwqgelUmBKivvIvwHH5u2azWa0tLQctxwEEREREdF/EgNborNI4EjpD42cBqYiy++yNqieniwBsNVqPS5AbmlpQUhIiCoKRERERET0n8bAlugsciozC/TAVv85KRolo7cmk0mN0IaFhamflSBWln5hYEtEREREvxTOsSU6i7S13I8uMBVZ0pFlORYha5EajUYV/LrdbjQ0NCAmJgZNTU1wuVyIjY0F0Dpq63a7ERER8XN9NSIiIiKiE2JgS3QWCbyc26qSHPj/Xq9XjcBKoCujtVJESt4ncF6uyWRSc3D1pVY4cktERERE/0lMRSY6i+gBpc/nO6k5t22taytBqgSx+rqlHo9HFYqSz2AlZCIiIiL6JXHEloiIiIiIiIIa1+YgIiIiIiKioMbAloiIiIiIiIIaA1siIiIiIiIKagxsiYiIiIiIKKgxsCUiIiIiIqKgxsCWiIiIiIiIghoDWyIiIiIiIgpqDGyJiIiIiIgoqDGwJSIiIiIioqDGwJaIiIiIiIiCGgNbIiIiIiIiCmoMbImIiIiIiCioMbAlIiIiIiKioMbAloiIiIiIiIIaA1siIiIiIiIKagxsiYiIiIiIKKgxsCUiIiIiIqKgxsCWiIiIiIiIghoDWyIiIiIiIgpqDGyJiIiIiIgoqDGwJSIiIiIioqDGwJaIiIiIiIiCGgNbIiIiIiIiCmoMbImIiIiIiCioMbAlIiIiIiKioMbAloiIiIiIiIIaA1siIiIiIiIKagxsiYiIiIiIKKgxsCUiIiIiIqKgxsCWiIiIiIiIghoDWyIiIiIiIgpqDGyJiIiIiIgoqDGwJSIiIiIioqDGwJaIiIiIiIiCGgNbIiIiIiIiCmoMbImIiIiIiCioMbAlIiIiIiKioMbAloiIiIiIiIIaA1siIiIiIiIKagxsiYiIiIiIKKgxsCUiIiIiIqKgxsCWiIiIiIiIghoDWyIiIiIiIgpqDGyJiIiIiIgoqDGwJSIiIiIioqDGwJaIiIiIiIiCGgNbIiIiIiIiCmoMbImIiIiIiCioMbAlIiIiIiKioMbAloiIiIiIiIIaA1siIiIiIiIKagxsiYiIiIiIKKgxsCUiIiIiIqKgxsCWiIiIiIiIghoDWyIiIiIiIgpqDGyJiIiIiIgoqDGwJSIiIiIioqDGwJaIiIiIiIiCGgNbIiIiIiIiCmoMbImIiIiIiCioMbAlIiIiIiKioMbAloiIiIiIiIIaA1siIiIiIiIKagxsiYiIiIiIKKgxsCUiIiIiIqKgxsCWiIiIiIiIghoDWyIiIiIiIgpqDGyJiIiIiIgoqDGwJSIiIiIioqDGwJaIiIiIiIiCGgNbIiIiIiIiCmoMbImIiIiIiCioMbAlIiIiIiKioMbAloiIiIiIiIIaA1siIiIiIiIKagxsiYiIiIiIKKgxsCUiIiIiIqKgxsCWiIiIiIiIghoDWyIiIiIiIgpqDGyJiIiIiIgoqDGwJSIiIiIioqDGwJaIiIiIiIiCGgNbIiIiIiIiCmoMbImIiIiIiCioMbAlIiIiIiKioMbAloiIiIiIiIIaA1siIiIiIiIKagxsiYiIiIiIKKgxsCUiIiIiIqKgxsCWiIiIiIiIghoDWyIiIiIiIgpqDGyJiIiIiIgoqDGwJSIiIiIioqDGwJaIiIiIiIiCGgNbIiIiIiIiCmoMbImIiIiIiCioMbAlIiIiIiKioMbAloiIiIiIiIIaA1siIiIiIiIKagxsiYiIiIiIKKgxsCUiIiIiIqKgxsCWiIiIiIiIghoDWyIiIiIiIgpqDGyJiIiIiIgoqDGwJSIiIiIioqDGwJaIiIiIiIiCGgNbIiIiIiIiCmoMbImIiIiIiCioMbAlIiIiIiKioMbAloiIiIiIiIIaA1siIiIiIiIKagxsiYiIiIiIKKgxsCUiIiIiIqKgxsCWiIiIiIiIghoDWyIiIiIiIgpqDGyJiIiIiIgoqDGwJSIiIiIioqDGwJaIiIiIiIiCGgNbIiIiIiIiCmoMbImIiIiIiCioMbAlIiIiIiKioMbAloiIiIiIiIIaA1siIiIiIiIKagxsiYiIiIiIKKgxsCUiIiIiIqKgxsCWiIiIiIiIghoDWyIiIiIiIgpqDGyJiIiIiIgoqDGwJSIiIiIioqDGwJaIiIiIiIiCGgNbIiIiIiIiCmoMbImIiIiIiCioMbAlIiIiIiKioMbAloiIiIiIiIIaA1siIiIiIiIKagxsiYiIiIiIKKiZT/aFHo8HRqMRBoNB/ZvD4YDP50NYWJh6jc/ng9FohNfrhdfrBQCEhITA4XAgJCQEJpMJbrcbZrNZvSYkJES9p8/ng8vlgslkgsFggMFgUK/XP/tM8fl8qKurg81mQ0hIiNpmfduF1+uFx+Npc1tcLhe8Xi8sFstx7+/xeODxeAAAoaGhcLlcMBqNMJlM8Pl8MBgMcDqdaGlpgdVqVftGXhcSEgKjkX0QREREREREbTH4fD7fybzQ6/XC5/P5BaPyo0ajER6PRwWiBoMBPp9PBW0GgwEOhwMGgwEmkwkmk8kvuPN6vbDb7QgNDUVoaKgKIE0mE4xGI1wuF0JCQs54YCvb73a71baazWa//5OAUgJX2Q6n0wm32w2DwYCwsDD1fSWo1/8u2+31etHS0oLQ0FAVuMvnSgAswa6+32UfmkymM/r9iYiIiIiIzganPQwoAZcEfjJaq/9fYMAmf9dJsOy3Uf8/GPR4PHA6nT/LSK18tsvlOi6YlWATaA1o5d/lOwWS736y26l3EMj39Pl8aiRYH/nWA2UiIiIiIiI63kkHthJohYSEIDQ01C+QBaDSbV0uF1paWtS/OZ1OOJ1OhISEqJRaj8eD0NBQ9Wefz4fw8HCEhoaq9zOZTHA6nWhoaFCB55nmdrvR1NQEACqIlO2WUePm5mYAgNlsVmnJPp8PoaGhsNlsCAsLU9/R7Xar9zKbzSpQ9fl8cLvd8Hg8sNlsaj+5XC4AQEtLi/qzpCDLaLCM4AYG/0RERERERNTqpFORGxoaEBYWBrPZrEZhA+fcBpIUX0lbPtFrvV4vnE6nSt+12+2or69HVFQU4uLiWjf0BKOlP4UEmAD85rHKSKp8h5CQELS0tPilHwuDwaDSkyWVWQJap9OJ8vJypKamqjTkxsZG1TkQGhoKq9Wq3lPmE8tIuAT0+gg4ERERERER+TvpwFbmmMooosFgUKOaXq9XFTySQNZoNPql8Eog7PV6UVdXh5iYGL/RSJ/Ph1WrVuG7775DaGgoLBYLjhw5gubmZlx77bXo2rWrKlJ1pshn68WppMiTvu2NjY2wWCxoaGjAt99+i88//1ylSEsQ2qtXL/Tr1w8jR45U+0Q6AMLCwrB69Wp8++23iImJgd1ux+HDh9Hc3Iwbb7wR2dnZsFqtAFoDaZlLK/tVMLAlIiIiIiI63kmnIuujhwD8CkTpc1OFXkBJAjx9Dm5gtWCXy4WCggIsW7YMhw8fhsFgwP79+7FkyRIUFBSo9OYzLbDYlV5QSkZP9SJYenq1/LLb7WhpafF7vby3zWaDw+HAjh07sHTpUlRUVMBut2Pfvn1YsWIFtm7dipaWFr/Rb3kP2df6dhEREREREZG/k5686vV61UitnrIr800B+KXk2u12Nec0NDQUTqdT/TkhIUEFhV6vF2FhYaiqqsL+/ftx8OBB3HrrrRg3bhyMRiMKCgqwZcsWjBkz5kx/dzX3VR9dlnm0TU1Nai5wVFQU3G43wsPDce655+LCCy887r30ebn60jwejwfl5eXYtWsX9u3bh9///vcYMmQIoqOjceDAAXzzzTcYO3YsYmJi1D7Vt0/+jaO1REREREREbTvpwFbSdSVoO3DgAIqLi1FSUoIdO3bA5XIhMzMT2dnZGDx4MD777DMcOXIELS0tiIiIQExMDLKzs5GZmYmUlBS88MILaG5uVsv93HDDDRg3bhzCw8MRGRmJo0ePoqmpCQaDAbW1tWpk90ySkdDAZXTq6uqwfft27NmzB3v27EFYWBhSU1PRsWNH9O/fHy+//DKam5v9Uo1Hjx6Nnj17oqamBu+//z4aGhrUSO+sWbMwc+ZM5OTkIDY2FmazWc0jTk9P91u7V19mSEbJuYYtERERERHRiZ1SKrJeNTguLg6RkZFobm5W80c9Hg/atWsHs9mMHj16oLa2FitWrMAbb7yBpKQkJCcnIyIiAk6nE/X19di8eTNWrVqFsLAwGI1G9OzZE9OmTUNOTg7effddLFmyBHa7Hddddx1iY2PP/Jf//8GjjM76fD44nU6EhYUhISEBXq8Xn332mfpuSUlJ8Hg8GDVqFBoaGvDll1/ik08+QVZWFqKiouB0OhEZGYnDhw9jw4YN+PbbbxEfHw+fz4eOHTti1KhR6Nq1K+bPn4+VK1cCAM4991zExsaq4Frm+uoj4ywcRUREREREdGInPWIrI6syomiz2RAbGwur1YpDhw6hpaUFFosF7dq1Q0hICDp06ICQkBBUVlZi586dSE5ORkJCAqxWK7xeLxoaGuByuWC1WtGpUyeEhIQgOTkZ0dHRKCwsxNatW+Hz+dCvXz90794dFosFwLGCTzInVUZdAwO/kwkEJXh0u91+a8qGhYUhLi4ONpsNJSUlKiU5KSkJZrMZ3bp1Q0hICA4dOoTy8nJkZGQgJiZGpWVXV1fD6XQiIiICWVlZMJvNiIyMREREBPbs2YMNGzbA6/Vi4MCBSEtLg8ViaXONX+BYMSmO2hIREREREbXtlNaxlfVVTSYTXC4X2rVrh4yMDISHh8PpdCI6Ohrt2rVTa7ympqYiPT0dAJCSkoKoqChVMfngwYPo378/br31VkyePFmN2lZVVWHOnDkAgN/+9rd48cUXVfEoCfxcLtdxhapkG08lZVmfVyuBo/weExOD5ORkJCUlwW63Izw8HO3atUNUVBRMJhOSkpKQnp4Or9eL5ORkxMfHw2azwe12o7y8HIMHD8Zdd92FwYMHIzo6GhaLBbW1tfjTn/6EpqYmXHHFFXj++ef9CmPJiLFeXKupqYlr2BIREREREf2Akw5sXS4XzGazKhQlc24TEhKQl5cHt9uNhoYG1NbWoqamBu+88w7eeustfP3110hLS0NDQwMcDgfq6urw1VdfoaioCElJScjLy0NzczOamprw0ksv4YorrsDKlSuRkpKCDRs24Pbbb8e7776L2tpatS2hoaHHjchK8HcqI5tSPMpms/kVxpLvmpiYiLy8PDQ0NKjtNxqNePnllzF//nysWbMGkZGRKC8vR2NjI+rr67FgwQJUV1cjMTERPXr0UAH7K6+8gksuuQQrVqxAdnY2duzYgdtuuw1r165FVVUVXC6XKmIl38VsNqtAmoiIiIiIiNp20qnI+jxPn8+n5txaLBYkJCSoQNdqtcLj8WDlypWw2Wzo2bMndu7cCQBwOp04fPgwFi9ejHHjxqFLly4qfdftdiM+Ph7du3dHYmKiWjc3KioKPXv2RFhYmN8yOjo9mD3duagSTJpMJtjtdlgsFthsNmRlZalUZQk8Fy9eDIvFgn79+qGgoEB9fkNDA5YuXYpx48ahR48eKiB1Op2IiYlBbm4uOnTogMbGRhiNRkRGRqJDhw6wWq0qtVpGj/Wlf2Sfc54tERERERHR8U4psAWOpfvqI5wWi0UtB+T1elFSUoKamhokJycjMTER69atg9lsRlVVFfbu3Yt9+/bhtttuQ0ZGhl9V4g4dOmDo0KEwGAyoqqpCSEgIoqOj0atXL1itVvX5+txafdtOh/yspDCHhISoVGCz2Yy4uDg1/7alpQVFRUWorq5G+/btERISgq1bt8JisaCurg5FRUUoLi7GtGnT0KFDB79iW+np6Rg1ahRMJhNKSkoQGhqK+Ph4ZGdnq1FdwL9IF4NZIiIiIiKiH3dKxaOA1hRkp9MJm82mii01NzerIPfQoUN46qmnMGTIEISFhaGsrAwAEBYWhm+++QbLli1DTEwM+vfvj/j4eACtac4hISHIyclBdnY2oqOj/YJWCaT1ebWyLq7RaFRrz54qo9GogkiZtxsSEgKz2QyPx6NGjYHWgPPQoUN48MEHMXbsWERHR6O8vBzNzc2IiorC2rVrsWzZMiQkJKBTp05ISEhQ+8xkMqFXr17o3bs3QkNDYbfb1b9LUSx9m4BjRbL0780gl4iIiIiI6HgnPSHV6/X6peTqTCYTIiMjsW3bNnz11VfYt28ffvOb3yAjIwO1tbUwGAw4fPgwNm/ejMOHD+Opp56CzWaD0+lUASrQGvzabDYcOHAAHo8HbrcbdrtdjQQDxwK/kJAQv7mnMpKsv9+pMJlMat1YCW7dbjeqqqpgsViwd+9ebNy4EU1NTZg5cyaSkpJw+PBhAEBRURE2b96MyspKPProo8jIyFDVn+vr6xESEgKDwYAjR47g/vvvR2VlJUwmE0JCQtDY2HhccShZeki+nz46TURERERERP5OesRWCiqZzWb4fD44HA4VXFqtVjidTqxduxY1NTU455xzEB0drQI6o9GIhx9+GElJSRg5ciSioqLUaKmMQra0tKjgMjY2Fs3NzTAajSq4k/mtHo8HLS0tsFqtajTT4/Go9zqV4lFer1eNioaEhKj38vl8avtktHjVqlWoqKjAmDFjkJiYqPaDzWbDv/71LyQlJWHIkCFITEwEADgcDng8HlgsFr85uIsXL1Yp1zk5OWqpH31bAlORuY4tERERERHRiZ3Scj8GgwEmkwkmk0ktS2MwGGA2m+F0OnHgwAHU1tZi9OjRMJlMiIqKUim5ixcvhtVqxbBhw1TQqP+SFGen06lGO2XUUkYrnU4namtrUVJSgrq6OlVJWObH6qnFJ0svGqVXJZYgWQLmoqIiHDx4EMOHD1dr+Mp3W716NUJDQ5GXl6eqRns8Hni9XpVqLN8nJCQEdXV1ahkfs9ms5gxLUK3PZwbAwPa/gFTQlvNDzlc5zl6vFy6XS6WvOxwONdLudrvhcrlURsHpjL7L++if1dLSos4Z6WzyeDxwOBxqG2WJLnkPr9d7Skti/RSyRJhsk6T7y/eQ7W5paVHbfDqfIe8v+9btdsPtdvv9u8fj8TtW+ufb7Xb1My6XC42NjWrprZaWFvV/sn319fXwer1oaWmBy+U607uNiIiIiE7DSY/YhoaGqsAPOJYuKw1lj8eDpKQk9OjRA8OGDUNzczN69+4Nl8uF//u//0OnTp0wePBgDBw4EMCx9FoZHTUYDKitrUVTUxNiY2MRGxurglq3242QkBBUVlYiPz8f3377LYYPH44uXbogIyPDbztPdbkf+T4SUMpyP7JdFosFTqcT7du3R8+ePTFo0CAAwKBBg+D1evHPf/4Tffr0QV5eHvr27auKTklas+wrp9OJ2NhYvPnmm0hLS1PFqIxGI0JDQ/32hWyPnpLMQlK/LDkH9aBUPx4ej0edP9JRoRc504uunc6x1N/DaDSq80vOIcl2kO10OBxwu90IDw/3C+b0jID/hMApBC6X67hK31IV/XQZDAZYLBa/jgez2ax+N5lMcLvdahskUJUONCkYJ1MewsLCVKdZc3MzQkJC0NzcjIiICJhMJkRERKjOr1/ztalfCyfqhNPvsbKP5XU/9p5nap8GdiTp99lfAzn39XuA0PexrFGvF4cE4NfR63Q61X1G7nXyS7/2fo3XAxER/fJOOrA1Go1oaWkBAFgsFsTExKgUWrvdjoiICMyaNQsXX3wx7HY7rFYrQkNDYbPZUFdXh9tuuw39+vWD0+lEaGioCgQMBgOamppw3333oba2Fi6XC1u2bMGf/vQnZGZmwmq14tChQxgxYgRKS0vx1Vdf4cUXX0RtbS0mT56M1NRU1XjWCy6d7HeSEVaZmyt/l0ZASEgIXC4XZs2ahSuvvFIVupJg3mq14qqrrsKAAQNgs9ng8XhgNpvVaE5ERAQ2bNiATz75BF9//TW6d++O+vp6nH/++bjgggvwxRdfYOzYsYiPj1eVn91utxoJNxgMfn+nX4YUMZNz1mQyqdFIACp4kvNPshjKy8sRFxeHiIgIOJ3O0x59l/NOGp91dXWwWCyqcJq8r8PhwI4dO/D8889jzJgxmD59umrEy+9tzZP/Oci2yohpeHi4XweSjDxLYC4N6FPZP/JavaEt9x/ZN83NzarYnWyTnv4vga006JuammC1WuF2u3H06FE8/vjj6NGjBzZt2oQbb7wRAwcOPK3skLOZBDYn8kt30Omf+2sLuuRak04xPWNBMrD0/9M7V+Xn5e9yncq/yfUqPy//9mumZ+rodTIA+N3nZJ/JfgeOdaC2dW+R17fVodTW+zscDtWxB8Cv0xXwv3fK80zaGPKsk++iZ7A5nU51b5W2iXQW6df4f+I80DPsZMlJ+R5tbX/gNukdz/q+kee6fA/peNWfVVJkVF7jcrnUs0V/P8kqlHbDr/36IPq5nVIqsjwE5aEIALGxsRg5ciRmz56N/v37IyIiQi1Z4/V6ERMTgxkzZqBv376IiYlRNwi5GVRVVWHevHnYtm0bUlJSMG3aNAwZMgSfffYZXnrpJXz00UeIjo4GAGRkZGDixImYNm0aTCYTHA6HCrj1XuWTpd9g9JEsmRscFRWFwYMH45ZbbkFeXh4iIyPVOrcGgwHJycm4+OKL0b9/fyQlJfndzOVhsn//frz44os4dOgQRo4cienTp8Nut2PZsmV44YUXUFxcDLvdrh5seqMhME2afjnS+JMGS0NDgyoy5vV64XQ64XA4/B5sLpcLO3bsQEVFhVq+Sr92ToV0pgCtQW54eDiMRiNqa2vR2NioUm9tNhvat2+P+Ph4bN26VV0T8mAF/nMNTz29X0a7JV24ubnZL6g83YBHRrHlnuPz+RAREYGQkBA1XUJvrB06dAiVlZWor69XDcWWlhb18y0tLeq4mkwmrFy5EmvXrsXYsWPh9XqxefNmNDU1cXpAG9raH9Jo/KFjHNi4/Dn2rX7uny3HTd9v+q+2XieNao/Hg/feew9bt271mwakN/rr6upQXFyM8vJyv2erfhwrKirw0ksvoaGhQT2z9JHbs9GpfC/pxJTpD7JfZIqKfi8PzGqQzJPAX3J/C8xqkFUW5Nkk7xMaGur3vDlRVoX8OTAjSdoleqeFdP5J54h8D/n3/9Q0F51M/5HBBgB++/Nk2k/6+R8Y5EoWXuD9Sfa1PFvlOSPPN9kefUoOEf38TnoIUG5cwLGAy+fzITIyEv3790fXrl0RFxfnV13Y5/MhJibGb11X/ebq9Xpx9OhRvPvuu0hKSkLPnj0xceJEWCwWzJkzB06nEz169MDVV18Nk8mElJQUREVFYdu2bWhqakJoaKjfDUhubie7/I9+E9d7paUnLiIiAr1790ZqaipSUlL8ggSTyYR27dphypQpyMzMREREhHovedB7PB5s27YN3333HUaMGIHzzjsPI0aMwAcffID8/Hzs3r0bF1xwgd+DRu8V10eXzpbGWLCSYy4dNhEREaisrERRURG++OILNDU1YcyYMRg2bBjq6+tVj7nD4UB1dbU6nomJiad9LN1uNywWC1wuF+x2O9auXYudO3eitrYWubm5mDBhAsLCwhAWFoaUlBRUVFSon/slzp/m5mZs2bIFmzZtQlFREQYOHIiJEyfC6/WiubkZZWVlfmm/BoMBqampp7x8lzQgnU4nCgsL0dDQALfbjaioKHg8HtTX1yMnJwclJSWYO3cuACAtLQ2PPfaYuqZLS0uxYcMG7N69W2VU9OzZE2PGjEFDQwMMBgMaGxsRHR0Ni8WigvTA5bp+bfQRk7ZGRGS/RUREHBe8/qe2T392BY5WnY0COxD06TULFizA5s2bcf755/t1whoMrVNjfD4fFi1ahE2bNsFiseAPf/gDEhMT/Ua9ACA+Ph719fV444038Nvf/lY975hV1ErOt8LCQthsNiQlJfkF/zU1NThy5Ai6d+/uN/e/tLQUYWFhSE9Pb/N9A6cr+Xw+NDQ0oLi4GF27dlVtD6/XiyNHjsDpdKqpT5KNFkhv08i1XFxcjMjISNhsNlVPwmq1oqKiArW1tUhNTYXNZkNpaSksFgvat2+vzpFTyZr7IYEdCSe6ZkNDQ/06EiQQlxFUcaLtku2WEV/ZFzt27EB6ejoiIiJUdp8erOqdZdL2lPZoXV0djh49inbt2gHwX3XjbCadK3onjF67RjrSpCNZfkZ+l9e3NaVB77iRzAC9s03OY4vF4peBdTLTI+R99GeF3ibXB5mAY+eSnGP6drc1Ki/Xt+yLwM4RnZ5pIINs+nbq+0rv6NLfVzpT9PNOHzQLjMX0z9Y/q61OZ72mkX6NBq5e80s+Y08psNWLKemjm7GxsQgLC0N4eLhKlwwJCYHFYkFiYiLy8vJgtVpVrxfQupObmppQVVWFgwcP4uGHH0bv3r0RFhaGc889F/feey8sFgs6duyIlJQU9bNNTU2YP38+br75ZmRmZqpRYQBobGxETU3NCR8KbWkrrUd6t202G6xWK6KiovxuShEREWofDBw4UI1Sy8idnOS1tbX46KOP0Lt3b0ycOBEjRoxAS0sLzjnnHFRXV2P9+vUYP348kpOTVQNZv3DkJnomHhL00+jnvMFgQGFhIZ599lm43W417/rTTz/F9u3bMWjQICxcuBB2ux3FxcWIiYlBfHw8unfvjlmzZsFqtfpdB22NdMjDUk8Xk+rje/bswVtvvYWDBw/i/PPPR3x8PD788EPs2LEDd999NyIiIuByudS5KJ0l8sA5k6P/+o1VvyHv27cPb731FsrKyjBy5EgMHDgQ7777LrZt24b77rsP33//PT799FNYrVbY7XYYjUaEhYXhT3/6E2JjY/06dfTUt8CHoX4jDQ0Nxb59+3DDDTegb9++uP3227F582YsXrwYv/nNb9CxY0dUVFQgLCxMNdadTie++eYbvPvuu0hOTkaPHj3gdDrx0EMP4ZprrsHFF1+M6dOn47HHHkNGRgZ69eoFh8OB8PBwdc2ezUGSTs5H/bwsKCiAz+dD165d1YNdf8g3Nzfj7bffxsSJE9G+fXsA8Ov4BFpHtzZv3oz+/fv7ZTycznmqbyMA7Nq1C16vFz169GizIXWiEWTAv2GjN9Dk4R6Y2gkcX+NBb9AFdurKPUV/jf558n6BI0j6e/t8PmzevFmt/97WNAP5t8LCQnzwwQe47777EB4eftyxlBG7adOmoV+/fmjXrh0iIyOPu/fJdl1zzTW4/fbbMXbsWHTp0sVvW89G+vkgv5+ok8bn86GkpATPPPMMbr/9dlRWVuKLL75AaWkpZsyYgbS0NLz33nsYP3488vLyEBISgrKyMrz00ku46qqr1LUS+PmBjcnq6mr84x//wFVXXYWmpiY13SkrKwsOhwMvvPACrrrqKuTk5PhteyA5R8xmM/bt24enn34ad9xxBw4ePIj58+ejoaEBM2fORFxcHF599VXMnDkTXbt2xdGjR/HFF1/gtttuQ1xc3HHb91OdTEeUx+PB2rVr8eGHHyI6Ohpdu3bF3r170a5dO1x//fV+GQVtkW2WQMVoNOLzzz/Hli1bMHv2bFRXV2P16tUYMWIEEhMT0dTUhKVLl2Lbtm3IycnBxIkTUVpaigULFsBoNGLWrFlwOBz417/+hXvuuQeJiYlnTcbdyXYMBgY/+i+5/8uUIX2UXY6TPkKu0zNG5f9l2pd8np72rdfW+LHvIO8pHdaBNQmkk1TuxXrhTr1jL3C79W3V/62t54J+b/mxc0ZebzC0psFLrR69w1LP/pTt0DPc5LN+7HjqhT0Dt1meI3qHxi/tpK82/Qaub7zR2FpgyWKxqEaJNEKlxyE9Pd3v5HA6napqcnR0NOrr61FaWoqysjLk5+fj9ttvh8PhQEpKClJTU7F3717Y7XZs3LgRL730EhwOB3r06IHMzEwYjUZUVVWhvr4eJpMJqampp7wT9PQS6RXSG8w2m00t26Onk1gsFnTo0MGvh0cuCKPRCKvViqSkJOzatQs7duxAQUEBVq5cibfeegvV1dUYPHgwdu/ejZqaGtjtdjidTtjtdnWTlX1K/z3cbjccDgcef/xx7N+/HzfffDOmT5+OCy+8EFOnTsVHH30En8+HqVOn4pJLLsF5552HSy+9FNOnT8egQYP8RiMlfRiASieTG5AEpfL/ZrMZdrsddXV1eOaZZ1BRUYG//vWvuPDCC3HllVfiN7/5Dd544w3s3r0bDocDdXV1aG5uRkNDg1+vZnNz8xnfJ4EPrpqaGjz33HMoKirC3XffjRkzZmDatGm46aab8Pbbb2PTpk3o0aMHLr30UlxyySW47LLL1GukcQH4p+nJ9ahXntbvQdJAHzt2LEwmE8LDwzF69Gjccccd+MMf/oDa2lqsWLECkyZNQmNjo1qWq6amBn/+85/RsWNH3Hrrrbjssstw+eWXY8yYMXj//fexd+9e3HfffVi7di3at2+vRih+jv34305PPXQ6ncjPz8czzzyjeqzl//Xj5fV6VcekPAD1h6Sc44sWLcL777+vjvnpkvu3x+PBpk2b8PTTT6ssB/2zJd1T/uzxeFS6oP53n691ROzAgQMq5V8e4rt27cKuXbv83rutbZcl6vSRObfbjfr6evV++mhTQ0MD9u/fj+bmZrWdLS0tyM/Px/79+9XIqnzf8vJy/P3vf0dlZaXfvhXyvF60aBF69OihOiEkkNHnnMsz7u9//zvKy8uPS9HUJSQkYOrUqXjrrbf85hr+GvzQ8QZa9/knn3yCESNGIC0tDU8//TQ8Hg9SUlLwP//zPwgLC8Po0aPx9ttvqyrsX375Jbp27Yru3bu3+Z6BnaFOpxMffPABBgwYgOzsbLzzzjv46KOPUFhYCKPRiI4dOyI7OxsLFixQ57Rcm3pDV3/fxsZGvPHGG7j44ouRmJiI+++/H71790Z0dDTmzJmDkJAQDB06FPPmzQMA9OvXDz6fD0uXLj2uk/NM0N/zRIxGI7Kzs7F48WKMGTMGU6ZMwfTp07Fz5041WvdDDW65HuW9Dh06hCVLlmDmzJkICQnB22+/jfnz56OxsREmkwnvvfceiouLcc455+Cxxx7DihUr8Ne//hV9+/bF3r178dxzzyEjIwO5ubl4++231WecDcGtft850bHxer3Yv38/FixYAKfTiZqaGuzduxdFRUUoKipCWVmZmjYl7/H111/j+++/P+55r9NHyKWt7nQ6sX//fpSXlwNobR/s378fZWVlahRfb0O3tf16B+uCBQtQXV2tYpLCwkLs2bMHhYWFfqn5Xq8XVVVV+OSTT1TbTe7hbZ37eiq/z+fD0aNHsWvXLtU+q6urQ1FREaqqqo67l7a1r/U/b9u2DWvWrIHH40FVVRV2796N3bt3o7CwEBUVFao2klwDy5Ytw+7du0/4fm0db9m3RUVFKC8vV89Zt9uNAwcOqIEI/Vr6JZ30lRY4PC8HSP5NGpf6Can3eMhSGvoIlcFgQFxcHGbNmoX6+nrs3LkTW7ZsgdPpRE5ODjp27IiIiAiEhYUhJCQESUlJGDBgAObMmYOOHTvCYGidXyKB5+nM8QjsedB74eUEDrxZS6NHryKpr39rsVhgNpsRHh6OMWPGYOjQoTCZTNiyZQv27t2L2NhYZGZmIisrSzUwZP6y9GbpveT63BH6ZUiqntFoxFdffYXVq1fj3nvvRUZGhjpuMTExKg25f//+6N+/P5KTk9GrVy8MGTIEvXv3htPp9Dt33G436urqYLfbUVVVhcbGRhw9elR9FgC1tI/RaMTq1auxceNG3HTTTWjfvr26mcgc7+LiYmzduhUmkwmRkZHYsmWLSssym81+o8Vnar/INSOBwLp167B69WrccMMNiI+Ph8/nQ2hoKDp06ACDwYA9e/YgPj4eI0aMwNChQzFw4EA1qitzh/V5f83NzSq7Q+4vjY2NKggJ7HGUn5POodGjR2PIkCFwOBxYsmQJJkyYgEmTJsHn8+HBBx+E1WrF7NmzYbPZ0NjYCKPRiOTkZFRUVGDfvn1IS0tDv379sHPnToSFham1u/Xg59dCHo4OhwP//ve/MXXqVHTq1MkvG8fn86nOifXr12PNmjX45ptv1NxknXQG3nzzzVi4cCG2bdvmN4p4uttYU1ODl156CZdeeik6dux4XEqXNEL0oFJPFdWX5XI4HHjwwQexa9cu9WzYuHEjnnrqKTz66KPqQd9WY0y2Rzq0JJNi48aN+PDDD+HxeGC32/0C6pKSEsyZM0ctkeVwOLBo0SI8//zzePTRR9HU1KRS771eLyZMmIDExES88847bT4nZNtWrVqFyZMnn7CBbTQaVefq7bffjqioKLUMV1vnuMFgwJgxY7BmzRqUlpb6pamdjfRGd1lZGV5//XV89tlnWLJkiV92jHREbNq0CUOHDoXZbMb555+PQYMGITIyEgkJCbBYLOjatSsaGxtRV1cHh8OBNWvWYNy4cTCZTKioqMCHH36It99+GwsWLFDLjgFQv9fW1mLHjh3IycmB0WjEddddp9oaQOvxHDp0KHbs2KGO47p16/Dss89i8eLF2Lt3r18bR75XcXEx+vbtC6/Xi+rqaoSGhqJnz55YvXo16urqMHHiRDQ3N6O4uBgAcO6552LFihWqnSLPt4aGBtTX1/v9kjnbeqelNJD1Xz6fD4cPH8ZLL72ELVu2wG63Y+XKlaitrfXbXnmvgoICdOjQAR06dMCiRYsQFhaGwYMHq+tO2qHyeVLQUB9x09OwbTYb0tLSEBISgltuuQXdu3dXjXZJ805NTUVMTAzy8/Pxm9/8Brm5uYiKikJkZCSMRiMmTpyIrVu3ora2Vp0/wU6/hwa294XD4cArr7yCnJwcmM1mNDQ04M9//jO2b9+O/fv347777sPGjRv9RiX79++PV155BRUVFX4BrE5/zsu59tprr+HZZ5/FX/7yF2zduhWLFy/GJ598gnvvvRdLly71y97RO3AC+Xw+rFy5EocOHUJ8fDxMJhO+/PJLzJ07F42NjXjzzTfx5JNPqs7AkJAQxMfHo7y8HAsXLlTTvX7ouSVtkv379+Pvf/87Xn/9dfzjH/9AXV0d5s6diyeeeAL33nsvmpub/bLfdHrnssfjQXV1NebPn49u3boBAI4cOYK77roLZWVl2LVrF+655x6Ulpb6Pes6d+6MZ555BvX19Wq7fqiDzu12w263Y/78+ViwYAHmzJmDnTt3wudrzcy75pprUFdXp15/qlPJfg4nnYocmC6p7wg9CDtRj47eWNEPWlRUFK688kps375dpSR26tQJnTt3Rnh4OBITExEVFaXmtEZHRyM2NlYFtS0tLYiLi1MN61NZV1LfPv2i0bdP/l3/voFzLALnmMnvYWFhGDRokBo5a2xsBAD06dMHFosFERER6iEnga3euGprX9MvQ27CHo8HS5YsAQD07t3bb/6C9Li5XC5YrVa0tLQgPj5eLUVjtVoRFhYGoHWZnoaGBsybNw8LFy5UDwBZnsdqtWLcuHG47bbbEBkZCZ+vNQ1/48aN6gFuMBhUAbX8/Hw4HA5YLBb0799fLT0l56OMMoaFhcHtdp9wvtXpkIaGjLZu2rQJSUlJSEpKUteqx+PBxo0bYbfb1T7R5y1LeoykAUma75IlS/Dwww+jrq5OpS17PB5ER0ejQ4cO+Otf/4qsrKzjghb9OrJYLOjbty+6d++OxsZGREVFwWq1Yv/+/di3bx/69+/vN1XC4/Fg1apVSExMRFZWFiZNmgSHw6E62Orq6hATEwOfz/ermDcl9B7kVatWwWazYfjw4erf5ByQ15aXl2Pnzp1YtmwZsrKysGfPHvTu3dsvrVWuq+joaEyfPh0LFy5Er169jutpPxVerxcrV65EbGysaugbDAY1RUYazk1NTdi7d6/6vB07dqjz1u12Y/v27ejbt6/qlG1qakJLSwsMBgNeffVVzJgxA88//zzq6+t/cPqLNA727t2L6OhoxMTEIDw8HOeeey5qampgMLSukx4bG4ukpCSEhIQgNDQURUVF6NGjB+rr6/Hee+/hgQcewJw5c3D48GFER0er72UymTBjxgw88MADKC8vR8eOHY/bhh07diA0NBQ9evQ44XZK8bvdu3fjzjvvxD333INJkya1OTdRzoWoqCjk5uZiw4YNyMrKOq3jFSyk46GyshK///3vMXPmTHz44YfIyMjAyJEjVeE5oDVF3+l0IjU1FT6fD4MHD8Znn32G+fPn4/bbb4fL5UJCQgI6deqEpqYmlJSUoLa2FomJiaitrcXdd9+NXr16oaamBgcPHsSECRPUfVQKZ7a0tKC8vBw2m02lkeud8h6PB9nZ2WpkbPXq1Xj00UcxZ84c3HPPPXj66acRHx+P5cuXo7KyEqNGjcLhw4dV51VYWBhefvllhIWF4emnn8bVV1+N+Ph4uFwupKen4/Dhw8jKykKvXr1UQGu1WmE0GvH111/j7bffhtVqRUNDg0qTzMvLw3XXXaeuibq6OlRXVx+3r2NiYvDJJ5+goKAAZWVlsFqteOKJJzBv3jwcPHgQDocD8fHxqnN33bp1sFqtWLBgAXbu3InJkydjxowZKrDR98n69euxfft2tG/fHueee+5x6f4bN25EcnIyrFarSk22WCxq5Ouaa65R9RwaGxsxadIkdOjQAZ999hl2796Nyy+/XD3vExIS0NzcrAqPng0ZeBIY7t69G/n5+Rg8eDDS0tIAtD4Hdu3ahaioKGRmZqp96nK5VP0cmR40aNAgGAzH5n737dsX27dvR3JysjomMhimdzzIfc9sNmP58uW48847UVpainfeeQc1NTW44oorYDAY8NZbb+Gcc85R7+/ztWasff3114iJiUFeXp7f1JelS5di9uzZqu1eVlaGyZMno1evXrBYLLj77rtRWVmJ5ORk1Sa/5JJL8M9//hNTpkxRWZ16Jp7QC+qGhYWhS5cuGDRoEB588EFs2LABhYWFuOWWW9SKDIFpxgUFBSguLsbgwYPVYIHRaMTKlSvRs2dPlYEm8dDo0aPh9XqxePFibNq0CZ07d0ZLSwssFgsyMjKQkJCAkpIS5ObmqmMqsZM+x1m2PSQkBJ999hkeffRRFBQU4NNPP0VGRgbeeustNDU1qfvPf0usctKtssC5gIENSWmIyheTESJpxEihJ3mN5MSHhYWpURt9/p/cUIxGI5qamtQ8u+joaHWAAifky/qxp9rbLw8L2fa25k5JL6m8v947IxVr5QKsqamBzWaDzWZDfHw8zjvvPHVyBO47/YYaOM9KPpcl4n95LS0tKliVnnVJdZEeLWm4d+nSRb1+4MCBCAkJ8Ss0IIFXTEwM7rzzTtx6660qNUfWiZQbXHh4ODweDxwOB+x2O/Lz85Gdna3myMkDd9WqVUhJScH48ePVklpOp1M1aoBjWRdnMqiV81aCvOrqauzZswedO3dGWloa6uvr1cjPmjVrEBMTgwkTJvj1mupLFslIqNFohMPhUAW5jEaj2qdyPBwOhwqc9e3RRwGA1sa3z+eD1WpVDw2Hw4Hi4mIcPHgQd955J4DWYlcmkwkNDQ3Iz8/HwIED0alTJ3g8HkRFRame/piYGNVI+rUVj5Ig76uvvsLUqVP9Rmr1+aJutxv33HMP+vTpg7i4OOTm5uLPf/4z/vd//xedO3f2O+Zi+PDhmD9/Pvbv34/OnTuf1vbJ9bho0SJcffXVfvdcWX8VALZs2YJXXnkFjY2NmDp1KvLz8+Hz+bB//37MmTMH77//PkJDQ7Fr1y5kZ2fj4MGD2LJli5pXt2/fPgBQS6q01UEqvF4vPv74Y+zevRtHjx5F7969sXTpUsyYMQMbN27Enj17kJubi+LiYsydOxclJSU4cOAAFi9ejC1btiAuLg6VlZUoLS2Fz9dasFH2N9D6/EpISEB2djaWLl2K66+//rh98t1336Fz584/eO1bLBa899572Lx5M4xGIwoKCrBz507cc889arkx/T2B1ntJr1698P333+PSSy/9r2nY/BykXbBt2zY1crl06VIMHDgQLpfLrw104MABNDc3q/v5vn37MHz4cDidTvzrX/9Cly5dVAPZ4/Hg4MGDqKqqgtFoxIEDB7Bjxw7cf//9ePvtt9G3b181mu50OhEZGQmz2QyHw4Hy8nLVztIb03o7Cmg9B19//XWMGzcOffr0QWJiIuLj4/HBBx8gJiYGu3btQrt27eByuVQHvDTCV6xYgYKCAvzxj39EWFiY3zxG4FiqvT4wMHToUAwYMEA1kGX6mbSDpB7Jtm3b8PHHHx+3r88//3x0794d33//PXr37o1NmzYhIyMDZrMZ8+bNw/jx4/HZZ5/hN7/5DRISErBlyxaMGTMG55xzDoxGo7pfywixrFm+adMmrFq1ChkZGVi4cKHqMJCAyev1ori4GOnp6SrTyG63+y0hZDQaYbfb8fzzz+Ouu+5Ceno6SktLcf7552Pv3r14+umn8fzzz6tMqbY6hoKVHLd169bh1VdfRZcuXVBQUICRI0fCYrGgd+/e2Lp1Kzp16qTa1KWlpWjXrp3afzKAVVZWhpqaGuTm5sJgMKBLly7Iz8/HuHHj4PP5kJ+fj08++URN+5ECsldddRXCw8MBAFarFVVVVTh69CiOHDmCRx55BFarFe+++y4mTJjgN82irq4O9913H3r37o0PP/xQHZfY2FiYzWbU19cjLi5O/bmwsBAzZsxQ39vr9eLAgQPYt28fwsPDkZOTA5vNBrPZjNraWiQlJcHpdGLp0qX47rvv/PZb3759VfCbnJyM8ePH45lnnsGYMWNQUVGhirJ9+eWXGDRokLpPu91ufPjhh9iwYQMAoL6+Ht26dUNLSwt69eqF7du3qywct9uNnTt3onPnzn4dXDU1Nfj+++/h9XqRmZmJmJgYdO7cGQUFBar2xIEDB/Dmm2+iublZ3cNjYmIwa9YsJCQkwGAw4Omnn1ZT4oYOHYolS5agd+/e2LJlizov5Nr+pc/3U1rHFjh+bbuTeb30lAeS0RoJEORAyFwGCV719S8lDS4kJEQtyyGkUXWygaDczPTG+Q8VGQhMWwaOBcV6IBwXF4eWlhZVDVRSTt1uN8LCwlSKmVRe1keK5OTQJ9HTL89isfidd9HR0XA4HNi+fTsSEhLQ2NiIDz74ALfccovqPdMfqAaDQTWyJahramrCihUrUFxcDJPJpHr8pbJ3cnIyJk2apAqx2e12mM1mtG/fHvX19SgoKEBMTAz279+P5cuXY86cOSpNVnqMgWPBnnwH6VU/k6ShFRYWhpaWFsTExKCxsREHDx5EREQEDh48iGXLluG2225TaaF6Gr++7qAESBaLBfn5+Vi6dKlftUq73Y7w8HCYTCZMnToViYmJfjdSs9mM0NBQleIv17Y+kq53gqWnp+PAgQOoqKhARkYG3n33XVRXV+Oiiy5S+1CKM0ijzus9tlTR2TB36mQZDAZUVFSgqKgIffv2Vee0HmRJKm9BQQFGjx4No9GI1NRU1NTUoLGx8bh7moz0xsTEoHv37li5ciWys7P9eoD1LBq9czUwNQ4AKioq0NTUhO7du/tlEwFQRf6efPJJXHnllcjKysI333yDAwcO4MEHH8Qtt9yCuro6bNiwAWFhYejfvz/27NmDCRMmoGvXrlizZg3q6uqQk5Oj1m+XyqfSIRPI5/Nhz549+Oabb5CXl6e2yWg0IiIiAsnJybjkkktw3333we12Y/369bjuuutUwFBWVobBgwfj4MGD6NChA1JTU/1qVsh+GDp0KJ5//nkV0Au3242ioiI19eVEz7fKykq89tpruPnmm7Fjxw6MGDECf/rTn3DBBRegV69exzVY5Dh06dIFy5YtU1Xbz1YyklFbW4uMjAzs2LEDRUVFMBqNuOmmm2AymTBlyhQYjUZ06dJFjaofOXIEf/zjH3H11VfDZrPh0KFDOHz4MBISElSF2KysLKSkpKh7YlRUFI4cOYIVK1Zg7ty5WLt2Ld544w1ERkZi4MCBaN++vfoZmXMtHayNjY2qirGMMkpnafv27fHmm28iMzMTycnJ+O6772A2m1FZWYk77rgDxcXFiI6OVsd24cKFmDdvHm688Ua88847uPHGG5GcnOxXAdXr9aoRWaD1vPjkk0+wZMkSv2w2n8+HtLQ0/M///I+arpWXl4e+ffset6/lufn8889j4sSJuP/++5GUlIRNmzYhLCwMI0eOxLJly1BbW4vKykqUlJTg3nvvRbdu3dCxY0e4XC58+umn+Pbbb+FyuTB8+HD07t0ba9asQUFBARYtWoRbbrkFH3zwAd58802MGjUKKSkp6NGjB7p37+5X48LpdKpOCknX/uMf/4iMjAxUVFTgf//3f/HZZ5/h7bffhsViwe7duxEaGqpG7uT6PBueE/K8e/3113HBBRdg6NCh+Mc//oFt27Zh2bJleOqpp1BaWoouXbqo+/W6deuQl5enBn12796Nm2++GVVVVXj99dcxd+5cvwwdOVfS09NxySWXHDfopI/ezpo1Cxs2bEBVVRUsFgtiY2Mxf/58ZGVlYcyYMX4d3Zs2bYLdbsfVV1+NMWPG4F//+hcGDx6MZ599Ftdeey1qa2sRFhamjrGk7UqnfJ8+fbBkyRJ06dIFH374IR5++GEkJCSo55/cW/v06YNOnTr57bfw8HB1jUiH+vXXX4/LL78c1157LfLy8jB8+HC88sorOHTokCpQ6/F48M477+BPf/oT2rdvj88++wzffPMN8vPzcckll6CwsNAvK2Ht2rW46KKL1HeorKxEamoq3njjDRiNRgwaNAjTp08/roMzLi4Ol156qV+xWq/Xq1Z7CQ0Nhc1mw4svvoixY8eqInKdO3dGaWkpduzYgeHDh//XjNqeUmAbOD+2rfmn8mc50HJzCKwWpgeD0uCUXhFZTkN6/vW0QgBqnqDeCNbLgJ8svYGkb5se6OrBrtyY9MasHtjqc/v0hpheOEVftF2C+sCf1x8Gsj30y/L5fCqQufzyy/HKK6/A6XQiOjoapaWlKC8vx4UXXojzzz8foaGhftkKcoz1oDYkJEQFaElJSSq1SuZQmEwmtcyA/GxISAjGjBmDxYsXY/PmzRgxYgTWr1+PqqoqnHfeebjssstUJ4qcz/J+c+fOxZEjR/Dkk0/+LKP/eufV5MmT8fbbb6OwsBCTJ0/G8uXL0dTUhAkTJmDGjBnqXqCnFuk3RP13qawuLBaLStmWgEjvFHM4HGhqakJjYyNqkrUD5gAAyglJREFUa2sRGxur0k8tFovqOPL5Wiv5Dhw4EH/961/Rvn17JCYm4siRI9i6dSvuvPNODBs2TL1er5Lo8Xjw/vvvY+fOnbjhhhuQmZl5xvfnfyM5Vvv370dmZiZsNptfY02/T1mtVjz66KP44IMPUFpaiqeeegqzZ89Gjx492lwWRs6HvLw8vPPOO7jyyiths9mOO1f1+7R+n9SXdti0aROSk5PVvHPZdiFpk8nJyTCbzdi9ezc6dOigCo6sXLkS1157LVatWqWKFs6cORNffPEFTCYTKisr0b9/f2zYsAHnnXceoqKiVOO+reB2z549MJlMuOqqq/D999+jR48e+OKLL2Cz2QAAo0ePxsaNGxEbG4tNmzahpKQEEyZMwPPPP49evXqhqakJnTp1Up8n30fmdcmzuWvXrmhubkZRURG6dOmivrPD4UBhYSFmzpzp9wwP3K9WqxWZmZnYvHkznE4n9u7di4SEBKSkpKjpN4GdxgaDAVlZWaisrERZWdlx0wLOJnKP6tGjBz755BM888wziIqKQllZGaZPn46Kigo88cQTeOGFF5CZmakqHUdGRqJHjx7YsGEDtm3bhkmTJiEzM1PVFbFarcjIyIDFYkFhYSESEhKQmJiIF154ATU1NTCbzarDwmAw4OGHH8Y//vEPREREICkpCXa7XTXci4uLUVNTg6ysLHTv3h2FhYU4evQozGYzhgwZgs8//xy7du3C73//e5SWlmLkyJGYNm0abr31Vhw9ehTp6emq487tdmPhwoUICwvDa6+9hhEjRiAqKgotLS3YsWMHLrvsMrhcLqxbt051+sq5dfHFF+Piiy9Gc3Ozyh6yWq3q79KGkvt4W/va6XQiMzMT8+bNQ2hoKA4cOODX6S/39ZUrVyItLQ3V1dWw2+2qc/Wtt97Cvffei82bN2Pu3Ll45513YDQaMXfuXLz00ksoKSmB2WzG3/72N7z55pvYtm0bzjvvPPh8PnzwwQeoqalBYmIiVq9eDYfDgaVLl8Jms2HTpk1wOp3Yvn07CgoKcM8996CsrAyvvfYa1q1bh9mzZ6vicFVVVX6j1GfLtSEd5/v370fv3r3VUp82mw15eXloamqC2+1GU1MTtm3bhpkzZyI/Px9vv/02JkyYgLy8PJURIMdfagfIPiotLcWqVavU+SgFZ2Xk02AwYM2aNcjKysLevXtx+eWX44033sAzzzyDSZMm4YMPPkB0dDS6d++OQYMGqayKo0ePYuPGjbjooouwe/dutGvXDt27d0dKSopqq8l0qtraWnz++efYunUr7rvvPjQ2NmL37t1qW2QEWu/k2bZtG/bu3eu3v9LT05GWlgav14v169fjk08+wR/+8Ae43W4kJSWpudgulwuHDx/GokWLcOedd6rg1uNpXTo0MzMTZrNZZR0MGjRIpRHX19fj0KFDiIqKwrfffovXX38dv/3tbzF27FiYzWY8/fTTmD59uupgkOcWABw9ehTLli1TA26SNj916lSkpqbC6XTi8ccfx5IlSzB06FA4nU7ccMMNKCoqgslkQmhoKL788kuYTCZMnDjxP3gmtu2U5tgCx5ehlpu93qsSGKQF9rQD8Gvo6/8nKZl6pUk9BRqAGpHSb4j6ckQnS//5wCA3cNv09OS2blCB2ygBifyfjE7L/EZphElRB/31gQu0Bx4D+s/TG8833HAD7Ha7ml/13Xff4cUXX0T79u1VtoF+3KR3TO+VBIDIyEiMHj1a3bykk0ZeK58LtN4wIyMjMXPmTNTV1eHNN9+E1+vF5s2bcfvttyMsLAyVlZV+AZ++Ll9ycjK+/vpr2O12lcp4puipXM3NzbjoootQXl6OV199FRaLBatWrcItt9yCtLQ0NYKgN67160b/P5/Ph86dO6vGstx79OtPUpRlDvH27dtx5ZVXIioqCvn5+ejduzdiY2PVfpeGkdfbWnDr/vvvxwMPPIDly5cjNTUVtbW1eOKJJ9R6uNHR0X7HToIyk8mEqqoqVRjk10Aeglu3bkVWVlabo3NyzzebzRg5ciSA1srTffv2xbRp09S9L5DcXzMzM1WRMP2Zo3eQSmenx+NRveBy7UjqW6dOnY7rIBQmkwnnnHMO3nvvPXTq1AlTpkxRVZnvuusuHD58GJs2bUJmZiaGDx+u5o+mpqaioqIC3bt3x4cffoikpCRMnTpVdV7K9RbIZrOhtrYWRqMRU6ZMgdVqVeekwWBAt27dUFdXh2+//RbR0dFIS0tDjx491PzLESNG4O2330Zubi5GjBjhdy+S/SIpdQaDAVVVVepYSMfx4cOH1dI9J+oojYmJwV/+8hd88sknKCwsRE1NDebNm4fExES/DtzA4x0XF6dGGM7mZ5Tst5ycHDzyyCN455134HK5MGPGDISGhmLPnj1oaGhQQW1GRgZWr16NSy+9FPfeey/Ky8thMBjQrl07hIeHY+nSpcjKylIdMP3798fy5ctx/fXX48knn1QFmcLDwxEdHY26ujrVaeP1emGz2TBw4ECsXLkSubm5yM3NVRWvZcrFsmXLMGrUKISEhOCmm27CyJEj8eCDD6Jr165Yt24dysrKsHz5crV2rhS3WrduHcaNG4cnnnhCPZskcHn//feRm5uLrKws+Hyt1ZyvvvpqAMfu3dJ5KfUh5LqXe4ZcmyfKkvP5Wuf43n333aiqqkJcXJzK9nj99dexevVqVFdXIzo6Gtdddx1mzZoFACpVWgKv+vp6fPPNN+jRowdKSkqQn5+P77//Hnv37sUNN9yA3r17w2KxYNCgQYiIiEBkZCQSExNRWVmpOkZH///igwaDATabDSkpKTjnnHPU9RAeHo7c3FxUVFRg9uzZSElJgcFgwPvvv6+Wc2yrYFEwknbrbbfdhq+++gqdOnVCamoq5s2bh8mTJ8PlcqFjx454/fXXceGFF+LIkSO4+OKLYbFYcODAAVx66aXo06cPzGYzampq1NSW0NBQrF+/HqNHj1b3+ZycHOTk5BzXTtDrcQwfPhwLFizAxIkTkZeXB5fLhf/5n/+Bx+NBXl4etm7dir1792LgwIHo27cvKioq8PHHH2P06NH4/vvvsX79epx77rkIDw9HREQE8vPzkZGRgaSkJIwdOxb5+flIS0vDtGnTEBsbi6KiIrz22ms4//zz4fF4sHfvXpXBJ/tHilMGkqB9zJgxaGxsxKJFi/CPf/wDw4cPVwW3fve73yEzMxNfffUVGhoaYLVacffdd2PVqlXo06cP0tPT8dBDD2HcuHHweluXsVu1ahX69euH0tJSXHvttWhoaEBDQwP++Mc/omPHjjhw4ABKS0sxadIkbNu2DX369EF+fj5uuukmdZ1mZmbixhtvPC4TQ9/3AwYMQPfu3WE0GjFy5EikpKQgPDwc9913H2JiYlTnzYkyl/6TTinPVb5wYMqAHvzpD1p5rfRMy3vIiSw9MREREaqnRFI4AqtY6nNu9QaEfHbg60/1O+lBsZ46ot94JY9cn2uhN9Jk5Fi+h4w86/NLzGaz+i6S1upwONQ2yL/J+8ncpl/6RKFW0st4xx134LLLLkNoaCguu+wyLF++HMXFxbj99tuRnZ3t18A90bHTz9cfO75yTsbHx+MPf/gDZs2ahYaGBtx///1YsmSJKnQg82tlTpDMsTrvvPOwdu3anyWw1a+BsLAwmM1m3Hrrrbj66qthsVhw++23Y926dSgtLUXPnj3bHLFr69o9UQpXYMeaNJaioqIwduxYjBo1yu/a0QNlvRNBAqnHH38cXq8XGzZswFNPPYU33ngDR44cwUUXXaS+X0tLi+rFrKmpwZAhQ7B582Z17f4ayD6srq5GfHx8m8dMz0gxm83o378/evfurTJx5J4a+LNyT5QUfym4Ip+rZ7zIaOUzzzyjCtroo/xHjhxBQkKCXwEMndHYutak9FqHhIQgJycHYWFh6rk0bNgwxMTEIDQ0FHPmzIHVasXVV18Nl8uF2NhYdOrUSc3Nku8kjYLAwD09PR333HMPfD4fYmJi4PV68eCDDyIhIQEDBgxQhdT+/ve/IywsDLm5uYiIiMDs2bNVANOlSxeVfRDYwaN3oHbq1An79+/HkCFD/AoNlZSUHNd5ppMO28jISPTq1Qu33XYbunXrprJG2spskuPt9bZWia2srFQFY85Wci7KaGt8fDyA1kwSWbNcCgReeeWV+Ne//oU+ffqge/fuanlCn8+HyspKfPvtt7jyyisREREBr9eLqVOn4p///Ce2b9+O2NhYfP3112re7B133IFvvvkG48ePx8GDB5GWlgaj0YgLLrgA999/P7777jtVdVka0MXFxThy5Aj+8Ic/qHvu+vXr4fF4kJ+fj6NHj6JHjx4IDQ3FQw89hNjYWBiNRtxwww145JFHkJ6ejo4dO6rRfJ+vtVLx1q1bMWvWLNhsNqxYsQJxcXEYMmSI30DEjw0y/FhmnZxDMTExiImJUX92u9247bbb8N133+HGG29E+/bt25zmFhUVhTvuuAN79+7FjBkzUFtbC5PJhO7du6OmpgZ33HGHSq93u93Ytm0bbrzxRoSGhiItLQ1Tp07FSy+9hD/+8Y8IDQ1VaeVyrGWOp2xrbGwsYmNj1b/t3LkTdrsdF198sV+wEOztOIOhtdhTnz590KdPH/h8rUv1DBo0SA3aZGdnIyEhAevXr8fQoUPVGtf6oJHH40FRURG6deuG/fv3q/u0vpb5ic4hOQ5WqxXDhw9XNTgAYOLEiX6B2dKlSzF48GCYzWa0a9cOV111lWqnb968Gbm5uWq7J02ahBUrVviNcgo5r+vq6jB06FBVb2Px4sW4/PLLVYwj9+W2tlv+LTk5WdVBkPP8uuuuU8/ArVu3Ii0tTRWrHDlyJIYNGwaTyaQCU+m8ysvLw6pVq7Br1y707t0bvXr18qtfIdPaKioqUFVVhd///vfYunUr0tPT0blzZ7/tlD/rsZse21100UV+z1npjBswYIBfh+l/w/3f4DuFPNfADQ/80bZGXk70Hie1cdrPn+zPncpObWv7f+j/9CC+rc862f0RuB/lQgx8X47W/vfQ04hlhNBgaK1Y99BDDyE/Px+XXXYZpk+f7ldM6UzRFyCXG3FjYyOef/55fP3117jpppswbtw4FdTKiK2MFj/99NOIiYnBVVddpeaHngl6doNsn91uVx00FRUVePfdd7F48WJcc801mDp16hntqJGHVOC1o48eyfbpHWN6cCtTIfbs2YN58+ahrKwMjzzyiCpgpKdZy5+/+OILlJaW4re//e0pZ4oEK1miY9asWbjsssswadKk42oc6OdD4D1TrgkJAvWfkwZ8ZWUlrr/+erz00ktITk5Wn1tWVqY6F4DW4/DWW28hMjISv//979VcoIaGBlx11VUqlTxwGkvgduqdHRI869NoJIgOfJ+2OkkA+P1ZXifXhj6yrBdj0kdW9Q5byRCQz9GLVOmfJa9xu9149NFH0aFDB1x99dXq5w8dOoTBgwer+WHAsSKIQtKzAzuM9e+rB9D6zzU3N2Pw4MGYO3cuJkyY0OZ972x4fkmnjc/ng91uR319vcqGMRpbi+E4HA41NcHr9eLgwYOIiopSIzpyDsjSN0lJSeqYyry4qKgoREREoKGhAV6vV3WwyHQrOS5y7KuqqtDc3IzU1FS/4paVlZUwm81qziwAVFdXq3O2oqICXbp08Tuusi1FRUWIiIhQnUaS+dPU1ISmpia0a9dOpdvKz8fFxalr+XQHGn6IDCzogY9U0W/rtTKA0tLSolKZQ0NDkZSUpDq95JrfsGEDevbsCZvNpkYRKysrkZCQoJ5XPzQ/PVBFRYXqqJMMC72T9Wzh8/n8aoPIuVBZWYm9e/eiX79+bdb00FOOvV4vdu/ejaSkJNVRpA8ynSp5b5fLherqasTFxfkVr5XX6AN1Ho9H1TfIzc1VRaEC72XyXb3e1mJUxcXF6N2793Gdmqe73V6vVy1l2Fbnsd7WkWdsaWkpGhsb1bWsZw/Js0uyQM1mM7Zv346srCyVSn0ipxKrteWXPM9PKbAl+rWS3ujArASZgykjpfL/ZzJ4BI7NOdILFulBnT6qpS9RIBkGMk9D5rKfqaA7MIiRm5l8ntfrVVMH5OEu8xHP1OdLUKQ3wvUHoxw7mQ7QVmqrvo8CH8LNzc0qtQ9ofRBKkCfH/GxqrJyIjG5cd911uPHGG1UvstCDuMCqqXLc5dxrK7A1GAw4fPgwrrvuOrz++utq1NXlcuGVV16B3W5XrzcYWqvTHjhwAM8//7zqhKivr8dVV12FuXPnomvXrm2mOsrnBY5e6o0BCWCkUaB3XsjPyL/LudXWKENgZ6jX61XFywJHMaSRrn+efl3Jzwm94qds50MPPYTs7GzMnDlTNdwPHTqEvLw8rFixQgW2bQX7sm12ux0Wi0XNf9PvF239XFNTkwpsx48fr76/7M+z5foIfAYA/nO+A881KfYno+p654m8Xr8ntXUv9/mO1XYA/DvY5dyT1wDHliLUA3ApiCOvl45PmaOqj9To57QcPzmv5bNkCoB+rUtRtrau759j/8v+A47vTAKgnpXynJZnojwrZPtlP+r7TTqE7Xa7GqmWjqiT/V5SLFSeK7J/TmfVjv9m+rNX7+iTc1m+c1v3YOmokeeDvM8PHdeTIe+tdwS2dd+S3+UeJ3+Wa1Ivaqn/nJz3+kopsr3idLZbT1fXt6Wtz9f/TW/f6O0X+c76M87lcqn7UVtTS3TBHNiy5C7RSZAHYGBquDwgJf0scPT9TNKnAOijOHpPoWynBN1ys5Mb2c9FtsFut6tGkzSIpKfQYGgttKBPTTgT2nqgyANAHlJ6QKv/nD6KKA1EGZWV+SJ68Cr7V38Qn00NlR9jMLSm3ZWWlmLYsGHH/b8eNBYWFqrsBpmP9+KLL2LSpEnHLeejB5DSISLnj9VqxfXXX+/XK+7xeHD33XfjtttuQ0ZGhvpsWU4hPz8fnTp1arMDRx+tlcZJQ0MDCgsL1Zq2ekO3uroaK1euRF5eHtLT02E2m1FXV4e3334bRqMRV111FQwGwwk7svR5R22NFgspUFZQUIB9+/bhvPPOg9FohNlsxo4dO/Dee+9h8uTJGDhwoN/P6Q0aaUjr26I33H5IY2Mj3nrrLezatQsxMTG47bbbVApm4Mi0/t6SHi3nh9frVdv7wAMPHDdaEqwCV0AIbHDqAb3cV6RonQRkgVkMcp7rKfZyf5H7kqxPLsElcOyYy/1fir5IgaawsDAYDAa/Oehyr5JrQgJt/R4o72c0GtVx04MXPajUK8VLRXw9g+BMZ7HoAbZ0HJ/onNbv6YHTx2TkV0bB9U4CuY4dDof6/k1NTX5roZ5o2wL/Ltei0XisDsTZJvC5ql8bepAb2JEt93G9Y0HaJxIMB15jp0J+Tr/GAunTZvQgUDq42/oZuRbkuwd2RP2U9oBc/z/03fX9DPhnJsizLPD76PcXeYaezHYG8z377M+fIzoD9BsD4D9aIvPY9IayzG09U/RUQD3VWQ8C5Jc88KVgh9zcpAFypgNcSeMBWue96ClX8iDwer1+DbQzSaqCBj6UAr9n4I1aH32Xhoie7irbKQ1Tl8ul5hQG9vT+Gsg5KFVw2yL7Q9bUu/fee3Hw4EF4PB4UFxdjxYoVflWuhZwvdXV1qoKq3jOuN0zlupswYQJ69OihRmaA1mPWtWtXlJWVnfDY6A1ZGU2orKxEfn7+cUGtLNH2+eefw263q/d7/fXXUV9fj+XLl6O0tLTNdXn1z5PvJ5kUehCvMxqNqKqqwqJFi1TgcvToUcydOxcZGRl49dVX1bmtf5a8165du/zWR5XzWq+AeaJjGxoailGjRuHyyy/HjBkzYLPZ0NTUhPfeew8NDQ1t/pwci8TERKSlpQFovTempaXhggsuOKuWq5P7gp6Nojfq9dFt6UzTj1Ngo1gPamU0UH6X95bgNHAkS2+sy5+lpodcO3oBTjkfZHv081W/DwaOBEtwIn+XTBW9eJl8pvz7zzkqKdsnnQYnOqf1jk29Zon8u16ZWX+Oy3NEnmFSvEtf5eBkyL6UZ/HZdB20Rfaj3vmlXwdtvV6/L+r07IbToV+PwIkDNL0TR7ZDOsJPdLzltZIBoL+/PuBwuvSgtq3t1q9XeZ3e3tNHx/XOSMmikHuSvn/ORmf31UZ0hoSEhKjRWr2BIOu3ylwe6TE/06OScqOSnmrpbdQbKfX19YiMjPQrviYl7uWBLo3qM5kmLY0HGSEGoLZTGkUej0eNap/pzz/RvpYGi54qChwLNCQlT0/Bk232eDzqeEqPqN6LKj3+PxQsnG2kAZ2QkIBdu3b59bIL6aF//fXXsXPnTjQ1NWHt2rXYu3cvUlJSMGDAAERFRbX53rLWpqznKQIfxDIiOWHCBHVdyDGUOYXl5eVqewIZDAYcPXoUy5cvh9vtxogRI7Bq1SqMGzcOhw4dwldffYXo6GiUlJTg6quvRkNDA2pqatQatu3bt8fy5cvxyCOPqKU/9ECjrYbagQMH8NFHHyE6OhrTpk3D999/jw0bNmDChAno1KkTli5divr6esyYMQO7d++GxWLB66+/junTp2Pp0qVISkpCdnY2Vq5c6ZcOK8EFANXx0q5dO785uWFhYcjOzvYbbQwkQUtxcTGefvpp3H333ejYsSNqamrw6quvYuTIkW3OyZIRscjISDUi5fP5EBcX5ze382wg30XmsQHHgiX9/+U1emeknjGjp60Hjv62NVqjXwuBjWj9//XzTz839NEb+Qx9O4Q+AtrWXGu9g1QXGMz8XMc88LP19Pgfe62ePq7vQxH4LD3RiNnJfjd9Xd8z+az7bxR4fgA4LpBva0RbP/8D99GPpcn+2PYEXjNtfb5cIyc6r35ou2V9+8DX6df86Wx3W9fbiV7b1ncLTENua/tP9N3OJgxsiU6CpGYBx9+0JWCT3/WKiWeKBNFCHgT6DVkKlOhpP/pSQ/pcqjO5XXq1yLb8nGnQP3ZzbqvHWH5G30+BD1a9cERbBSHku/6c6d3/bWSUZMCAAXj33XdVIQ09UDKZTKioqMDjjz+Oxx9/HOXl5ZgxYwamTp2KuXPn4sorr2zzgS0dCxs2bECXLl3UnGY5doGjK8Cxc1+fF+v1etGnTx+sXLlSdaAEzsnzer14++23UVVVherqapSUlKCoqAjh4eGoqanBihUrcN555+HQoUPYsGEDQkJCYLPZ0LFjRyxZsgT9+/dHY2Mjtm/fDrvdjri4uB+ct15ZWYk5c+bg2muvxdKlS3HkyBGUlJTgggsuwCuvvIK+ffuioKAALpcLo0ePxpYtW9C9e3ccPnwY5eXlWLhwIbp27YpFixapObKBqawejweFhYVwOp3IysryOy+Nxtb1QouLi9G5c2e/ESS9sb9o0SJ8//33aGxsxPr161FfXw+n04k+ffogMTHRbxRRHxXZtWsXHA4HbDabX0ClB1ZngxMFOj/W+DzRv//Y7ye7LT8UgP3Q604mcAv8+bbudycKwn8OJ3sunahD60Tv8WP75nTO4bPlvP8hbZ1fJ/u9T/X1p7NNJ/u6M7XNP/W7nOx1fTKf+WsJYtvCVGQiIvpREkQlJiYiPDwc+/fvV0XBZORK5iT36NEDGzduRGNjI7755hsMHDgQ/fr1Q7t27dp8b0kL27hxI8aMGeNX3EIa1BLYyv/pBZYkhdNkMiEnJwd2ux1FRUV+hXrk95aWFkRHR+PAgQNoamrCuHHjUFNTg/bt22Ps2LEwGo0YPHgwysvLERUVhQ0bNuCKK67A7t274fP5UF9fryqQd+3aVa1Dqles1BUUFCAiIgLDhg3DHXfcgQ0bNuDyyy9XSwuFh4ejqqoKhw8fRmNjI+rq6jBz5kxs27YNdrsdoaGhmDx5MiorKzFmzBgVyOpBlc/nw44dO9C3b1/ExMT47a+wsDD07NkTO3fuhNPpbLPRX1xcjJdeegkDBw5ETEwMevbsiRdffBEWiwVXX331D6ZTHjp0CElJSUhOTj5uNPJ0C8AQERGdDga2RET0o2TEToK0ZcuW+c3JA1pHXpOSkvDEE08gMjISJSUlcDgceOSRRxAbG/uD83r27dsHn8+n1sU7HZLZMGDAAKxZs8YvVVTs378fa9aswZVXXol27dqpwjvbt29HWVkZ2rdvr1IJ165diz179iAzMxPFxcWorq5GU1MTLBYLvvjiC1xxxRVqtF+C80CSzr5nzx4sWrQIbrcbBw4cwGuvvYb+/ftjyZIl+N3vfofU1FSUlpYiJSVFTR1YtWoV2rVrh+3btyMqKgp9+vRRnyUdCdK5sG7dOkycOLHNfdKvXz/s3LnzhCNqkkJaUVGhfo+MjMSQIUOQnZ19wkI9Xq8Xe/fuVcXAfk1zzomI6L8Pl/shIqIfJYVjTCYTysrKcPfdd+PRRx9FRkaG3xIPPl9rJdeNGzeiqKgIHTt2xIgRIwAcC6D0wFXmdz722GPIycnBlClTTjt9XZ8r+uCDD+Lxxx9HYmKi3yilx+PB8uXLUV9fj4EDByI6OhqLFi3C0KFD4XA40NTUhK5du2LlypXo3Lkzdu3ahTFjxmDHjh2oqqrCoEGD1Jqwubm5x827D/xuzc3NWLNmDQ4dOoTRo0fDbrdjw4YN6Ny5M3r16oWNGzfiwIED6Nu3L4xGo/r8hQsXolevXvD5fNi0aRPGjx+P2NhYv6InAOBwOLBhwwZ8/PHHeOSRR1R1Wvl8j8eDkpIS3HzzzZg3bx7S09PVHHx9JHvLli1455138OGHH2L27NmYPHkyOnbsqOac68udyM81NTXhuuuuw1133YV+/fqpkV2O0hIR0S+BgS0REf0oqfQto3ILFizA5s2bcc899yAiIkLN+dSXtnG5XH5reQau5SgjkwsXLsSaNWswZ84cREdHn3YKq6RFu1wufPbZZ6oysz7/Wz5TXm82m1UBqLCwMPUeepAqadjyfQD/EdrA6qqBn6WvmSn0IjayBIlerVZf+1m2RZ9rLNtfXFyMv//975g9ezZyc3P9/l8+326349Zbb8WUKVNwwQUXHJeOLK/5+uuvsWrVKpxzzjkYMmSIKjynp33r323btm34y1/+gueffx5xcXFtvo6IiOg/hYEtERH9KH2JAVlO5I033kCHDh3UvFjg5IpW6IFXU1MTnn76aVxzzTVo166dX8B3qiSwNhha10x+6623kJ2djVGjRv3gEhOyLfp2/diff+h7Bb6v/K5XZ9V/5kSVigOrYwZ+vtvtxhtvvIGuXbsiLy8PAFQgrH+2y+XC6tWr8e677+LJJ59UxbkCt0GfJ9xWJXEJlI3G1jW9n3jiCURHR+OGG24AAAa2RET0i2JgS0REp0yCW73A0w9ViRV6JV59bUng2Hqsp5vOKqOjMuIp7y1VrgOXfgpmEojqyy7px0HIaLHT6cQDDzyA4cOHY9KkSX7L/5xMMCrHyul0AgDy8/Px2GOP4cknn1QdEif7XkRERD8HFo8iIqJTJkGsBKE/ZWF64FhKrhRG+inbBBybzxsSEgKz2axSpH/qdv43MZvNMBqNx62RqpO/h4SE4De/+Q3ef/99lJSU+I2+nixZc7K5uRnPPvssbr31ViQmJqpOBAa0RET0S+KILRERnTKPx6NGWttKXz0RGVHV01xdLtdxhYlOtLzMD5FRTL3gUeDSOCczqhwM9Pm7eoAaONotx0m+9/r165GYmIiOHTuqYk+B839P9Hky/7iurg67d+9G//79VcVkfd3as2H/EhFR8GFgS0REp0wCHeDYfNiTGf3TU5Hl7xIQyajqyb5XIH2OqPy8/nmBxZeCmb6UkR64BgaW+hI8gcWt5H1Odp84nU71/rJ/JbCWAJeBLRER/VIY2BIR0WnRHx8nG8y0Fdi25XSCo5N9nJ0tgVdb3zfwu/3QPtELV53MPjmZ/Xu27FsiIgo+DGyJiIiIiIgoqLF4FBEREREREQU1BrZEREREREQU1BjYEhERERERUVBjYEtERERERERBjYEtERERERERBTUGtkRERERERBTUGNgSERERERFRUGNgS0REREREREGNgS0REREREREFNQa2REREREREFNQY2BIREREREVFQY2BLREREREREQY2BLREREREREQU1BrZEREREREQU1BjYEhERERERUVBjYEtERERERERBjYEtERERERERBTUGtkRERERERBTUGNgSERERERFRUGNgS0REREREREGNgS0REREREREFNQa2REREREREFNQY2BIREREREVFQY2BLREREREREQY2BLREREREREQU1BrZEREREREQU1BjYEhERERERUVBjYEtERERERERBjYEtERERERERBTUGtkRERERERBTUGNgSERERERFRUGNgS0REREREREGNgS0REREREREFNQa2REREREREFNQY2BIREREREVFQY2BLREREREREQY2BLREREf0/9u47Pqoq7x/4Z1pmMjPpvSekQiB0CL1KVbBgR2Utq64dd310d113V1cf191nddW14qKsLGJBVBQQpPcWCL0kAVJJzyTTy++P/M7xzhAQEMvo5/168QKSmTv33rn33PM953vOISIiCmoMbImIiIiIiCioMbAlIiIiIiKioMbAloiIiIiIiIIaA1siIiIiIiIKagxsiYiIiIiIKKgxsCUiIiIiIqKgxsCWiIiIiIiIghoDWyIiIiIiIgpqDGyJiIiIiIgoqDGwJSIiIiIioqDGwJaIiIiIiIiCGgNbIiIiIiIiCmoMbImIiIiIiCioMbAlIiIiIiKioMbAloiIiIiIiIIaA1siIiIiIiIKagxsiYiIiIiIKKgxsCUiIiIiIqKgxsCWiIiIiIiIghoDWyIiIiIiIgpqDGyJiIiIiIgoqDGwJSIiIiIioqDGwJaIiIiIiIiCGgNbIiIiIiIiCmoMbImIiIiIiCioMbAlIiIiIiKioMbAloiIiIiIiIIaA1siIiIiIiIKagxsiYiIiIiIKKgxsCUiIiIiIqKgxsCWiIiIiIiIghoDWyIiIiIiIgpqDGyJiIiIiIgoqDGwJSIiIiIioqDGwJaIiIiIiIiCGgNbIiIiIiIiCmoMbImIiIiIiCioMbAlIiIiIiKioMbAloiIiIiIiIIaA1siIiIiIiIKagxsiYiIiIiIKKgxsCUiIiIiIqKgxsCWiIiIiIiIghoDWyIiIiIiIgpqDGyJiIiIiIgoqDGwJSIiIiIioqDGwJaIiIiIiIiCGgNbIiIiIiIiCmoMbImIiIiIiCioMbAlIiIiIiKioMbAloiIiIiIiIIaA1siIiIiIiIKagxsiYiIiIiIKKgxsCUiIiIiIqKgxsCWiIiIiIiIghoDWyIiIiIiIgpqDGyJiIiIiIgoqDGwJSIiIiIioqDGwJaIiIiIiIiCGgNbIiIiIiIiCmoMbImIiIiIiCioMbAlIiIiIiKioMbAloiIiIiIiIIaA1siIiIiIiIKagxsiYiIiIiIKKgxsCUiIiIiIqKgxsCWiIiIiIiIghoDWyIiIiIiIgpqDGyJiIiIiIgoqDGwJSIiIiIioqDGwJaIiIiIiIiCGgNbIiIiIiIiCmoMbImIiIiIiCioMbAlIiIiIiKioMbAloiIiIiIiIIaA1siIiIiIiIKagxsiYiIiIiIKKgxsCUiIiIiIqKgxsCWiIiIiIiIghoDWyIiIiIiIgpqDGyJiIiIiIgoqDGwJSIiIiIioqDGwJaIiIiIiIiCGgNbIiIiIiIiCmoMbImIiIiIiCioMbAlIiIiIiKioMbAloiIiIiIiIIaA1siIiIiIiIKagxsiYiIiIiIKKgxsCUiIiIiIqKgxsCWiIiIiIiIghoDWyIiIiIiIgpqDGyJiIiIiIgoqDGwJSIiIiIioqDGwJaIiIiIiIiCGgNbIiIiIiIiCmoMbImIiIiIiCioMbAlIiIiIiKioMbAloiIiIiIiIIaA1siIiIiIiIKagxsiYiIiIiIKKgxsCUiIiIiIqKgxsCWiIiIiIiIghoDWyIiIiIiIgpqDGyJiIiIiIgoqDGwJSIiIiIioqDGwJaIiIiIiIiCGgNbIiIiIiIiCmoMbImIiIiIiCioMbAlIiIiIiKioMbAloiIiIiIiIIaA1siIiIiIiIKagxsiYiIiIiIKKgxsCUiIiIiIqKgxsCWiIiIiIiIghoDWyIiIiIiIgpqDGyJiIiIiIgoqDGwJSIiIiIioqDGwJaIiIiIiIiCGgNbIiIiIiIiCmoMbImIiIiIiCioMbAlIiIiIiKioMbAloiIiIiIiIKa9ofegW/L6/XC6/VCpVLJP8rfORwOaDQaAIBGo4FGo4Hb7YZKpYLNZoPRaJTv8/l8p20j8HMAQKVSQa1Wy5+L7Z/PPns8Hmi1Wvl/sd2uPls42+/Oh8/ng8fjOe2cqVQqeDweuN1u6HQ6eDweaDQa+Hy+07bhdruh1Wq7PO9EZ+Pz+eBwOKBWq6HT6eBwOBASEgKfz4f29naEhYUB+Pq+0Gg08noV945Op5PXpUajOa/rz+fzyetXXOMejwderxculwsGg0GWDXa7HVqtVpYb4rPVarUsd9RqtSwPiIiIiOiHEfS1MZVKBY1GIyuXooKrDFJDQkLkax0Oh6wgm81meDweAP6B6zd9FgC4XK4uA75z3WetVivf7/P5/LalPAbx84sdOHZ1zsQ50Ol0sNvtch+8Xi/cbrd8r8/nk+dBnD+i8xESEiKDQ3Ev+Hw+6PV62O12eS8q7wGfzweXywWtVivvvwu5B0Uw6nK5ZGOOuBd0Oh2cTqdfw45yP2w2GwDA6XTKYJaNOkREREQ/vKAPbAGcFiB6vV4Z2ALAhg0bsHjxYrz22muorq6G0+kEAFitVnz11VdYvXo1fD7fWXtdxO9EJVjZW3khxD4C8OsREsfwXVeWA8+Z+KNWq+F2u+H1erFp0ybMmTMHCxcuhFqtlr1aFosFzz//PBwOh9+2iM6VuMbF32q1GhaLBS+88ALKysrk60QQKzIjXnzxRezevVv20iobXM7ns0XQKu5h8Rn79+/HW2+9Je8Bl8uFxsZGqFQqtLa2YtGiRTh+/LjcL9GTTEREREQ/rJ9EYCsqyCLAEr0vbrcbJ06cwN///ne43W4sWbIE//M//wOtVisDtYMHDyI5OVlu40ycTqeswDqdTjidTnR0dFxwUCf20efzwel0wu12y31W9tJ+10Gj8rPE/mg0GmzYsAHPPfccoqKi8Mwzz+Cdd96R+6fT6VBZWSl7fVmxp/Nls9nw2Wefob29HW63G06nE2+++SasViuioqL80ntFpoTX68XMmTNx33334dChQ1Cr1dDr9Rf0+TqdDidPnsQnn3wCh8MBnU6HEydO4A9/+AMKCgqg0+mwfv163HTTTbjhhhswd+5chIeHIzQ0FL/73e/gdruh0Wj8Mi/oh+X1euF0OuFyueB0OoPue3G73XC5XLDb7bDb7fB4PHA4HLBarX7/t1gsXWY1XGgGgyBS9MU+dHR0yAZYkc0TbOeUiIh+Xn4SgS3wdZqiw+GAy+WSAWJISAjS0tKQmZmJmTNnoqOjAw6HA7t27cIf//hHfP7551i/fj0sFstZA7T29nbU1NTg5MmTaGtrQ0hICHQ63QUFdcr3iOD12LFj+OSTT9DS0nJaeu93UZkQn+t2u+FwOGRwLSo2GRkZSE9PR2FhIXr06IGWlha0tLRg5cqVeOCBB3D48GGsWLECLpfrou8b/bR5vV6UlZXhL3/5C+rq6qDRaLB7926UlpbitttuQ0JCgrwerVar3zUWGxuLUaNG4d///jfa2touqMdU9PQuXrwY7777Ljo6OmCz2bB8+XKMGTMGvXr1QmVlJV599VXMmjULb7zxBl555RXs3LkTV155JWpra7F48WI5Rp5+PFpaWjB//nxUV1d/49CSHxu1Wo3GxkY8++yzmDNnDhwOB0pKSvDcc8/hjTfewNatW2G1WjF//nxYrdYzBprfJsgV56yxsRELFiyA1WqVWRHBdj6JiOjn55xrZl1NJCR670Rqn5iMJXByJeXkTF6vV/byiQdzYAqweI343MBxoADk+Dyg80F+4MAB7Nq1S7bUizTDkSNH4plnnsHu3bvxxhtvYMaMGVi5ciX+/e9/o0ePHujVqxfWrVuHxMRETJ069bT9EvuycOFCrFy5ErGxsYiJicEtt9yCtLQ0OQkN8PXkS+KzA8cHKsemKisJNpsNW7duxVNPPYXFixcjLCxMblOcV2WKsnLSGvFv5XkOPGdA55jgkJAQ+Tu3241Tp05h06ZNsFgscgIflUqFwsJC9O/fH0888QQWLVqEpqYmTJw4Ee+88w4OHToEj8eDCRMm4PXXX0dycjL69OlzrpfRT47yflCOyRS/E73gyus+MN3c5XJdcCPJuexbV+O0xecrry/lPl7s/RDnwm63o6GhATt27EBTUxOOHTuGrKws7N69G6mpqTAajTKL4ejRo/J+djgcyM3NRWJiIm6++Wb8/ve/h8ViQVhYWJffgehRDTzv4pj37t2Lo0ePwuVyoaWlRQYRl19+OWJjY3HkyBHU1NQgKysLycnJGDFiBN577z0MHDgQM2fOxEcffYQrrrhCDkn4OfiuGtjO9lmBWStnO9c+nw979uzBa6+9hlOnTuG2225DVFTUd7J/F0vgOa2trYXL5cLkyZPhdruxaNEi3HbbbVi8eDHcbjeWLVuGzMxMhIeHA4C8zgP30+PxwOfznXfji3h9QkICrFYrtm/fjhEjRsDhcKCtrQ3x8fF+wwgAjjEnIqIfj/Pqse1qXKbD4ZA/F72kTqdTjk8TAZwYj6nclhjrCnQGd6JnRvQkBrYQt7S0AIBfQCsmgAEgP0/M7KtSqdDR0YGtW7fiz3/+M2bNmoXu3btj8+bNGDt2LLp3747evXsjPDxcTgzjcDhkSpsI2F0uFw4cOACz2YwxY8Zg2bJlKC0thU6n85vIRuxzU1MT2tvb/SamEq8RnyHGqwKAyWRCbm4u9Hq9nFjKZrPBbrfL2ZtFKpg4316v1681HYDcprKy1Nra6pdOBkBODCXeI743t9sNm80Gj8eD9vZ2fPjhh9iwYQPuvfdeNDQ0YP/+/Zg4cSLi4+MxfPhwGTj8nNPTlN+9+Fuk8AWm7wWOARfXlvL6uFi66rUR17S4RwTltXgxieNU7ofH40Frayv279+P6Oho+HydMyGXlZWhqKgIYWFhaGlpwYIFC/Dqq6/imWeewdy5c7F48WKUlZXJSd9iY2Nx/Phxv8nNxJhX8bfyXIi/RZrq8ePHsWvXLmRnZ8PpdKKhoQFtbW2Ijo6W34fI/gA6x+O3trYCAMaOHYuqqip5jD+XnqzA69jj8chrR1xTyrJGlC3i+1Geq3O51sVnnGvvo0qlQmpqKsLDw+HxeGSvrfKeUz6rxP4rt60sJ7+PYSDiGJ1OJzweD6qqqrBz505UVFTA6/WitLQUCxcuRE5ODrKzs7F792706NEDNpsNb775Jp588kls2rTJ79lXV1eH5557Do8//jjKysr8zqP4TsTxB6Yxi214PB4MGzYMu3fvhtvtRk1NDebPn/+zudaJ6KdHmaGoHM5xttd39ZwT5Wh7e7vMLgt8lvwYiDqP8hjEPl9I3V1ZN7Lb7X6TeF6M4TAXyzk354pePqBzRl273Y5PP/0UixYtQlZWFm677TakpaX59ZAoW5IDKzWix1HMLirGvLa3t8uZjEWwEBYWBo/HI3tz1Go1tm3bhrfffhtqtRoPPvggunfvjoKCAjgcDjnuTqPR4OTJk/jb3/6GPXv2oKOjA7m5uRgwYAC2bNkCl8sFm82GoqIiFBYWQqfToaOjA++//z6++uorDB48GBMnTkR6ejosFgsKCwtx6tQpzJo1CwMHDvSbvEZcKP/973+xYsUKpKSk4J577kFqaipWrFiBr776Cn379sWCBQtw//33Y9SoUVCr1fjXv/6Fo0ePorGxUaZJt7W14c0330RcXBycTieWLFmCyy+/HDNnzoTNZoNGo4HZbJbntampSS5lBHQ2IoSHh0Oj0SA0NFT2FFdUVGD+/PnYtm0bHn/8cfTq1QszZsxAR0cHjEajX6/vzp078eKLL0KlUqGurg6XX345UlJS8Omnn6KxsRF//etfMWXKFBQWFv6sW+xFD4dyiSSDwSB7akUPojLDQK1Wo6OjQ343otfvQpaO+iYi0DMYDH7LOmm1Wr9GETFjeGho6EX7bHE8ylm+Q0NDERcXh6amJowePRrDhw9HU1OTrLCLSaTq6+txxx134KmnnsLDDz+MkJAQv7G3osFHmbmwadMm7N69G21tbfK70Gq1CAkJwcCBA9G/f385G3NCQgIMBgMmT56MnJwcbNmyBTU1NfK7MJvN0Ov1MotBlEFqtRoxMTHy3r/QMb7BSBn8iOtUWb4rs3rE9S8aP0W2iHif2+2Ws9WfiWicBL6evO+bemyPHz+OQYMGISoqCsePH0deXp7cJ/HADcxuCfw8cS9+16nmotKh0+kAAAcPHsTy5ctx6aWXoqamBk1NTfj1r3+NJUuW4KOPPsLQoUNRUVEBnU6HtWvXora2FikpKThx4gQGDx4sy5v58+ejW7du2LBhA6qqqrBq1SpcfvnlsiFJWQ4oz4eyoqNWq2E2m2G32+X54wz4FyZwqUDg60aTc12qTNk4o3y/KAuVE1kq71Px3YrPFnUB5XJ/F/uZQ/RjJa75f/7zn+jduzfGjx9/WiAWOFRQxBSBWZgdHR148cUXMXXqVBQVFX2vx3E+lM+/hoYG/P3vf8cDDzyApKQkv+fBuRDPiRMnTuDVV1/Fk08+eVr58WOIB865x1YErKLA/OCDDzB37lzcf//92Lp1K15//XVotVrodDpZiVGmK+n1er8JYTo6OmTF4c0338SUKVMwfPhwXHbZZZg4cSJGjRqFiRMn4tlnn5UVTq1WC6/XixdffBGzZs3C2LFj0bdvX3z++edyvdqQkBA5OZTL5UJ8fDyeeeYZ7Nq1C4sXL8Zzzz2HO+64AzfccANcLhfuvvtuPPbYY0hOTobP58O8efOwfPly3HPPPXjjjTewcOFCbNy4ERUVFRg4cCBuvfVW3HLLLUhNTZUVXXF8TqcT//jHP3D11VdDpVLhL3/5i+xh/fzzz3H48GH87W9/wwMPPIB169Zh9uzZ+Oqrr3Dvvfdi3LhxcDqdMJlMOHbsGI4fP44XX3wRe/fuxYMPPogPP/wQe/fuRXh4OEwmEzZt2oQbb7wRQ4YMwbRp0zB58mSMHj0ao0ePxn333YfS0lI5e7NarcbmzZtxww03wOfz4YknnsAzzzwje25DQkLkRDgajQYWiwVFRUVYuXIlli9fjjfeeAPXX3897r//fmRkZCAjIwN//vOfccMNN/zsH4oivVbZ2+7xeOS5VaaqKlPyjUYjPB4PQkJC/LIOLiYRNIugVqPRyEnQxP2inBn4YgdpgQGF6LWz2Wyora3F8OHDZeaG3W6XDQKJiYl4+OGHoVarUVVVhejoaKSlpSE8PBxtbW3QaDQwGAzyHIosi6amJtTU1KC9vR1WqxXNzc1obW1FbW0tGhsb5SRVdrsd7e3t6OjoQExMDKxWqzw3er1e9n61tbXBZrNBp9OhoaFBtk46HA5otVr5Hf8YCvLvg/I4A7MRysvLsWHDBr+eUZfLhVdffVVm49hsNlgsltNS9oGuJ0BqbW2F0+n0q4ifjcfjwc6dOzF69Gjs3r0b1dXVfllDoqdSGdCJRpENGzbI2bCBzobK9vb277Ql2ufzobW1VTbg1tXVIT8/HwAQGhqKN954A7m5uZg5cyYyMzOh0WhkanVTUxPy8vKwdetW9OnTBwcPHkR1dTXUajUqKysRGxuLlpYWZGZm4vjx42htbYXFYpHDdex2O/bs2SMnpiopKZGTIu7atUtmFYlzL/aXLkxgA39ggHqulMMqxHYDA1rla0Xmgt1uR2VlJSorK2Gz2VBVVcXedzpvXfXOKa+7s/3+bO87l+2f62cGbk/5GgA4fPgwNBoNNm/ejObm5jNuDwAaGhowf/582XGlbCjas2cPzGYzVq5cKbMqL+T4v82f8/m+vF4vli1bhrS0NCxduvS0cv1cvhegswz78ssvkZ+fjyVLlnS5H+e6nxfrOAOdV5O0slf15ZdfxuWXX46+ffuivb0dAwcOBPD1xCyigq+sLIrfazQaGI1G2Gw2mEwmOfOo6BUWQYLL5YJarZa9t3a7HadOncKSJUtQXFwMi8WC1atX4xe/+IUMIJTjUUUgnJCQAJ+vs2VC9AjHx8fjuuuuw9ixY2VF1WKx4O2338bNN9+Mnj17wmAwyPTIu+66yy8YEV37Op1O9g6ZTCbceOONOH78OJqbmxEaGgq73Y5u3bph6NChuOyyy2Qvnc/nQ3l5OXr16oXs7GzU19cjMjISVqsV27ZtQ1RUFJKTk/HII4+gtrZWVrJEZaN379544403YDab0dbWBpPJJC9et9sNk8kkUwa0Wi0+/fRThISEIDU1Fc8//zxGjx4Ng8EAALLHQNy4ERERcLlcstdK9Iq53W4UFxejV69eiI+PP23M9c9VaGjoaePFW1tboVarER0dLSuH4ny53W40NjYiIiJCXqfK956Pbzr/Pp8P9fX1CAkJgdFo9AukxfVhs9kQExNzzr0HF7J/yl6fEydOwGq1wmQy4eGHH8azzz6LgQMHwmazyfMgluLq1asXwsPDZYApyg2RRuTz+WSv6pQpUzBt2jT5uaJnUdz7omzSaDT48ssv0b9/fxw8eBAbNmzAkCFDkJmZKdOJdDod4uLiAEAOH0hKSpIPNrfbDaPReFHPVbBwuVxYtWoVTp48iTFjxiAhIQGLFi3CiBEj8PTTT0On08n5B959910MHjwYffr0wfvvv4/hw4cjKyvrtDW0A/l8Phw6dAhNTU2YMmXKOd0bKpUKJpMJ3bt3R1ZWFkwmkxxvvWbNGmzfvh0ejwfjx49HQkKCfE9MTAzS09Oxdu1aeXzvvfceRo8eLTNjvgs+nw+bNm1CbGws+vfvj+7du2PHjh3Q6/UYNGgQNm/ejLfeegsqlQozZ85EeHg40tLS0NzcjOzsbOzfvx/Nzc2IjY3F0qVLAQBXXnklxowZgy1btsBkMiEhIQFmsxk+nw8WiwUffPAB4uPjYTAYsGPHDqSnp8Pn82Hr1q3IyMiAz+dDaWkpsrKycOzYMZjN5tMaqOj8iDLf4XBgy5Yt6NevH0JCQrB161b07t0bsbGx57wtr9eLjo4O1NbWwmw2Iykp6YzjrMX15XQ60aNHDzz++OPo168f7HY7oqOjUVxcjB49evwkG6e7ulZ/Lg2Q3yXleVX2+vt8Pr9yQjl/h7JuJN4v/h0474f4W/QMdjWPjPJ5rtyfrr5fUQ8Qv3M6nfjwww9x1VVX4fDhw1iyZAmuvfZa2cAnnvnA17PUi0Yg5ee3tLTg008/xX333YdPPvkEmzdvxqhRo1BVVSUnXxWfKeIh8d7AeT+Ux9xVOavMVgocJnM+GR9VVVU4ePAgZs+ejX/84x+oqKhAVlaWHK4oMnpEJq2yfi/KCJ+vcz6j5uZm3HXXXXj66acxbtw4mM1mVFVVQa1WIyUlRcZJgd9xVwIbrQMbni/kvj3nwFZcqA6HQ45dHThwIDZu3Air1YohQ4bIsTihoaEwmUwoLy+H0WjEqVOn0LNnT6hUKtTW1iIpKQlarRZGoxFOpxPr1q1DZWUl7Ha7HLOq0+ngdruRmJiI0aNHIzo6Gnq9Hi0tLWhqasJVV12F9PR0/M///A/i4uLkRSF6UUUQLoIG8UXp9Xp4PB7k5uaiZ8+e8ksTgbjFYkHv3r2xdu1atLa2YtSoUYiIiED//v39LiIRHCgni9q8eTPWrFmDAQMGICkpCc3NzdDr9Whra0NERASMRiO0Wq3fUhSBaV4iOH7ppZeQm5sLo9GIvXv3IiEhAVlZWfIzy8vLsW7dOrhcLr/Cw+fzwWAwYMyYMcjKyoJer5ettZmZmUhNTcVDDz2EuLg4v0q6MuVPBAsihba1tRVhYWHQaDQYPnw4DAaD3/joCwnIfiqUvUGiEn3y5EksXLgQN95442npuOKcf/zxx8jKysLIkSP9CumL9fAV11RVVRVWrFiBESNGyJT6nTt3okePHoiLi0NDQwNWr16N4uJi5OfnX/TJo5SFtTgPZrMZ8fHx+Oyzz9C3b1+YTCZkZmaipqZG3qdhYWE4cOAAcnJyYLPZYDab5TluaWnB4cOH5cRR4l4SnyWyNcR1qXxQiHMcHx+PtWvXwmw2Y/LkyUhMTER0dDSam5uh1WqRnp6OwYMH4/PPP8e2bdtgtVpx0003Qa1WY8WKFfJB93O69kUZVVVVhY0bN6KsrAwpKSmIiIhARUUFBgwYgJaWFowcORLbt2/H6NGjcfnllyM7O1v2Anbr1g1qtRpNTU2IjIyUZQzQeW9YLBbZUNinTx88+eSTGDhwIOLi4mSAAMDvu1WmYt59993QaDR48MEHAXSWr7W1tfjyyy/x29/+Fm+88QZqa2uxYcMGuFwuaDQaTJ06VTYMajQalJaWwu12Iz09HV6vF62trQgNDfVLnRb70dbWJo9DCKzEBT6oxT6r1WoMGjQIL7zwAnr27In4+HjMnj1bHtvTTz/t91oAuOSSS/Dll1+itrYWiYmJ8vkEAN26dUNdXR127twJh8OBqVOnoqmpCVarFZWVlfKej4yMRFhYGH7xi1/I/bnrrrvkvt9yyy2w2WzYuXMnbrrpptNSXX+uRFnjcrnQ1NSE2NhYdHR0ICQkRGbFKMsEUYkVWSZqtRrz5s2D2+1GS0sLNm7ciIEDB56xx0P5TFBWztesWYNjx46hubkZ99xzD8xms2xcVWYoaDQaHDhwAFdffTVaW1vR3NyMyspKpKSkYNSoUVi9ejW6d+8Oq9UKm80mswECe4SVle+6ujrExsbKSUPPFEyIvy0WC0JCQqDX63Hq1CnExsb6DVf4pvMtiIZik8l01veJ+pHIrlGr1XJf6+rqkJSUJI+ptrYWcXFxsuG5ra1NPlOam5sRHx8vtxs4TEh57GcK0E6dOoWwsDCZidTc3AyVSoXw8HDU1dUhMTFR7nOw3FvKwEo5zEoEJ6IeqhzSETgEUVlvPtP2RT1e+ZwVnyPuK9Eho9x2V9sU34fL5cLevXvh8/mQk5ODhIQEPPvss5g8eTJ27dqFbdu24Te/+Q2Azp7auXPnoqmpCSUlJfD5fOjXrx8mTJggh0JmZGQgKSkJl156KV555RWkpaXhzTffhNfrxTXXXIN+/frJY1IG6cq5aZT3uLIHVXnMyvMKfB3ginN+toYp5XY//fRTjB8/HuHh4Rg7diyWLFmCu+++G6tWrUJdXR1uvfVWaDQaNDY24oMPPkBDQ4O8h6ZMmYI+ffrI1SQuv/xyREREYODAgfjyyy9RUFCAxYsXo6mpCXfddRcyMjJkXHEuDWfK4UHi/8rzdb7Oa1Zk0SJeWVmJkJAQeL1efPrppzJNsKqqCi+99BJmzpyJvXv3Yvfu3SgoKMCbb76JDz74ADU1NXj99dfxyCOPIDMzU36hJpNJPiTEwYhAMzIy0q+1w2g0IioqCtnZ2SgoKMDnn3+O5ORkjB8/XraMKCvSYn1YZYVd9PAoe8pUKhXsdjuMRiPcbjc+/vhj9OrVC3q9HvX19bJ3df/+/QgNDZUBel5eHioqKuByuXD06FEcOXIEr7/+Ov7zn/9g06ZNePnll9G7d2+UlJSgtrZWjilubW1FUlISjh49iqamJlRVVcFisaCmpgZ6vR67du2SLSGbNm1Cfn4+IiMj5XGJMYeisqd8mOr1etnTCnRWwtLS0uDxeNC3b19s2bIFK1euxN133y3HhipnkVUG2j6fT/b+isYIr9crH6Q/p4r92SjP9YsvvoicnBzEx8f7zTgMfJ1KNnDgQDz55JOIiIjAgAEDAOCin0+73Y4FCxZApVIhKSkJR44cwUsvvQSDwYAFCxbg6aefRnx8PJqbm/Huu+/ikUcekbOtXgzKFjflv/Pz8/HQQw+hsbFRTkKWmZmJN998E83NzUhISIDX68Vtt92GpKQkGAwGv0rOsmXLkJeXh8zMTJlqHzg+UqPRyABJOQRCtCL+4he/QHZ2NnJzc5Gbmwufz4eUlBTs3r0b/fr1Q1RUFO644w4cOXIEHR0d+N///V9kZ2fD6/Xi/fffx80333zOLZI/FSLj5ZFHHsHgwYORmZmJNWvWoLKyEllZWXA6ncjIyEBiYiJUqs55Ek6dOoWOjg7s3r0bxcXF8Pl8eOedd3DkyBFkZGTg9ttvl9/tjh078Mknn6CpqQkGgwG//e1v0aNHD5w8eVLO0iuCOnHuCwsLMWDAAL/WbBGwKif7OHbsGP76179i2LBhKC4uxmWXXeZXad++fTvCw8NRW1uLbdu2oUePHvB6vdiyZQs+//xzAMAf/vAH+dzr6OjAO++8g5MnT2LChAkYOnSofKaIirSSsrKvvM+jo6MRExODlpYWGI1Gv+MQ5xz4usJXWFgIq9WKhIQEuN1uZGZmAgBGjx4tx35fc801stfc6/XiwQcflOXQDTfcgNDQUNkwe6aUcLvdjuuuu05mKTBt9evK/KJFi5CXl4cdO3bg+PHjaGpqwq9+9Sv5fBbn1ufz4dNPP0VDQwPq6+tx/fXXo2fPnigpKYHL5cKwYcPkvCFi21arFWFhYTKjRpnlIwKwYcOG4dSpUwgNDUVLSwsWLVqEW265BS6XC/PmzZOZX0lJSXJZqNLSUlxyySVQq9WIiIiAXq+XdawFCxZg5MiRiIiIkENrRNCgrHSLRh8AGD9+vN/vxb/F32LVhX//+99IT0/HgAEDsHPnTsyYMUPWv0QdI7D3rqveK7vdjvnz5+P222+H2WyWFeG2tjbZ6CS2WVtbizlz5qC4uBilpaW46qqrsH//fhgMBiQkJMjG/F27dkGj0WD8+PFYv349li5diilTpqCtrQ3h4eHyfhL7EZgBBPivbqEM3Gpra7Fo0SLcfPPNsn7W0dGBxYsX4xe/+AXWrFkjO1eCaZ4G5XNczIdhs9n86qbiWrHZbDJDccWKFRg0aBAiIyP9sqe6msdAdEQ1NjbKxhbROCDe19jYKLNulHWMroIgcX2JWeUvueQSNDY2wuv1ori4GGvXrkX//v2xfft2uY24uDg8+OCDqK+vx5w5c/Cb3/xG1ilaW1uxdu1azJw5E6dOnYJarUZ6ejpOnDiBqVOn4qOPPpJxRF1dnbzmRKxxph5K8UxoamqC3W5HTEyMrN+I43a5XLKOdC4Bn7huq6qqUFVVhSlTpqCurg45OTnYsGEDqqur0b17d1RVVcmG25iYGNx6662n9Y57PB7s3r0boaGhiI2NRU1NDfr37493330XQ4YMwciRI/HRRx9Br9fD7XajqalJNt58E1GHE+dA2TB8Ic45sBW9LW63G3FxcXj44YexefNm7N+/H/n5+dDpdDh+/Diqq6thMpnw8ccfY/z48cjIyJAT0ixatAgpKSlISUmRBadWq8WIESPO+EAXBwl0BtcZGRm49dZb8X//93/Q6XS46qqrMHz4cL8WROV7lWMIxYNcnEBlAOx0OhEXF4df/epXKCkpwd69ezFmzBj4fD589dVX2LZtG3JzczF79mz89re/xYcffgiPx4Nnn30WTz31FAYOHIjrrrsOO3fuxEMPPYTU1FTo9Xo0NTXBYrGgR48eaGtrQ3V1NaZNmwaXy4Vf//rXePXVVzFz5kwkJSVBp9Nhw4YNSE9Pl8vouFwurF27Fn/84x/9gp7c3Fzk5OQA8G/ZVN4kKpUKTqcTYWFhuPLKK/HCCy/guuuuw8iRI3HnnXf6pVKKAuZMBYNoXFCe359TUCtSvMV1q5z8SQROGo0Gq1evRltbG6699lq43W4YDAa/RgORRVBUVIThw4dj+fLlKC4u9muhEsTYXQAypV+ZIQB8XRFVZhKIe6G6uhr79+/HX//6VxiNRjz77LMoKCjArFmz8Oyzz+LNN9/Eb3/7W1xyySV47LHH0NjYKBtFxDGLZaKUxyCGFYhx84E9UYHBZGClWK/Xo1+/fn7ZCv3798fixYuxatUqXH/99fD5fBg8eLCcZEg0dtlsNvznP//BSy+9BKPRKD838JycrUdV9BpPnz5d9uz6fD6MHj0ar7zyCq644gqEhYUhNTVVPkDEeRZjSmbMmHHaMYpzJb4vUdn6qRCV7ba2NhgMBjQ3N0OtVsNgMOD666+H1WrFqFGjoNFoZIbLwIEDoVarsXPnTgwfPhwnTpzApk2bcM0112D9+vV+M3LX1NSgqKhIlr0mkwlhYWEAvp5h22g0IjU11e+7FZWsyspKLFy4EEDn+Y+KisI111wDu92O3/3ud/jggw+wePFiTJkyBQD8vrt+/fqhX79+UKvV2LdvHwYPHoz29na89dZbuPPOO/Hmm2/69RZs3boVTU1N6N69OxoaGrBs2TK43W5cc801fi3pXbW0i22I14SFhcHpdOLTTz/F4cOHz3j+xTGLgED5LFNWKJXZI8pl47oKIJT3hzLQV753xowZpz2ff458vs7JVyorKzFt2jSUlZXBbDZj//79qKyslKsriKwzr9cLu92O0NBQVFVVyWf7wYMHERMTg7y8PABfl49tbW1YunQprrnmGvmd7tu3D+3t7X4Nfm63G2vXrsW4ceOQmpoKh8Mhex+PHDmChx56CB6PB08++SQmTpyI0tJSFBQUICMjA3q9HllZWVi1ahV69uyJkydPwuVyISkpCZs2bZKTH/bp00c+6/bs2YOoqCjodDr06dMHc+bMwfDhwxEaGgqbzYampiZ5bZpMJoSHh8vJCWtra/GLX/wCH330ES6//HLYbDZs3rwZKpUK6enpyMjIkOdAXMPiOm1oaMCxY8dQWFgIj8eDuLg4VFRUoLCwUN5bS5cuxfjx4xEdHe0XMNXW1qKwsBDLly/Hvn37UFJSgtmzZ2P37t0yW23AgAGYM2eOXM7KaDQiJycH7777Lu666y4cP34cJ06cgNvtRp8+fWRHgjLwFteFy+VCRUUF7HY7IiMjsWXLFhQXF8sspPj4eDkUqKysDIMHD8Znn32GXr16BVXjqHjeW61WrFy5Env37oVWq0VtbS0ee+wxxMTEQKfT4dixY3j77bfxyCOPwOv14t///jf69OnjV+aK7E9lcOt2u3Ho0CF88sknADrrWX369MGVV14p3/f555/LRsC1a9dizJgxiI2N/cb6qNvtxuDBg6HVanH8+HGo1Z2TSIaFhcFqtcpVEMTzRGRyiu9N2UA/fPhwWCwWWCwWqFSdS2SGh4djwYIFMr7xer0yDiooKJD7oVKpYLFY/Ia5iPrDF198gb1798qspoceeggpKSny2n7vvffQvXt31NXVobKyElOnTj3n7238+PEyoAcg4yar1XraPCd6vV6+TpkxYjabMWjQIFRXV8vn3OjRo+FyufDhhx8iJydH1pfeeecdXH/99fIePxPRYP7xxx+jvr4eV1xxhRwWc6HDJM6rx1aMiX3++ecxfvx49OnTByUlJbj66quh0+lQWVkJq9UKl8uFnTt3orCwEHv37kVcXBxeffVVlJSU4MUXX5QXpSB2/mwXptfrla30V199NcaOHSvHMCrXkQ0kfqb8nXi90+mUabw6nQ7PPPMMJkyYAIPBgGXLlmHq1KlwOBxYv349hgwZgp07d8Ln82HQoEFYsmQJ+vfvj+PHj6OmpgYTJ05EZGQknn32WVitVtnzJdIor7zyStlqd91118ke0KeffhoWiwXh4eHyYlepVHj22WcBdM6UGRsbi0GDBnXZynM2Pp9PPpz69euHF198EQ6HA9HR0edd6T7fz/6pEQ9ekSp74sQJbN26FSNHjsT777+PSZMmoVu3bti4cSMGDBgg097Ly8thtVphtVplC3BCQgJCQkIwePBgvP766ygrK0NmZqaskIpCRkwnL8ZyW61W6HQ6mEwmuU8+nw/r16/Hvn37MGnSJGzatAkZGRkYMGAA5s2bh5iYGCQkJMDpdGL9+vUYP348UlNTMXLkSPzmN7/B3XffjZ49eyI5ORmrVq3CL37xC7hcLhmUu1wuOb5bGeCJoC6w917Zqi0CeXENiomrxERwoqFArVYjNjYW999/P+655x7k5OTIgEhU4kXh+vzzz+OZZ55Bnz59ZCOB+L1wLukvIgAVLaJA5z1SVFSEZ599Fs8995zfa30+HyorK7F//348++yzMosBgMyOUK4TrZyV+ackIiICf/vb3/D6669j9+7duO+++3DppZeivLwcFosFAwcOlJVOEfT6fD45rrapqQkZGRnYtGkTevbsicrKSlRXV6O4uBhxcXFYvXo1CgoK0NDQIFPKxQPWbrejtLQULS0tsgElNzcX/fv3h0qlQnJyMn75y18C8L8G/vWvf+HOO+/E1KlTsXHjRr8gTZnFA3TeUxkZGXICuNDQUJw6dQqRkZGoqqpCa2srevfujfr6eqSnp2PLli248847ERMTgxUrVsDlcmHr1q3IyclBTEyMzLaJjY3Fvn374PF4UFhYiP3798Pn86FHjx6yMeqSSy7B2LFjz3julY1GTqcTHR0dMJvNshIlXiPKEZ/Ph46ODr8sDJESGfg+wL93Tvks1uv1qKys/FmW+0putxuVlZXQaDSor6/HsmXLcNddd+Gzzz5DU1MT/vjHP+Khhx5CeXk5li1bhsmTJ2PVqlW499578fHHH2PYsGFITEzElVde6TcbttPpRElJCerr61FaWoqUlBQUFhbCaDTi888/x8mTJxEbG4uYmBgcPHgQv//97/Hqq68C6Pw+U1NTUVdXB5PJBLfbjaioKNTV1UGlUmHSpEk4deoUUlJSoNfrZbncvXt3JCUl4auvvkJERAT27t2LHTt2oLS0FL1790bv3r3h9XpRV1cnx2U3NDTg7rvvlqtHGAwGHD9+HMuXLwfQee1lZ2dj4sSJcDqdmDdvHqKiomTgHxYWhhUrVuDQoUNoa2vDiBEjkJaWhsrKSpSXl8vrLysrC6mpqVi5ciVWrVqFSy+9FK2trXK4SmFhIcrKynDy5EnZg5SRkSFnpq2pqUFISAg+//xzVFdXIzk5Gdu2bUNzczM++OADpKSkoLa2FnfeeSd0Oh3279+PtWvXorGxEbt27ZLX/hdffIF9+/YhKSkJiYmJiIyMRElJCdra2mRmXM+ePWEymfDhhx+ira0NO3fuxN133419+/ahuLgY//3vf2GxWJCQkIAxY8YgPz8fLS0tSEtLk8948XwRfsz3mZjobunSpdi8eTOeeOIJaDQa/M///I/s0RTHJNLfq6urUVRUJBsfxLGKVPisrCwAneXPqVOn8Oc//xm/+93vkJOTg48//tgvq8FisWDfvn148MEHceLECezYsQMDBgxATEwMgK/TfsUzSNnjbjabMW7cOL/GCfEsOHjwIPr27Qur1SqzEkV8cdNNN8njFxmmEyZM8Ovg8fl8sFqt6N27twwAQ0JCMHz4cHz11VfIzc2VHQ5OpxNLly7FqFGj5DBKoPN6W7lyJZ5++mmoVCo89thjMqtCpVKhqqoKdXV1uOqqq7B161Zs374dU6ZMkecz8JkmjkGj0SA1NRVpaWmy7qYs66urq1FQUACXy+U3B5CgbMjp3r07unfv7pdtAXT2Mg8YMAAmkwkmkwlGoxEDBgzA2rVrceONN56WgaG8xn0+H7Zs2YLq6moMGzYMCxcuxMMPP3xadsT5OOdal2i5cLlcOHbsmOy6joyMlIOFm5ubcejQIbz++uvIzs6G1WpFZmYmLBYL8vPzMXv2bDke6Hwp08sAID4+3i+d5Xwo00oEu92O3bt3o729HQ6HA8nJycjOzkZHRweOHTsmx+SJ9E7RWrtlyxbceuutSE1NlRNfKS+O0NBQ2SshKr8iePF4PNDr9YiIiIBWq0VUVJRf7xcAVFRUIDY29htbPboSuMatSDVS/pzOjTJFq76+Hi+++CKOHDmCjRs3oqioCPfccw9ee+01tLS0YMSIETCbzdixYwfeeust1NTUoKOjA/Hx8SgqKsJtt92G6OhoJCQkIDw8XLaYGQwG2O12rFixAqtWrZLjmEVhZLfb0adPH1xzzTWIiIiA1+tFTU0N1q1bh7feegtbt25FWloaFi9ejMcffxwVFRUYNWqUbOUXAZdIpdTpdDIoLSoqwu7du+FwOOTP29vbMXfuXBw6dEhWdl0uF1wuFyIiIjBt2jS5fXG9i0mxRGORciy2CGqtVqtfmotorezWrRvef/99mM1meb+LHlWxTtz999/v14MrgmVxns6lEBQPNDEsQJkW9cADD6CxsVFuT7Qsi+B79uzZ8sHtdDrlw0qZotVVY9pPgTi+goICXH755ejfvz/69+8vZz++4oor/NIWRZmnVqtRVFSEffv2oV+/fsjMzMR7772Ha6+9Fq2trVi5ciUGDRqE/fv3w2KxoKysTLZEl5SUoFevXgCAyMhI/OpXv5L7o2xZF/smWt9XrVqFSZMmobGxEWq1Gq+//jpMJhOuueaa03ryldeiz+dDz549UV5ejtzcXIwePRrLli3DsGHD0NraiuXLl6NHjx7o3bs3tmzZgqqqKuTm5qKurk6mim3dulVOtNfc3IyOjg7ExsbKHm6tVivXEuzo6MChQ4dwzTXXwGQyfeM1I661RYsWYe3atbjmmmswZMgQvxQ3cSzLli2DSqXC+PHj/ba7ZMkSpKeno7i42O88KJ+LyoYqUf4oG6yUzyjlMAsAfoFxYCVL+bNgI7JCfD4fjh49ivz8fJjNZnTr1g15eXl46623sH37dixduhRDhw5FTU0N+vTpA61Wix49eiAtLU1eq4GpvkajEQaDAQaDQU56ptfrERsbi4KCAmzZsgX9+/fHnj17UFlZKdMwxfcBAAcOHJB1scWLF+Oyyy5DU1MTnn/+eWRkZGDgwIEYPXo0NBoNunXr5pc6GhcXJ5dA69evH+rr62EwGBATE4P8/HyEh4fjxIkTMpVUmQosJtIU17XokdJqtcjKyvJrNOrevTv27duHMWPGICcnRzZ+iTHu4tyo1WoMHjwYx48fR2lpKSZOnCgnufH5OucACQ0NlbPji3oW0Dms4JJLLkF+fj4+++wzeY4iIiJQUFCAqKgolJeXIzIyEgBQWlqKPn36yHRlsR/FxcUoKyvD+PHjkZaWBpWqc3ys2AeNpnNVAavVisOHD+Omm25CXV0dCgsLsXjxYuh0OgwYMADV1dUoKSlBSkoKmpub/RqT2tvbUVNTIycb+jaV+e+DVqtFS0sL3nvvPfzhD3+QS4Jdd911aG9vlxmdJSUl8Hg8+OMf/4iJEyfi1ltv9VsxwuFwoKGhAQ0NDYiOjobRaIRGo8Gnn34qU7TVajX69++PyMhIOXv88ePHERYWBrPZjLy8PLmaCdBZ/litVrn6gqjfm81mWX9S1keAr++/tLQ0Gfi1trbK+1xMxGqxWLoMiAMbrqdOnSrvDQDIzMzEJ598IjvRbDabXBWira0Ner0eJpMJDocD7777Ln79618jPDwcDocDN910EzweD06dOoWYmBjs378fCQkJ0Ov1GDx4MHbt2gXg62C+o6PDr2wWY/8ByM6SrjoPc3JyZPaIaLRRZhWJLBRRrivrW+K863Q6TJ8+Xf5fpeoccrZ582ZZz9q6dSu2bNni1/t7xRVXIDY2FrW1tTCZTEhLS8OBAwdO+6zzvk7P9YXi5Pl8ncvFlJWVwWQyITc3FwaDAe3t7dizZw/uuOMOTJw4EWq1GmFhYX4pAqKX5kJ2WDleTjlb14X0iCgLEGUKzVNPPYWGhgbodDoUFBTAZDJh7969ADqnCE9LS0O/fv2QnZ2NSy+9FHq9HiNHjkS3bt0AnD5piNhvZVqXaDUN7DFVVoiVs6j17t0bjz/++IW1Wvz/i1G0Lir3ic6f+E6OHz8uUxUvueQSTJ48GX//+9+xdOlSWUm12+2oq6vDxIkTUVtbiyNHjuCZZ56RmQdiWyJlEICc8CIzMxOjRo0C4J8uqFarERcXh9DQUFnJamtrQ0FBAcLCwnDdddchMTER99xzDyorK7FmzRqMGzdOtqQCnRkEYluiIi5mTBY9qSKLwev1oqCgQFaClCm/LpcLycnJfi1x4oEnHt7id6KCNm7cOCQnJ2PlypXYt2+fX3q36N1VTkYhtitmQhYtiuJ3IkVaOaxAOFtwKe57UWCL41F+XltbG8xms+xxFutHi2V+xD5NnToVffr08QvkxHf5Teu0BiOVqnNZqHHjxsmKpHhgiu9FXCPKVNy+ffvilVdewY4dO5CSkoK+ffsiPj4eBw8eRF5eHrxeL2655RbZCKhWq3Hw4EEkJSXJSfNE2a/cFyWREmiz2WSafExMDB5++GG/OQKUFUdlz664Hvv164dXXnkFFosFdXV10Gg0GDJkCOrq6pCeng6Xy4W5c+ciLS0NU6ZMgVarRUNDA6KiotDW1gaVSoVu3bpBr9fLhz0AjBgxQn7mkCFD4PF4sHbtWgwcOFA2+J6tnBfnxufrHGYwefJk9O3bV957er1e3j9tbW3YsWMH7rvvPni9XrS3t8vzN2LECLz66qvo37+/33NBmRYYWMEWDRbKe0cZrIp7UFwTYn/EutHKNL5gJmb7zsrKwtq1a/HFF1/gpptuQkVFBYYOHYrly5fDYDCgZ8+e0Gq12Lp1K5YvX45Zs2b59VYpK4di9YXGxkZUV1fLlHiv14uYmBgUFhbKiZfS09ORmJgovxu3242jR4+ie/fuqK+vR1paGlatWoVevXph5MiRqKurkw3sNTU1MgAVn5+fn4/PP/8cFRUV2L59O+Lj46FWdy4PqNPpMGXKFBiNRixevBh9+/aFw+GQKz6IRiDlfCni+jGbzUhISEB7e7scXtDa2ootW7bA6XSirKxMTq6TkJAgxyGK5444R62trThy5AjuuusufPjhh7KRSwxpE41lMTExMigRDUSrV6/G73//e3kvAp2ZGeJYrFYr2traMGHCBKxYsUKO19+6dSuam5uxePFihIeHo7KyEv369YNKpUJeXt5pvVkulwtFRUX45JNPMGPGDOh0OuTn58u5aLZv3y4D8b1792LYsGFoaGiQK4xs3rxZBs5A18PBfiyUQ49EQ01DQwOamprwxRdfoL6+Hr///e+xb98+HDp0CE888QR69Oghx+B6PB588cUXKC0txb59+7Bx40akpKTgtttuk8+Dyy+/XJZ1HR0dyMjIwD//+U85yaRYWgfwHz7h8XiwefNmrFq1Ss4pEBsbi1/84hcwm83YuXMnvvjiizOWQcrvVXmfiHqJcqJW0SCkrLcLXm/nDMN33nmn35w/brcbCxcuREVFBXbu3ImKigrEx8fjnnvukccj6lriOn7jjTfQ2tqKxx9/XC57Kspa5USKYnx9bW2tPL4hQ4ZgwoQJ8Pl8WLVqlWxwDTz+rnpTleWT+L5FZ0Pg8Srfr1J1zudy2223yX0Vzx0x74yyUSAiIkKeR3FcgRlIF+K8okKv1wu9Xi9TMxwOB8xmM6xWKwwGAy699FL07dsXSUlJ8vXKFD3libgQ4gtRPnAv5GGpUqlk5Udsx+FwICUlRS6PoOzVycjIwAMPPICUlBSZgjZ69Gg55lEEH6KCLHpxlC3UynUvlTOBAvALJETFUEyGk5mZKWfyuxDK1iWxj9+2NeTnSPTOeb1e5OTkQK/X45VXXkFqairWrVsH4OtCyWKxwGg0YsyYMXC73Xj00UcxYMAAudSOMghSXouid7KxsRHl5eWycFVO7mW1WpGYmIjU1FTZIn7o0CFYrVb069cPu3btgtVqRXR0NEJDQ2VjkjLI8Hq9MBgM8Hg8ciIOsZar8vrQaDSorq5Ga2urX0MQ0HldRUZGIjk5WVaoDQYD8vLyZLq21+uVLaRhYWEIDw+HRqORD0RlS7+yVVB5fYp7w2azwWAwyBQn8fAPLGhF4ax8SJ2J8nsQPbBqtVoukQVABrbKB6j4uVarRWxsrNyGcgz2T3U8orKVFoCc1n/ChAl+lTNBXDcxMTG47rrr5LrKkZGRCA0NRa9evVBQUOA3SYaoOOj1etxwww2yB+dc9q2trQ1///vf5Yz3oqFGtFwrW7S7qpCIYPi6666TgZnBYEBYWBiio6PlZC+PPvqonOBDr9fL3mufz4dZs2bJnp0zBeLiQR4fH49BgwZ1WWE40zHW1NTITI3Bgwdj06ZN2L59O1paWvDQQw/BZDLh0KFDiI6OhslkwpIlS7B+/Xq0tLQgLy8PDz74IHQ6HWpra5Genn7OGQbiHhCrB4gZZIHO56c4hw0NDViwYAFMJhOmTZuGlJQUAME/J4PX60VUVBTi4uJQX1+P2bNny4kcN2/ejCFDhiAvLw8tLS2Ii4tDVFQUfvOb3/g1LAeWS8pzHx4eLidlEj+bMmWKLDO1Wi1mz54tG8fVajVOnjyJuLg45ObmIj8//7TAeffu3SgsLMTx48dRWFgoe44EURYnJSXhT3/6k9zXhoYGOaa3tLQUqampuPTSS7F582aMHTtWNhCJnmZlg74IpGfOnCkrqqNHj8a6detw/fXXy/tcPE8D7wtRZuzfvx9A5xhvh8MBp9OJwsJCv6yEiRMnyntN9AIpUx/FNouKirBmzRocPHgQ8fHxmDJlCrZt24bRo0ejoKAAubm5MpDJzs5GRUUFHn30Ub99DfzORGVeq9Vi2rRpMuvK6/Vi8ODBWLp0KWw2G8LDwzFt2jQ0NDRApVIhJycHn3zyCSZPnozMzEx5D4qg8cfOYDAgLi4OR48eRVxcHJYvX45BgwbBZDJh4cKF8Hq9qKiowNixY+UyZMXFxfK6mzx5MsaNG4fPPvsMBQUFyMvLQ2hoqOyhLSkpQY8ePbB161Z4vZ0z5ZeXlyM/P1827KvVnRNX1dbWoqmpCdnZ2VCpVBg6dCgGDRokg1HRcOT1etG/f3/ZMCIorz1l/UgZXwCQjYWHDh2SS8opsy6U2xPv0ev1cDqdcsiSRqPBtddeC7vdjnfffReTJ09GXFwcTCYTbDabnEy2o6MDK1aswJAhQ2RD2vHjx5GQkID6+noAnQ2H4o9YUvLmm2/261AQDesqlQpjx47F0KFDzxrUi0YaZUAv3i+OPTo6Gnl5eafVuZT3hOhIcTqdcDgccp9KS0uxZ88ev+voiiuuQFRUFDIzM7F27VpUVFQgISFB1rku1DkHtspxY2LmPnHBiC9QFMLKsWXiYnG5XH6TzZxvq5SYPAf4emmVrlpLzoU4+cDXsz2L9WiV3fBqtRqFhYV46qmnEBERAYfDgezsbPh8Prlkj6iUK2eCU1bIRYuFcjyhx+ORacvK1gqxT6K3R9wgyhbW86GcEVrZExLsFYwfguhhFw0XH3zwAXJzc9GrVy/cd999GDp0KMaMGYOvvvpKpkOKSQrKysrw+9//HsDXM2t6vV65FquYhMNoNKKjowPV1dWorKyUAaLdbkd4eDja29uRlZWFoUOHwuPpXHpLr9djx44dGDp0KKxWKzZu3IjCwkKkpqZi8ODBfuu99uvXT052sGPHDhQVFcnlVURQCUDeqw6HA7t370ZHR4fsqTMYDPL/3bp1kylEQOd6vqNGjZL3uPJ+EtRqNXr37i1TjcR1rbwPlIWrSP8WjT0iwBXv6ypF5lwosyPEfSx6jcXkL6JHWDwklBUlu93u1wD12muvISUlBZdddplfufBTazzqKjjT6XSYPHmy/Jky+FWO88nPzz9t/KZorFBOiCS2ITJhlK3mZ9sfUflQq9VoaWnx+yxlw96ZvhdlYJ2dne03mY3X65WVeQCIi4uTjZrKlnvR4NNVZpKy4i9+XlBQ4Jfpc7brRaTTvfPOOxg8eLDscZo3bx7uv/9+vPLKK2hsbERJSYkc3iCuxdzcXISFhaGgoEAGAMqKy7kqLy/H/PnzUV1djd/85jcwGAyoqqrC6tWr5bnq1q0bkpOT4XQ6UVlZidTU1J/EvSCuvxkzZqC9vV32DKrVagwbNkyWdcqshdDQUHnNKTPNAokyRtmILeoRyl5xMZRJlOlxcXG44YYb/BrLlcv3xcfHy7TzwCwSEURef/31cLlcsvHH5/NhzJgx8hgeffRRAJ0V9bCwMERFRfn1sABfz0Gh7GgQ9R2RgizqjOJYlPdnV9fH2LFjMXLkSBgMBthsNsyaNUsGNeL1KSkpfoFI4PbE/8ePH4/6+nr5fAoJCYHJZEJUVJRfrxIAXHbZZXIiRaXAepOyl0qj0cjJOH2+zjkFpk+fjoiICNlIZ7FYcMMNNyAkJASXXHKJnPFXeV0EQ93MbDbjoYcewhdffAGNRoNx48YhOjoar7zyCvLy8qDT6TB27Fj0798fn3/+Obp37+6XxWM0GuWs3GazWc4B4PN1Tsr40Ucf4e2330avXr0wevRoLFq0CJGRkTh27Biuv/56LF68GHa7HS0tLTKIFY0KIiYJvBYB+KXmCoFlckVFhZzV+Prrr8fBgwexZcsW3HXXXdiyZQtOnjyJvXv34oUXXpANn4HbE9e1x+NBWVkZIiIiZOaKwWCATqeTdSkxA7rJZMLs2bPx6aefQq1WY9SoUUhLS8O7776LvLw87Nu3DyNGjMC8efPgcrlw8uRJDB48GI2NjTIrVtkhB/gvoaNWq+X13NUzCejMSv3oo4+QmJiIyy+/HG+//TaGDh2K/v37Y/78+bKR65VXXvF7tgU29ACQKxEkJyfLczRmzBiMHTv2tDqCyOg6duwYysrKcPvtt8vy7Fw6KLpyzoGtqGxqNBqEh4f7TX4gKr2iNVDZayEKC+USCBdy8yp7R5W9KeJmOR/KmWVFq6HYVzFhiPJzxZcoeqdNJpOc0lrZs+R0OhEeHg6Px+O3Fq84bwD8/q+srCkr5+ILVT7QLqRSICrrYoZW4OuGhh9zusuPkbKRQavVory8HAcPHsRdd90FtVqNV199FQ6HA0lJSVi/fj0GDx4MoHMiC6vVKisk4toSyxKI9VjF/REaGoorrrhCzq4qHrgOh0MGV8qKQ0dHB06dOoVNmzbhb3/7G9ra2vDUU0/JwLa0tFTOdPnAAw/gT3/6E6xWK3bt2oVHHnkEERERcLvd+PLLLzFo0CAAkL2XUVFR+N///V95rShbI7tKxxGNXIIyBT+w4iLeI9JYRXAjegzEv8VEDsrUFZEyqtFo0NTUhBMnTiAkJASpqamIiIiQvebNzc1yzWxl5UHsq7IlXpQrIlAWPejKMbSBvYliJk2bzYZ58+Zh0KBBmDx5smyUupCyKZiI89dVeSIecspKqDh34t/K54CoXIrXKh/I5xoU+Xw+pKWlyQmqlL3tXTWCdnVNir9F2SkaWJRBsWiYEteUMjNHWU6c6aGsrISLbSq3c7bj02q1sFgsSE9Pl2O9jUYj9u3bh8TERHz00Ufo2bMnoqKiUFNTIyeB27ZtGy677DLU1NSgV69essHrfKhUKpkS29jYKCeLjIqKgs1mk4GyaLQTM4yK7/pCGrR/TMT3Yzab/WY0Vf4uUODxBl6Dgf8/0+uV9Sjl/7uas0TZu1hcXNzlfim3/03znijrQ3FxcWfdf+V5UF7narVaLk0lKHuOAyvJolFACBw+FdigJZzp+goNDUV6errfz5Tr1Aa+NjU1tcvfBVbKz3bPpqWl+f1fBLLAN5/HHytRHufm5iI7O1s2BNfW1mLIkCHQ6XQwm824+uqrAQD33XefX9mrLBMnTJggG36AznNgNBpxww03+D0fZsyYgZSUFHR0dCAiIgKFhYVYvXo1Jk6ciIyMjNO+A/H/wGvhXMqerVu3Ij09HStWrMCwYcNkb2tzczPGjBmDHTt24OTJk37H1NU9ILLM1q9fj+nTp8t6hQjYpk2bhoiICL/Gl+zsbNx///2y7uB0OlFUVISamhrccMMNiImJgdlsxt69e+VwBeWQxrMd79muL5HSvHz5cgwcOBBvvfWWXFLM6/WisbERV199NdauXYva2lq/fVbWqcS9ITIAt2/fjpkzZ8rnXFfnXzyDjUYjbrrpJr9GwW/a77M558A2sGUi8P8qleq01hDlgZxtOZlzISobShc642jg+5T7pFwCR/xO+XvxQFOpVKedA1GpV24/sEBW/l/5ujP9+9sQF5Ny/4O5YvFDEi1wQGfa3Zo1a/D444+jsLAQvXr1kr2KRUVF+Pe//y1nwy4sLMS//vUvv94eEdCJNdWSkpL8eoeUM/YCOC0wUDbwHDp0CAcPHsSLL74Ij8eD0f8/Rd7tdmPSpElYvny5XHN5yJAhePLJJ1FVVYUbbrgB6enp8Hq92L59Ozwej1zCRnltKxuplBVh8YBTXl+BD5iu0rcC/6+svJzpHhAPA/H54jzt378fq1atwr59+1BXV4fx48dj1qxZMBgM2L59O/7zn//gj3/8o0z3ETPsKlNbuyo4lePhA3VVVhgMBmzcuNFvez/V8bVd/b+roLGr1wUGsl39+1w+90xET9WAAQOQmJgoUySBrsu9ro5H+dDuqmKg/H1X2zjbsXR1HOf74Pb5fJg+fTq+/PJLzJw5EzqdDpMmTcLatWsxYMAAHDhwAE6nEzk5OXKW5p07dyI3NxcnTpzAtGnTYLFY/Fr6z0V0dDSmTp2Kuro6VFVVwWQyYevWrQCAO+64Qy5JITJQPv74YzidTr9lLoLddxl8/FCBTbAEVD8mP+dzpqzDKBuL4+LicPPNN/s1FgaWlcptaDQaREZGdvl7ZYOB6FAbPnw4VKrOjLlLL70Uzc3N8jMu1vEAnWnSO3bsgEbTOZPwihUr0NzcjD/+8Y+YPn06XnvtNYwdO/aMDZHKOpJWq8WMGTMQGxt7Wk+qWCGjK2K7ISEhuPLKK2Wgp1arccstt6Cjo0Om+14MKlVnRtSNN96IjRs3IiYmBmFhYaipqcGqVauwcOFCXH311XjnnXfkUqXKzo5A4tzMnDkTsbGx57wPF/O++mmtRUH0HXE6nbLQeu2112TlUCzDpNPp4HK5MGDAAHz55Zd49dVXce+99yIxMRGxsbFyXTBR8O/atQvl5eW4++675e/O1qChXFtWFHS1tbXYvHkzqqqqUF5ejptvvtlvfHdKSgqGDRuGuXPn4s4770RCQgKGDh0Kr9crHxiNjY1YtmwZxo0bd9ZC6IdOkRIFu+gF9ng8ciKG//u//8N7772Hl19+GUOGDEGvXr2QnZ2N22+/XY7JEbMCKlP8zzUwo+AgGmVmzZoF4KdZAQ0JCUH//v0xYMAAqNVqrFu3Tq59O2TIEGg0GsTExCAyMhLp6enYvXs3Zs+e7ddzunTpUgwbNsxvGaCzEb16ZrMZ9fX16NOnj5wNu7W1FWFhYTJTQpg1a5ZfimdgCjoRBSdl76sIbkXqr3II0plSVUVZJOo8gZktyvcqh/QBnWV8aGgowsLCLspkdMpnhNfrxalTp2QGSklJCUpLS6FWqzF79myEhobi0UcfhdFoPGNQqTw2MR+RmJhS9Ggqh8d09X4xBE10cihT7UU5LIZNnanx4HyI76G2thZZWVmoqanB+vXrceTIEQwYMADXX389AODRRx9FWFjYNzbai/pwXFzcN3akBV4b55K5dC4Y2BKdA1FJs9vtuOSSS9C/f3/ZEqdMiY+NjcUDDzyAl156CY2NjUhMTJQFgRhn7Xa7cezYMfzpT39CVlaWTKsFzm0CFxHcmc1mFBcX49///jdiYmJkurPouQoNDcXVV1+NBQsWwGq1Qq1Wo729XU4+AnT2Pufn52PUqFEIDw8/p563H4Jy7Jrb7YbdbpfjBMWyFHV1dXA4HNi5cyfmzZuHX/7yl1CrO6eZ37RpE3y+znU9ExMTceutt160ffum9EL6fgSO7f2pUd77QnFxMfLy8mA0GhEREYHk5GRZMbj66qtRX18vg0pRiczPz0dqaup5XaeiQU2sU9xVz3XgOGkx7k1ZqfspjLUl+rkKHLoRGLB1NfbyTM40XONM6fmiTO9q0qYLFRhYvfrqqxg4cCA6Ojpw9OhR6PV6hIeHY8mSJZg2bRqKi4tl2Scy5wL3VzmERdRZAud3ONuY+8BUXPFHObxJnLuLEgT+/wlGn3vuOVx99dVob2/Hrl27MH36dGzbtg1msxnXXnst0tPTzzi0LPCcdpXt1hXl8V/MDgaV72JcHUQ/caJQDRynKQIt0SshKp5iNmDlGBIxxsLtdqOjo0OuC61Mfz/Tje3z+eS2xZgIUTAqty8mWdNoNHJsr1i/TaxBKN4jxsCJ2c3FmNIzpZecyfdRUVWmEYtjcDgc8pz+7W9/w6ZNm/D3v/8dN910E0aNGiVnnP3tb3+L7t27o7m5GdnZ2YiIiMBjjz0mH1AXO52JfhiipVwZdP2UvhNxbIHj2kXZFDiOXPwdWHlQBqBnqxgpW9GVFUBlw4H4vXJZC+Vnib+Vs4v+lL4Top+zwHpBV+XNmV57NoHbOdPvL1ZZIj7rwIEDaGxshMvlQo8ePVBdXQ2NRoO2tjYMHDiwy4DtfI6xq+O60HPU1fvPl8gidLvd2L9/P2w2G9xutxzPW15ejvj4eOTm5nbZ+XK2+uq57OOZrpVvi4Et0TlQVvKA02fmFhVMUelzOp0wmUynbUdUSsV2RKXwmyZCE4GccnZmMXmZmGFbpAMpK/ZiML+okIrgWHkc4nOdTqdfIB74+WfyfVRUxXGINWR9Pp9cJmnNmjV47rnnMHv2bHR0dMg1CEePHg2TyYSRI0eirKwMR48exb333iu3p2wNpeD3XT0kfyy+qRJ5vs7lHJ2pR0XZ8/BN+6P8+U/xeyGinwYxOaCyfgBA/uxcl54LFqJepZxUVrm0paiPKieCDIbGyZ/ON0T0HRJjGkSAKdJhRCEnAlPRG2IymfwCYWXPh9iGclr6byooRKEqCl6tVivXqTUYDKfNsi16SJTr5qrVar+COXCSnDMFtT8WarVazpLs83XOIL1+/Xo8/fTTuPfeexEaGop+/fohKioKtbW16NGjB6699lpER0dj/fr1UKvVcqy0KJy7GuNBwemn3lChPL6uUtXO98+FfGZgmuG57I/y50REP1bKjgFl+jDw9br3PzXiWEUHi3J96cBOmGApwxnYEp0DcZNrtVrZa6qstIl1ysTyUMr3KIlCJDD9WEyycrbPF68JHNumXCNO+RnA1+NRAgf8i/eEhISc0yzc37aCfLGI9Gm1Wo3FixfjgQcewJEjRzB//ny88sorsNlsWLlypVzipKGhATabDatWrZJLA/wU01SJiIjo2+lqZudznQMlGCk7VkQ2n7KDpKsg/8eOk0cRnQNlQHSmpavE/7sKFLsal3A+S8Io33+mdfu6KnQDf3am/1+sJaa+K6InXOyvGHM7YsQIOcNzRkYGoqOj0bdvXyQmJiI/Px8xMTHw+XyYNGkS8vPz/SZmUPopPrCIiIjo3JzLsnA/JV0NfzvbEnnBgmNsiehHL3CJHq/Xi46ODvl/MdOzWHZJOaZPq9XCbrf7rZnL1EgiIiKinxYGtkT0oyfGv4qlS8T4ZPEzZZCqnATLbrdDpVLJtYLFOFuRTk5EREREPw0/7vxDIiL4z8QqZucTk0iJNGoxqRYAmZ4s1tFUToYQzCk2RERERNQ1Th5FRD96yuWUgK+nqVcuuSR+rtVq/YJdERSLgPhM42yJiIiIKHgxsCWiH73AnlaxvJFIUbbZbHJGPzHRlAiGAf/1OEVPLxERERH9dHCMLREREREREQU19tgSERERERFRUGNgS0REREREREGNgS0REREREREFNQa2REREREREFNQY2BIREREREVFQY2BLREREREREQY2BLREREREREQU1BrZEREREREQU1BjYEhERERERUVBjYEtERERERERBjYEtERERERERBTUGtkRERERERBTUGNgSERERERFRUGNgS0REREREREGNgS0REREREREFNQa2REREREREFNQY2BIREREREVFQY2BLREREREREQY2BLREREREREQU1BrZEREREREQU1BjYEhERERERUVBjYEtERERERERBjYEtERERERERBTUGtkRERERERBTUGNgSERERERFRUGNgS0REREREREGNgS0REREREREFNQa2REREREREFNQY2BIREREREVFQY2BLREREREREQY2BLREREREREQU1BrZEREREREQU1BjYEhERERERUVBjYEtERERERERBjYEtERERERERBTUGtkRERERERBTUGNgSERERERFRUGNgS0REREREREGNgS0REREREREFNQa2REREREREFNQY2BIREREREVFQY2BLREREREREQY2BLREREREREQU1BrZEREREREQU1BjYEhERERERUVBjYEtERERERERBjYEtERERERERBTUGtkRERERERBTUGNgSERERERFRUGNgS0REREREREGNgS0REREREREFNQa2REREREREFNQY2BIREREREVFQY2BLREREREREQY2BLREREREREQU1BrZEREREREQU1BjYEhERERERUVBjYEtERERERERBjYEtERERERERBTUGtkRERERERBTUGNgSERERERFRUGNgS0REREREREGNgS0REREREREFNQa2REREREREFNQY2BIREREREVFQY2BLREREREREQY2BLREREREREQU1BrZEREREREQU1BjYEhERERERUVBjYEtERERERERBjYEtERERERERBTUGtkRERERERBTUGNgSERERERFRUGNgS0REREREREGNgS0REREREREFNQa2REREREREFNQY2BIREREREVFQY2BLREREREREQY2BLREREREREQU1BrZEREREREQU1BjYEhERERERUVBjYEtERERERERBjYEtERERERERBTUGtkRERERERBTUGNgSERERERFRUGNgS0REREREREGNgS0REREREREFNQa2REREREREFNQY2BIREREREVFQY2BLREREREREQY2BLREREREREQU1BrZEREREREQU1BjYEhERERERUVBjYEtERERERERBjYEtERERERERBTUGtkRERERERBTUGNgSERERERFRUGNgS0REREREREGNgS0REREREREFNQa2REREREREFNQY2BIREREREVFQY2BLREREREREQY2BLREREREREQU1BrZEREREREQU1BjYEhERERERUVBjYEtERERERERBjYEtERERERERBTUGtkRERERERBTUGNgSERERERFRUGNgS0REREREREGNgS0REREREREFNQa2REREREREFNQY2BIREREREVFQY2BLREREREREQY2BLREREREREQU1BrZEREREREQU1BjYEhERERERUVBjYEtERERERERBjYEtERERERERBTUGtkRERERERBTUGNgSERERERFRUGNgS0REREREREGNgS0REREREREFNQa2REREREREFNQY2BIREREREVFQY2BLREREREREQY2BLREREREREQU1BrZEREREREQU1BjYEhERERERUVBjYEtERERERERBjYEtERERERERBTUGtkRERERERBTUGNgSERERERFRUGNgS0REREREREGNgS0REREREREFNQa2REREREREFNQY2BIREREREVFQY2BLREREREREQY2BLREREREREQU1BrZEREREREQU1BjYEhERERERUVBjYEtERERERERBjYEtERERERERBTUGtkRERERERBTUGNgSERERERFRUGNgS0REREREREGNgS0REREREREFNQa2REREREREFNQY2BIREREREVFQY2BLREREREREQY2BLREREREREQU1BrZEREREREQU1BjYEhERERERUVBjYEtERERERERBTftD78APwePxQKVSyX+7XC6EhIRApVJBpVLB5/MBAFQqFaxWK0JCQqDRaKBWq+HxeKDRaOR7NRqN3BYRERERERF9/36Wga0IXlUqFbRaLVQqFdRqNbxer/ydxWKBTqeD2+2GTqeTQa1arYbb7ZbvEb8nIiIiIiKiH8bPMrBVBqciwPV6vfB4PACAjRs3Yu3atejo6MDx48fx5z//GampqbJ3Vq3uzOBWqVSy95aIiIiIiIh+GD/LMbYigBWpxyJQ1Wq1sNls2LZtGywWC371q1+hrKwMJSUlsFqtqKurQ1VVFerq6tDU1AS32w2bzfZDHgoREREREdHP3s+2xxYAvF4vnE4nVCoVdu3aBYvFgsLCQowbNw4VFRWorKxEU1MTbDYb/vWvf+HLL7+E1WqFXq/HpEmTMGvWLCQkJPzAR0NEREQ/ZT6fDz6fD263W8754fP54PV64fV6odPpYLfbERISApfLBa1WK+cB0Wg0fkOoRB2I6Hy4XC7YbDZs3boVw4YNQ319PcLDwxEREQGfzwen04ldu3bBaDSiZ8+eAICWlhaUlpYiPz8fSUlJ3/gZPp8PHo8HVqsVRqNR/jxwPhvxOgCwWq0wmUzy5xUVFaipqcHAgQPlUEKRoel2u2Xd32AwyPshcNter1f+X/zeYrHIOXe+zfw64p5VHpfb7cbSpUvR2NiIG264AVqtFlarFYsXL0ZMTAwuueSS0+5bt9uNjo4OGI1GOaxSZJ9u3boVBw8exJVXXonw8PCzHmNzczMMBgN0Op2cb0jMNQR0fu9OpxNarRZ6vR4qlQodHR2w2+2IjIzsctsejwc2mw2hoaHf+1xE32npJgpicQLdbrf8nTj54uQFXkgX4zOVX4yS+Fy1Wo2QkBBs27YN//znP3HLLbfgs88+Q69evZCcnIznn38eN954I/r164fevXujR48euOqqqzB79mzcd999iIuLg9Pp/Nb73NUxuN1uv3P3bbYlLjKv1yv/faZzQ0RERD8uYtJLUVEXlBNhioq++Lly/hARCPPZT99GfX29DKK+/PJLAF/X330+H6qqqrB161YZvLndbmzYsAFlZWXy//X19fL1IhYQdVSv14vy8nKsXbsWixYtwpIlS/zqwoHXsNfrxY4dO1BeXg6g87pvbGzEhg0bYLVaAQBOpxMtLS1y6GFpaSn279+PL774Qta1A7e9c+dOzJ07F1VVVQA676/9+/fjyJEjfg1Kyvd1dTzKn4vfrVmzBu+//z7a29vh8/ngcDgAAFFRUWhpaYHX65U/83g88t+B29u4cSPmzJmD0tJSOJ1OuFwuGWdFRkaivr5evt/pdJ52jD6fDzabDV999RX27NmDDRs2yN9brVbU19fL13z00Ud4/fXXYbPZ4HK54PV6sXTpUjgcji7Px549e7BgwQKUlJTIz/q+yp7vrMdW2ZoixqEqWxPEz8SETeLP90EU9KJVaOXKlSgqKsLll1+OgoICbN68GY8++iiys7MRHx+PyspK+YW0tLRg8+bNmDZtGgAgJCTkou6baI0V50J5Hi+klVU80MQkVxej8YCIiIi+P8rnv6gnAEB1dTU2bNiA2NhYDB06FF6vF83Nzdi8eTOqqqpw7bXXIjw8HCEhIaf1rBCdD5VKhZqaGoSGhsJqtcLtdiM0NBQdHR1Yu3YtjEYjampqkJycjA0bNmDHjh1ITEyEVquFRqOB0+nEqVOnsGrVKkyfPh1msxl79+7F2rVrMXLkSDQ2NkKlUqGurg75+fmor6/Hhg0bcMkll6Cjo0NmIpjNZthsNqxfvx5GoxGZmZnYuXMnSktLUVZWJnsfxfDCyspKHD16FCNHjoTBYEBpaSmuuOIKnDhxQgZjbW1t8Hq9cvsWiwUejwf79u3D7t27ER4ejm7dumHt2rU4cOAAjh8/junTpyM5ORk2mw0qlQohISEIDQ3FV199hRMnTuCaa65BR0cH9u/fD7fbjfT0dKSnp2Pr1q0oLCzEgQMH0L9/fyxcuBAxMTFwu93IyMjA9u3bsXLlSiQmJiIsLAwpKSlwu904deqUjJ/i4+MRERGB+Ph4HD9+HOvXr0dKSgq8Xi+io6PR3t6OrKwslJeX48svv0RoaCjuuOMOWK1W2O12qNVqxMTEoKamBnq9Hrm5udixYwd8Ph/a2tpw8OBB1NbWYsSIEfL3S5cuxY4dO9De3o6QkBBERETI8yQyWqOiojBmzBiUlJSgqKgI27ZtQ9++fQFcWAxzIb7TVGSNRiMDM9Hd7/P5ZOAmuruVy+t8W+e6DRHoNTU1YceOHZg1axamT58On8+HDRs2YODAgfD5fKisrMSwYcOwYcMGDBkyBJmZmdiyZQucTif0ev233t8z7b9yFuYL7cYXN6x4r0qlkksbERGdD9HA1tbWhiNHjiAyMhJZWVkAvp5pvrW1FRUVFUhISIDL5YLVakVBQcE5TbInWtPF3wDgcDhw4MAB6PV6xMXF4fjx48jLy0NoaKjsNRDvFVwuF/bv3w+VSoW8vDzo9XqmXlLQEx0DYtJKlUqFbdu24csvv0RLSwtWrlyJoUOH4oUXXkB4eDgqKirwyiuv4Prrr0dISAgcDgd0Op3cjlb7sxyJRt+Cz+dDWVkZevXqhba2NlitVqjValRXV6Ompgb19fW44447YDAYsHv3bmg0GvTu3RuTJk1CWFgYGhsbsW7dOuzfvx8ZGRkYMmQI2traoNfr0dLSghMnTqC+vh4GgwGjR4/Gtm3bUFRUBJVKhT179qC+vh4hISEYPXq032fm5OTA4XDAZDLBZDLhkksuQWJiIvR6PY4dO4aNGzeipqYGCQkJ6NWrl1z1RKQAA8CWLVvQ0dGByMhIDBs2DCkpKdi4cSPy8/Nx8OBBlJaWIjc3V6bkxsXFwWw2o76+Hjt37oTP50NeXh7y8/PR1NQkG5NOnTqFxsZGAJDBMwD5d3t7O2pra3H06FHcfvvtSEhIQElJCVQqFfr06YPevXvL51xDQwM6Ojqg1+sRGxsLj8eD3bt3Y8qUKTh8+LBsUDhy5AgmTJiAXr164fDhwwCAvn37QqfTobGxEU1NTVCr1TCZTHC5XDJLtL29HW63G62traitrUV9fT1aWlqQnJyM7du3IzIyEvv27ZMNFYmJifK9FotFnhu32w2j0YjW1laEhITA5/PhyJEjyMnJ+V5WkflOSzbRWygqK8r/i5Mpgiyv1/u9zTCsUqmg1+vh8XjkzZGRkQGPxwOdTofhw4dj6NChcLlc8Hg8MJlMyMjIQEhICPR6PQYNGiTHuFzsQFH0JovKnbLidiHBrTjfOp1Onu8L3RYR/XwpM27+8pe/4E9/+pNfBVmtVqO5uRkvvPAC/vrXv2L79u3weDzIz88/4zaVZZEyPUppzpw5uOqqqxAREYEVK1YgJyfntEBV+R6fz4eXXnoJ06dPR25uLss6+kkR9Sm73Y6VK1diz549ePPNN5GSkoK//e1vuOqqqzBo0CDYbDb07dsXZrMZp06dkmPhvs+6Fv20qNVqDBkyBE1NTUhMTERkZCTcbjeOHj0Kq9WKlJQU6PV66PV6nDhxAtHR0YiMjERUVBQAICEhAdOnT0dERASGDx8ux7pGRESgoqICdrsdiYmJiIiIQGVlJdRqNcLDw6HT6TBixAi/jrDDhw/DZrMhNTUVtbW1CA0NxalTpxATE4Po6Gg5FjYvLw+RkZEoLy9Hnz594PV6ERcXh+bmZhiNRrS1tSE5ORkTJ04E8HXnUn19PeLj41FTU4OOjg4kJSWhsbERWq0Wzc3NiI+Ph8lkQnx8PNLT0wFAphXr9XqZIZGSkoLo6GgAnRmeRqMRw4cPR319PXr06CFTqAcPHgyj0Sg7AYuKipCYmCgDQZVKhd69e/t9H2FhYZg0aRKSkpLQp08faLVa2O129OrVC3FxcVCr1dDpdOjevTvi4uKg0+lQUFAg3y8aynbt2gWn04msrCyoVCqkp6cjNDQUtbW1yMzMhNPpRN++faFSqbBmzRr07t0bsbGx2Lt3L4YPH47Q0FDMmDFDPs8NBgPGjh2LHTt2YNKkSXC73di5cydSU1ODP7AVYzmV4zxELyTwdY/uxVw2J7BS1FWlRvRk2u12nDx5EmazGSaTSQbcInVXq9VCp9PBZrMhLCzMr6Xz2/QAfFOeudvtlgGo6CURY4LPl3iPGNiv1+u/s95mIvrpEuVmTU0NunXrhry8PNlzJFqfa2pqkJWVJdOqRo0ahSNHjiAiIgJerxc2mw1JSUk4duwYwsPDkZaWBo1Ggy1btuDkyZOy8bNfv37o1q0bLBYLOjo60K9fP5SXl6Nfv36w2+04ceIEsrKycOzYMXTv3h11dXVoaGhARkaGbBAsLi6WjY5ifOL3OeSFfj58Pp9fI7dyiNXFJLYnGr/T09NRXV2NyspKGAwGhISEoL29HWq1GsuWLcOll16KBQsWYNu2bbjrrrvQo0cPuFwu6HS6HzS4VY5JVNZRlNllF7pNUR51lXYtzltXY5RF+cae7DPz+XwwGo3Yu3cvevfujcLCQrS1tSEjIwMjRoxAaGgogM5659VXX+13D4h/G41GjBs3TsYFo0ePhs/nw4EDB2SPnsgKuvXWW/3qy8oJ0zIzMzFmzBiZWjxq1CiEh4fLzxJUKhViY2MREREhv/ehQ4eitbVVBrNi28rjHDJkCIqLi3H48GFMnDgRYWFhOHDgACZOnIjIyEi5/+Jvcf2FhITgsssuk9vSarXyvAhDhgyRz6Tk5GTcdtttiIiIkL9X9tSerRzJyclBdnY2ACArKwt2ux3p6emIjY31e01OTo48LmW2LACYzWb06tULERERSE1NlccUGxuLyMhIAIBer8ewYcPg8XiQkpKCtLQ0tLe3IzY2Vgbjyom+ACAmJgYTJkyQZeGoUaPkBF/fte90jK0oJEQLhvJCUKYhKwu4C30QKFv7xb/PFgiKSZ+++uorOZYWAHQ6HZxOJ3Q6nQzMDQbDaYPXxTF8F60PYr9dLpdfz/CFEAW8Wq2GXq+HxWKRQTp9e4GNFIG94coC5Ns+uM93v1wuF1paWnDkyBH06dPneytUfijK7yKYru9zaYz7MRD7eeDAAWRnZ8Nms2Hv3r1ITk6G2+1GTEwMtmzZguLiYlgsFtTV1cFoNGL58uV+45vEUI729nbceuutMBqNiIiI8Ju1VcwHUFdXh6ioKOj1ehw+fBj9+/dHdXU1nnjiCTz22GPYsGED4uPj8dprr6FHjx6or69Hamoq9Ho9wsLCsGvXLpkuJT7n+2gxpp8Pt9stK7bKiSkvNjG+UARgBoMB06dPx4QJExAeHo5nn30WKSkpGDx4MI4ePQqbzYbW1lY4nU5UVlaisbFR1l9+LEQju3IukPMNLEUqpFarlecosK4GfD3Xi3i9mClamTlIZ6dSqRAXF4cJEyZAq9Wif//+ADqDGODrwFO8NjCIEj8XacDKunTPnj3l6yIjIzFgwIDTMhcFtVqNwsJC+frevXvLxtWuXi/Gv4p7MzU1Vf78bMeqUqn8Mo569Ohx2vEFvicweDzTZ4h4R5w75evEkM3zodFoYDabYTabT8v0PNu+qFQqv3Op/LlyfiSxz2lpaVCr1TCbzTAajWes7yqPEwASExO/t7rNdzbwyOFwYNOmTXA4HKedHK/Xi4MHD+LAgQMyYHM4HN/6oANnHjsTcZFbLBasX78e4eHhMJvNsvdBo9HI1leNRiN7mcWgbXGBfBezCysfiqKSV1lZidLS0vPelmi5FL21Pp8P27ZtQ0dHx4/q4RbsxHUn/t0V5Vjn74vX68X8+fPx4Ycform5+Xv97B+K8ns4l2s8sHEtMKX1TL+72PscLPej3W7Hhg0bkJKSgsWLF6O6uhp//OMf8fbbb2PDhg2Ijo5Gc3MzPvvsM+Tk5ECj0SAyMhIJCQnYs2cPBg4cCKPRiB07dsixsh6PB7W1taiurkZ1dTVOnjwJi8XiN5HH2rVrUVVVhbi4OLS0tGDSpEl455130L9/f3i9XpjNZmzduhVFRUVYs2YNunXrhtWrV2P79u1455138MILL2DBggVdPniJvg21Wg2r1SqXyRAV1os9UaMI+ERQJiq/0dHRWLBgAfbs2YOXX34ZYWFhqKioQGNjI5YtW4bp06fjhRdekIGCCCB/SKLhVTnmF7jwyWVEHVNk04nzo1zKRTmZqbLMFcuqiHrjhXYi/ByIRkej0Sg7XcT5FvVn8TNlJ1Zg8KOsaytfq3yv2KZyO+L9Yl+UrxHjPrv6XPFv5fbPtH/K13f1nrPtl/KYxHu7EtjbG7gvynmIziX47upcBm47cH/FOVQeV+D+KpcGU25T/E45z0VX30/g9r8v59w0Jm56MTA4sFVN2WJmsVgwe/ZsXHvttbKFUXnQPp8PJpMJv//97/HII4+gV69esqve7XbD4/HIFrTAMVhicLI4ScoZltvb2zF//nx89tlnCA8Px9NPP4309HS/HlyxLyLd12KxICUlBSqVSq5rpdVq5fGJv5W9s2LfROEpZhgTLYArVqzAqlWrcNNNN6GgoECObxUFuWgxrKqqwsaNG3HixAnExMRAo9Hg5MmTGDVqFEaNGgWv14vW1lY88sgjuOeee+TDM/ACEdsThbeYKCIkJESOpxEXpMPhwL333ot//vOfcg0v8R0pL2DqmmiVV6lUqK6uhs1mw7Fjx3Ds2DF069YNNTU1mDJliuwlElPXl5eXY+zYsWd9cCtbmVtaWhASEuLX+tbV96IMujZu3IiUlBSkp6dDpVKhqakJ8fHxaGxs9Etz+a4EBn/KQlSZJnamVthzfT/QWR5VVVXh1KlT0Gq1iI+Ph06nQ1lZGQYMGCDfI1qQu2pJdbvdaG5uRlhYGLZu3YoBAwbg1KlTaG5uhkrVmSIkJsEYMmQI9u7di/r6etnzeKb97qrHJrA11uv1oqmpCSaTCSdOnIBGo0FOTs6P+t4TD89f/vKXCAkJgdvtRlpaGnbv3o3U1FQcOXIEM2fORGlpKSIjI5GTk4O6ujpYLBbMmDEDH374Idra2rBx40b06dNHZs1oNBqMHDlSfoY4f16vF+np6bjyyivR0tKC22+/HWq1GocOHcKkSZNw9OhRZGVl4bPPPkNsbCxsNhu8Xq9Mf/J4PBg0aBA+/PBDFBYWYsWKFbBarae1aHd1nMLZguAf83dF3x9xrYo17pUVv4tJWW8RNBoNli5digULFuDll19GeXk56uvrsXHjRowYMQIRERF47LHH8OyzzyI0NBQOh0OOd/whibJEmf77bcb+iveKOo5yLhHlUkeiDibW+hX3cGhoqHw9U5HP7ELLvK4Cx+9zPy7k877L91zMZ8fF+k7O5fc/xPFdiHMuea1WK1QqlVyo1+VyyfWLRCqOzWaD0+nE3LlzYTAYMGHCBFmY+Hw++Xqfz4f4+HiMGzcOb775plzoV7REKoM/8bfoHRXBpdPplK8Xa2O99957WLVqFZ566ink5eVh7ty5cgIoAH4VJq1Wi1WrVsFgMGDQoEGw2+1+QWzgnzP9XPwRhafH40F9fT02bdoEvV4Pm80m9120Jor9jY+PR1xcHN544w2Z3hEbG4v77rsPpaWl0Gq1eO6555CRkYHBgwcjJCREro/lcrnkWlJOp1O2iogUPpVKBZvN5vd/h8MhK30vvfSSDOCVqVT0zcT47Dlz5mDTpk1yYo65c+ciOTkZ1dXV8nuyWCyYP3++XKz8bETQ3Nraiv/+97/Yu3fvOfUUitbu3NxcvPPOO3IdtMrKStTW1qKgoMAvEPsunan3MTCV/2zO9joRsHi9XpSVleGf//wn7HY7Nm7ciCVLliApKUnO6ifWbRP3Z2lpqRzHKRqWXn31VTQ1NcHtdmP9+vXYu3cv5syZA4vFgh07dmDlypUICwtDZWUltm/fjv3796O2tlbun3K9afH9WSwWWZ4FHr84pra2NsybNw/Hjh1DfHw8PvnkE7nm3o+VGM6Qn5+PrKws5OXlwWAw4M4778SVV16J66+/Xk4KIhor4+Pjcc0116Bbt2548MEHkZKSglmzZmHo0KGYOHHiaa3+4m9R8TUYDOjduzdGjhwJo9GIkJAQXHrppYiLi8MTTzyBpKQkTJ06FQMGDMCdd96JhIQEdOvWDd26dUNubi7Cw8Mxbdo0jB8/Hr/5zW/kXAqC+A7FM0ZJeR2KdQUtFou8tlheEvD1bOFi6JC4Ls6WNXYhlENa7Ha7XGLj17/+NVpbW/H888/j6aefhslkQkNDA0aNGoXhw4ejpaUF8+fPx/bt2xEeHi7Lvx+Scp1Pp9Mp18YUjV3nQ9loL3qx3W63rPuJv0X9SJxH8V0pZ4X9LlLIiej7dc5NU0ajUfbKqtVq7Ny5E71795Y9pqIgqa+vx5IlS/DBBx/IAqSiogJpaWkwm81+46gGDRqEZcuW4cCBA+jXr5/fOBVlr4oyBUcEt2IMrLKHa+3atXjssceQnJyMU6dOyYHoorBzOp2yRVAcQ2hoKGJiYmAwGC44dUhUzNrb23H06FE4nU4UFhbKqcePHDki15VSqTpnHNPr9dBqtdixYwcKCgowdepU6PV69OvXD+3t7SgvL5epw++++67sjT169CjS09P9AnQRtIjvQlS6xCQrKSkpqK+vR1hYGMxmM2bPno1HHnkEt912G+Li4uRxfFPaA3XSaDQ4evQoQkNDce2116K8vByVlZV44okncOjQITmYHwBWrlyJAQMGyPN8tjEXouElIiJCBsLK8RzfJDY2Fv3798eGDRtkr/HNN9+M8PDw770VWty3gT2uZzt+4UyBsSAakYxGI/R6PXr37o3k5GTMnz8fMTEx+OSTT3Dy5EmEhYXhkksukb3W+/btQ0JCAkwmEyIjI5GSkoKMjAx4vV707t0bn3zyCdLT02EwGFBcXIzm5mbMmzcPEydOxObNm9HR0YHy8nJER0fD4/GgublZVl7FBHSbNm3C7t27odPpMGTIEPTq1QvNzc2ywqbX6xEREYGIiAj069cPPp8PYWFhiIqKkssV/FgpJ90DOjNX7HY7oqKiZBpmIKPRCIPBgObmZrhcLpjNZr9GnrNlIwT+XJT3sbGx8hnS2toqe7sNBgNUKhXsdjscDofsoTKbzQgNDYXJZOpyHJFKpUJLSwtUKpWcvVJobm6Gz+dDZGQktm3bhrfffhtZWVkYOnQoRo8efUHnkX5ampubMWfOHJjNZtx+++1+dY7viijPjUYjJk2aJAO7fv36ISYmBqGhoejXrx9sNhvS0tIAQJY3F7p84MUkOgH27duHzz//HIMHD8bYsWMvqLFImVIMAFu3bsXBgwfhcrkwYcIEZGRkAIAcXibqkU1NTdi0aROOHDmCoUOHom/fvrIRi7NGEwWv86rtilSYxYsX47///S9GjRqFq6++GgkJCdi4caPsqcjKypI9gTt37sR7770Hr9eL559/HkuWLEFVVRVuueUWpKWlITs7G8ePH5eFikqlgsVikT1honIiCsLIyEj07dvXb/YuACgrK0NcXBzeffddVFRUwGKx4OGHH5ZBsmixEz04LpcLy5cvR0REBLKzs2Wq8YUU+Gq1GuvWrcPy5cvhcDiwZs0aXHHFFUhISMBLL72EQ4cOyUpha2sr7r77bowZMwYOhwOrVq1Cbm4uysrKcOzYMcyZMwdXXHEFevXqhXXr1iE1NVXO5rZkyRKsWLECqampuOeee7Bo0SLYbDbMmjVLjgX2er0ICQnB4cOHMXfuXDQ3N8vKaFJSEh588EGkpaUhOjoaR48eRWRkpJwh+VyCDuqs4O/duxfZ2dnQ6XTIy8tDXl4eVCoVcnJyZEDndDpRUlKCe+65R7YEn+0ci2tcNOooW+jP9j5l5sDgwYPx97//HZMmTUJqaqq87pXb6mo/AretTE0XAlOBA98v9vOrr75CY2MjJk+ejPDwcHm/ffHFF3A4HJg2bZqcTE65TdHDqtPpsG7dOnTr1k2mVYvPLy0txY4dOzBy5Ei/ZWZMJhMsFgusVis2bNiARx55BA899BAmTpwIm82GZcuWoaSkBNHR0XC5XBg3bpw8L2q1WqblB/6svr5eLvJ+zTXXyEwHsdSGxWKBz+dDUVERioqK8Mknn+CBBx7Ak08+ieLiYgDAtm3bcOLECQBAfHw8pk6dKssi0UtpNBrPOfD/ITmdTrz66qvIyspC3759MXfuXNxzzz1ITEw843tqamrwn//8B2FhYejo6MADDzwgM2++KRVYSVTIly9fjl69esHlcmHRokUytfCXv/wlfD4fDh48iP/85z+49957sWHDBpjNZkydOrXLxh2fzwebzYaFCxdixowZp/1OpVJh7ty5+OUvfynTOBMTE8+6hBH9vOj1enz00UcYM2aMX/konsUXi9vthk6nO61zYNiwYX7DraxWK379618jJiYGWq0WTz31FEJCQhAVFSU7IX7owE3sf1RUFObOnYuYmBiMHTv2W23T4/FgxYoVOHDgAKKiorBx40YcPHgQDz74INLT02XHhcfjgdvtxpw5c1BfX4+oqCg8+uij+NOf/oQRI0aw15YoyJ1zYCvSNFSqzrWUIiIicNdddyErKwupqal44YUX8MILL+D111+Xky+1t7fjvffeQ2xsLBYvXoyOjg6UlJTI9WLF+lWiJV30vjY2NmLr1q2orKxEWFiYHMzvcrkQGxuL1NRUGdiKXt39+/ejqKgI/fv3x6ZNm/Dyyy8jMjJS9oLYbDY5u7F4+DQ1NSEjI0MOBj+f3jGlAwcO4KmnnsKUKVMwfPhwfPDBB8jPz8e6deuwbt06/OpXv8JTTz2Fa665Bv/617/k+dFoNDh+/Di6deuGL7/8EqtXr8bGjRvx2GOPIS0tDdu2bYPJZIJarcaBAwewfv16JCcn47333sPDDz+MTZs2ITs722+AttPpRFtbG5YtWwaTyYTk5GT83//9H373u99h9+7d8Hq9cnHnuro6AF9X4MR3wIL97NRqNXbv3o3LLrvstHOlrMi0tLTA5/PJMU3n0iMuepyqqqqg0+nQt29fGQSebX+AzspUeHg4NBoNamtrkZ6eLivzotHD4XCgtrYWy5cvR0pKCkaPHg2TyYSamhq0tbXJ9cuU94kyaPV6vejo6MD27dsxZMgQHDp0CJGRkUhLS5Mzb3Z0dODgwYMYNGiQnAre4XDA4XBg9+7dyMzMRFRUFKKiorB48WKEhoZiwIAB6OjogMvlQk5ODjo6OmSvq+ghNJvN+OKLL3DixAmMGjUKNpsNsbGxsFqtCA0Nles0RkZGYtWqVUhNTYXP50N4eDhuvvlmJCYmIiUlBb169YJarUZTUxNOnTqFqqoq2cvndrsRGRkJq9UKo9GIzMxM1NfX4/Dhw6irq0P//v1llsR1110H4OvgzOVyITU1FWvXrkVoaKisvE2aNMnvdUDn0I6TJ0+ivb0dmZmZqK6uPu01PzY+X+fsoWVlZbj88suh0WhQVFSEqKgo2dChHO4hMkoOHz4MjUaDYcOGobq62q+BEfh60Xmg81qOj4/vMnXe5/OhtrYWWq0WSUlJ+PTTT2VDp8Vika9raGhAYmIiEhMTodFoZAODuIaVmUEajQb79++X6y0GjvE2m81ITEzEwYMHsXXrVgwbNgyDBw/2y3ShnweRnSGGNojsKKfTCZVKhREjRsjrWtQnlOmtosdQvEY5IzDw9UyoyomURKqscsIjsW2PxyMb5JTldVhYmFz2BOhcBkRsX+yb+PzA+T/EsSnHp2q1Wnns3zbzJ/D+Eg2DV111lV9GnfJ543a7odfr/e5fu90us+xEvdTn82Hp0qXYu3cvPvroI5hMJvzyl7/EZZddJp+F4jtRqVQoKytDTEwM7r//fsyZMwelpaWykUAMHRMNzeIcBzY8BvbuKuuQPl/nnDAim8VqtcqsEuUxijHB4noQx2uz2RAaGuqXSfhDN0gQBYNzLqVEL5TdbkdaWhrCwsKQk5ODhQsX4sCBA/jHP/6BpKQkOBwOOJ1OGI1G2O12XHvttXjnnXcQHh6OpqYm7Ny5E3fffbesrBsMBrS3t8vtq1QqpKSk4LbbboNer/dbV1aswWoymeS4CIPBAI/Hg/379+OOO+5At27d0NbWBo1GA5vNJtdhEj0EYrzrRx99BI/HgxtuuMHvgXEhvSX79++XM3W6XC5ERUUhIyMDLS0tePDBB2Vle/To0Zg5c6astIke17///e+yx6FPnz548MEH8dVXX8Fiscj1siIjIzFlyhS8+OKL6N27N/bs2YPS0lLcfvvt8Hg88iElUrTF2lUvvPACZsyYgeuuuw5XXHGFTAcXvYPi9T+G9KRgYbPZ0NDQgOTk5DOmLYnJjWJiYvwevEDXU6IDXz8U9Xo9pk+fDsA/UD5T0KNsrddqtYiKikJdXZ3s7RQP47a2Nrz11luIiYlBamoqFi1ahOHDh8PlcmHnzp1yGMH9998vK2CCMrhdvXo10tLSoNVq8dlnnyEiIgI33XQTnnzyScyYMUPOMBkaGirHThkMBlRVVSEqKgqpqal4//330aNHDxgMBqxZswYRERFybLKY+MNut6O8vBwVFRXQaDTo1q0bEhISZE9I37590bNnTznxXG5uLo4cOYKHHnoIHo8H06dPl5Ot+Xw+9OzZU05PLxoBfvWrXwEAvvjiCxQXFyM7OxtDhgyRFamCggKsWbMGxcXFKCgoQHh4+Bm/B51OhzvvvBMdHR2yV/psr50xYwa8Xi+qq6vlOns/5ntQpVKhvr4eAJCQkIBdu3YhNTUVx44dw2uvvYb77rsP7777LmbNmoUvvvgCTqcT48aNQ2JiIk6cOIE//elPeO655/x6nNxuNzZs2IDKykpZBo0bNw7Z2dlwOp3YtGkTbDYbAMBkMuHYsWPYvHkzhg0bhm7dumHlypX48ssv8Y9//ENOLLhnzx706tULXq8XFosFBoMBzz77LPr164fm5ma5cP2xY8fkZ6akpMBms2Hnzp1wOBwAIBtc0tLSUFNTg7FjxyItLU0uDUc/L2LyTBGwLFiwAAcOHMChQ4dQUVGB4cOHywY8o9EoAyMxLEOn06G2thatra3QarVyyJDH44HRaERoaCiSkpJkZpwoC8TzQwTBIpgTDeQXsvaqyFBraGhATEyMDGqbmpr8gmK1Wg2LxYLQ0NCLOpxFjGkvKSlBXFwcjh49ir/85S8YMGAAfv3rX8ux8G63G7W1tbDZbOjo6IBWq5X1wvDwcNkIZrFYEB4ejhEjRsBoNMLhcMhzrixTRQeHw+HA008/DZ1Oh9WrVyM2NhZ9+vSBw+GAwWCARqORSyMqV9oQz1KdTieDazHfi5g4TDwrHQ6H7GHXaDSywbikpATvv/8+PvzwQ1x22WWYNWsWMjMz8emnn6K0tBSHDx/GbbfdhnHjxsFut8uMOiI6N+dVUokbVVQKx48fjxdffBF//etfUVxcDK/Xi7CwMLS1tcHn8yEhIQHh4eGoqqrCb3/7WzleKS4uTrYAKicRULagL168GHV1dbKFUdnLeeWVV2LUqFGyYtTe3g6Hw4HU1FTYbDYcPnxYjsUVLXTKdWnFOAsR2ClnMTzfiqUowBISEmRFPyEhASdPnkRhYSF0Oh02btwInU6H8PBwvPvuu7jxxhthNptx+PBhZGRkyEqeSFnOycmBXq9HVFSUfJjExsYiJiYGf/jDH/Doo4+ivb0dkZGRMJvNaGlpgc1mQ3R0NMLCwqDRaORszCUlJbjttttQV1eHsrIyuciyOD8ejwcnT54EAGRmZrJF8By0t7ejvr4eMTExZ00Prqurk621Pp8PVqvVbybGwNcrW6nFtdjW1nZaT68yWBXvEVPwA0BKSgpaWlpO+4x9+/bh+PHjuOyyy1BRUYErr7wSDocDb7/9Nnbu3IlLLrkEZWVl8j4XvaMAEBUVhSuuuAJqtRr79+9HcXGxbGSyWq1Yu3atHKtaX1+PrKwsHDlyBB9++CFiYmIwbNgwDB8+HD6fD7GxsTCbzcjLy4PH48GUKVPkUhRutxtJSUmypzcrKwt9+vQBABw6dAgajUZOHuRwOGQPMgAMGjQI9fX1spVdTLAmiJmhRS+BCDo9Hg969uyJhIQE+f1YrVb4fD4UFhbCbDYjLS0NPp8P7e3tsoIrKFvxRQOZy+U662QkygwVtVqN8ePHy0a8wF6NHwufz4f6+npERETA6XRi27ZtuPnmm1FTUwOfz4dPP/0UPXv2hN1ux8GDB1FcXAyVSoXVq1fjiSeewMsvv4wDBw5g4cKFyM/Px2WXXSYn27LZbHLIiAhkNRoNEhMT/SaUSU9Px969e7F3714cOnQIf/7zn/H8889j+/btOHjwIAoKCtDa2orU1FRs2bIF0dHRCAkJQVhYGL744gv07t0bRUVFePfdd6HX69GnTx8cPXoUQGfjbUJCgvy8kJAQ+X1oNBr079/fb7k3+nkRM/c6HA6sWLECf/nLX/DSSy+hsbERPXr0gMfjweHDhzFv3jzMnj0bmZmZsuwWw6k2bdqETz/9FFarFWFhYXJSTpVKhYyMDPzhD3+QPbFiUjNlmQx83XOsXL7jfDM9RLClUqlw8uRJJCQkICEhAREREX5ZDWIpLeDiDlUS9YxNmzYhNDQUq1evRrdu3WR5LcrO8vJyzJs3D8ePH5f3nqjr+Hw+3HrrrejduzfMZjN8Ph8uu+wyTJ8+HTabDWvWrMG0adOQm5srG2lFL6/oBNiyZQsWLlyI+Ph4FBQUyCEhQOf4ZY/Hg6amJuzbtw95eXlISEiQ+7F+/XqkpqYiNzdX9rBu2rQJ+fn5iIqKkr2tYlge0JlN8uGHH8LpdOKxxx7DihUrMHv2bAwZMgR79uzBgw8+iCuvvBKvv/46cnJykJ2dDa/XK9fnZTYd0Tc758BW2aMpKqBNTU2IjY1Fz549ZWWuqKhIBpai4hkdHS3TH7VaLeLi4mTq37Fjx5CamgqVSiV7iZKTkzFmzBi0tLTIwkFZkReTAYgArby8HEePHsW6detQXV2Njz/+GLfddptMTVS2fOp0OrhcLqxevRoejwdjx46VD4fACW/OhUqlQlhYGGw2Gz7//HO88sorct3FQ4cOYcOGDdDr9TCZTFixYgWOHDkCl8uFAwcOYNmyZejRowe2b9+O6upqzJs3D4MHD8bjjz8Ot9uNfv36Yf369TKgF4FEVVUVVq1ahYiICISHh+ODDz7Atm3bMHv2bBQWFsJqteIvf/kLPB4PGhoaoNFosGDBAuTm5so0wKNHj2Ly5Mlob2/Ho48+ipSUFDzzzDN+qTLUtePHjyM5OfkbGwHcbrff2MPNmzejqqrqrIGLslIhBFZklOmeYhtZWVkYMmSI/Nyu0p6bmpowZMgQpKWloaCgAD6fD2vWrIFOp0NycjLsdjsGDx4sP1OlUskAU8zIrdVq0dzcjJCQELS2tiIxMRGbNm1CRkYG4uPjER0dLZc62rt3L8LCwpCYmAiLxYIRI0bIHo/Q0FCEh4djwoQJfuln4njy8/NPq7Dl5uYiPz8fGo0G7e3tWLZsmZwJU3k+S0pKzvq9BFKm34lzLM6taGQ4cOCADIZFxeZiBaBim/n5+ejRo4ecffjbZJF8Fzwej5xxeN68eRg+fDgiIiKwceNG3HzzzfjnP/+JESNGoKSkBBMmTMDKlStRVFSEuro6zJkzB4WFhUhKSsKOHTswYsQImbEzbdo0v94QkdGiVquRn58vGz3VajWOHDmCpKQk2SD31ltvyeWXxLJB8fHxWLZsGWJiYnD55ZejtbUV4eHh6NevH/bu3Yvx48cjJSUFVVX/r71zD4rqPP/4d3fZswvLRVgWlptcBAIK8QIoauXiJeKtjU5svSTRDJqIjk06dqpJ48RWp41N0iSaNBnH9DLSpLVJYx210Ymj09oGE6sRlBIFQREQo6wu7LLgXn5/8HvevLsuAgltRZ/PjCMsu2fPnj3nPc/1+zShvb0do0aNQmVlJQICAsR5RzidTtTU1GD06NG39YQz9xf03SuKgtdffx0FBQUoKirCnj17UFRUBJ1Oh+bmZjQ0NIjKNQps6vV6OBwOzJgxAzNmzBBTJAIDA0VAi+wTCvB4PD1tWTt27PCarCCXOX+T89Hj6Rm7eOPGDXz729/G1KlTxfbJ8ZU1GgYz6O3xeGCxWHD+/Hm0trbCarXi6aefRmhoqFd2ODk5GevWrYPBYIDD4RD7bLVaodfrRX+9rKLvdrvxm9/8Bk1NTdiwYQOMRqNXaTGVN7e0tCAlJQU/+clPMGvWLGzfvh3PPfecuEdRcLS6uhplZWXYtm0bzGazCG6sX78ec+bMwcaNG8Us7rVr1+L555/H/PnzvT4rOaStra1oa2vD6tWrkZSUhKlTp+LJJ5/Eu+++i3feeQcTJkyAWq1GYWEhbDabUI2mCkgKbjAM0zv9dmxl50+lUuHnP/85kpKSEBsbi9OnTyMjIwMBAQEYPXo03nrrLdE72tzcjDFjxuD06dPYv38/5s6dK0pfLl68iMbGRsTGxopMiUajQXR0tCgXkxWXqeyYIliUqTp//jwWLVqEyspKdHd3Y82aNcjNze1VDEqtVqO1tRVBQUEiSyPPnxsokydPRl1dHex2O7Zu3YpTp05h+vTpMJvNaGxsxNixY3Hjxg20trZi7dq1wnlct26d6DGOjo7GmjVrMHbsWBE1LSgowK9+9SvcvHkTJpMJDQ0NmD59Oo4cOYIDBw5gxYoViIiIQH5+vrg5OBwOGAwGFBYW4vPPP8dPf/pTfPLJJygsLMS4ceMQEBCAqqoqtLe348EHH4TBYMDKlSvFwG2mb2pra5GSktJnaVZERAROnz4tfi8oKIDD4RDlsABuc5YAoKmpCRaLBRkZGejs7ER1dTXq6+thsVhQUlIieqacTif+/Oc/o62tDQ888IC4GXd1dd2WWaJtt7S0oLOzU5R6RURE4PLly7h48aIoh+vo6IBer0dycjKioqKEMUcGzvDhw2G323Hy5EkMGzYMo0aNwrBhw2AymbzeU6vVYtSoUXA4HF4Z5Fu3bonSU6K3/mP5MXm2dWBgIBYsWADgm8+LpO/A4XCgqqpKlKplZ2fj1KlTYqzN4cOHERcXh/b2dkyePNlLvGqw+Pjjj+HxeISRebehKAqWL1/uZSiGhoYiJiYG69evx/Dhw1FZWYmWlhbMmjULaWlp2LBhgwiKtLa2Ys6cOaKkW6VSITQ01KuXDfjqeyfDms7njIwMpKWlQaVSITc3F06nE3q9HvX19Zg1axbCwsIwYcIEsdZpNBpxLaWmpiI/P1/0b4eHhyM7OxtBQUE4duwYWltbkZCQ4HXNtLW1wePxYOTIkV77N9AMGTP0IYezu7sbHR0dSEtLQ01NDb788ksMHz4cR44cgUqlQkxMDPbs2YPq6mrs3LlTlK16PB7s3r1bBOSGDRsm+nNdLhfMZjM2bdoEnU4HvV6PgIAAREZGYuXKlSLYRs/11QX5Op9FHlFINhltj9bmryuo2Z/3r6urg8ViwZYtW/DSSy/hW9/6Fmw2G0pKSsQ98uzZs3jnnXdw7do1UWLsdDoRFhYGq9WKp556ChMnThTtKOTU7tmzB9u3b8epU6eg1+uRmpoKq9UqKtquXbuGJ554Ak888QSWL18OtVqNw4cP40c/+hEURYHNZoPBYBABx1/+8pcYPXq0eA+1Wo0tW7YgJSVFBENDQ0OxdetWjBkz5rZJHnRf1ul04jhrtVoYDAakpqaioqICBw8eRG5urihT7+zs9ApyDqYQGcPcywzIcqIsxjPPPAOHw4FNmzahuroau3btEmW3qampSElJwbFjx0QP7sWLFzF//nzR0xccHIxbt27hwIEDSEtLw7hx48RFK0cHKSpJCqXUr0KjcoCehePatWsoLi5GSkoKPB6P6MX1F830eDy4dOkSnE4n8vPzvXoJv66BGhYWhtLSUmi1Wuj1epSUlIh5vM899xwiIiLEokZOQmpqKtLT0wEADocDgYGBoiybVFcTExORlJSEgwcP4jvf+Q7eeOMNGI1GTJo0CceOHUNhYaHoSWxsbMSwYcO8epsXLFiA7u5uPPTQQ1AURZQ3vfLKK3j00UdhMpmg0WhQ9P9jKzga2DcejweXL18W5bF3el54eDg6OztFH1V3dzd27NiB0tJSURZbXV0Ng8GApKQkAD3n88WLF7Ft2zbs3LkTf/zjH1FXV4eSkhJcunQJNpsNdrtdnCfR0dGoqqoSUX+gp9xp0qRJXvujVqsxc+ZMFBQUCDErAMjOzsYPf/hDKIoiDLCQkBCoVCpkZGTc5hh7PB7k5OTgX//6l5iJTA5OcXGxuI5VKhVGjBghxunI42AuXryI+Ph4r7KvgUKOcG8O8UAgg1GtVmP79u1YtmyZ6CW9cOECxo8fjw8//BDBwcGoqKhATEwMzpw5g5ycnEERW5Ozv6QiTYbn3RRskrPH8rixwsJCaDQa0R/4+OOPe7V50LnqdrsRFxeHmJgY0UZCf5ez9fI5JwsEkjNN7TBk3LvdblH2Sc+XBdeSkpLE3yMjI+F2u0UgiJ6/ZMmS2441ZYcef/xxLw0I2k/m/oJ0LCij5/F4sG/fPlRUVKCtrQ0hISFoamrCRx99hOXLl4uqBJfLJWyS4uJiTJw4EYqiiGA+CTpqNBoEBwdDo9GI3kpFUZCVlQWXyyUydnT+y5U8A0VWZCfxIrVajW3btqG8vBybN2/GjBkzROZ2sNchqqwZPnw48vLyYLVasXfvXqSlpQmnD+ip0nn66acBQNh0er1eiF2ZTCZRXmy32/H+++9j8+bNsFgsmD17NkaMGIHXX38dW7ZswfHjx/HCCy8gLy8ParUajY2N8Hg8+Oc//wmr1YoZM2bg3LlzePbZZ1FUVIT169dDo9EgKioKM2fOFN8l0KODUVRUJCoKVSoVwsPDMWvWLLFO2Gw2HD9+HN///vexfft2FBQUCH2avXv3YunSpfjZz34Gm82G5cuXY9euXWhtbUVycjL27t2LP/zhD+I9aT1lGKZvBuzYejwexMfHo6ysDCqVCqWlpXjllVdQXl6ORx55BIqi4Be/+AVKSkpgNBqRlpaGK1eu4O2338Zrr72G6dOnw+Vy4fTp07h8+TKefPJJrzJHOXLvazyQYSX3+jY3NwsFTLfbLVSE5Uij3IsIAPX19bhw4QKWLFkiHAIaDk79JP2F+lAomghAROWorJpuiOTUUraZFJvlGcFarVbMXrTb7XjjjTfw2GOPIS4uDlOmTMHf/vY3fPDBB9i6dSsyMzOhKAqOHz+OyZMnizI6cmDVajVCQ0PR0dEhon779u1DbGysMOToJkLlOXdT6ePdBJ37brcbX375JTIyMsQNTS4Jls+5hIQEXL16Vagdtra2orKyUmTVr1+/jpqaGoSEhMBgMCAyMhJqtRoWiwXR0dGorq7G2bNnMW3aNNy8eVOo97744osICQkR5wtlpoCem//Vq1cRExMj9p32Sa/X31ZqTsY+XSOkHE7b880sA0Bubi7q6urEjValUokotNzzpSiKEIIiPJ6emaDz58//RhmHwcycyZ9dr9eLnuBDhw4hKSlJKLxXVVVh9OjRyMvLw4kTJ8Ts7cF4f/p/9OjR4ju921CpVOjs7MSnn34qgpinTp1CXl4ejEajeJ78vcrZ8I8//hjz5s2D2+2GxWLB8ePHMW3aNJw4cQLh4eHIyMjwej85MHn58mWcOXMGs2fPhsfjQWNjI7744gsUFRWhqqoKbrdbzOn0t9/y9uSRThR08ifcRaX4cs87c/9CdoqiKHjttdewZcsWjBkzBosXL0Z7ezvmzZuHTZs2ISEhAWq1GkVFRV7CTtQyQueoryoyPYeE9+j+0tXVhRMnTuD3v/89pkyZgtmzZ4sRgL7n9p2QM4fXr1/HyZMnMW7cOERHR4vgUlFRkVjbSZuEKvUG0zag9qrZs2fDaDTimWeewV//+lesXLlSCH5SYCk5Odmrv5iccUp20HHT6XRITk7G888/Lz5nYmIiTCYT5s6dC7vdDrvdLsQ8t2/fjvfeew/l5eVYsGABXn31VbS0tKCkpAQdHR0ieECaLPT5ad2gZATdK2VleKCnRzc+Ph6TJk3yUstetWoVduzYgbVr12Lq1KlYuHAhYmJisHjxYrz88ss4c+YMdu3aJVr0KCjIEysYpn8MuMfW4/Fg3bp1YqHJysrCzp07veTXDQYD3n77bVitVowfPx4lJSXCYAZ6RBhCQ0NRVlbmFaGjRQuAX2eB9oOi5xqNBnFxcUKBVO6Lk5/n+zlIHGTKlCnifclJGCi0v06n00txWO5R0Wq1Yv/ocVKwpcWKnCZyyp1OJxRFQWRkJDZt2oTAwEAUFxdjzpw5AHpGn1C2Y/HixaJHh44BZUuoRIb2MTExES+//LLYHzLsuMTuzpCBbrfbRZZo9+7dMJvNImPla1wEBgbCZDLh0qVLohRq5MiRUBTFa7YqlZ5PmzZNKLmaTCZ8/vnnCA4ORmZmJgIDA5GWliZUsseMGYNPPvkEjzzyCLRarTAGmpqaEBMTc1uA5k6Zzf5koeTXkzhZb9u5088A7jjztD/cadsDRT7f5bJXKsk2Go2wWq1ISUlBUlISWltbRQ+onFX9pvtBrycBsLsVRVHw4YcfYunSpXA6nTh37hwKCgoAeAcQfUeQ3Lp1C1evXgUAMa7j8OHDyMvLg9lsxpEjR0QFixxEIYOOlMjpPaxWK44ePYr8/HyYzWbs3r0bY8aM8SoX9sVf9QEAcT37+w59y/nZub1/oXusx+PBxIkTsX//fgAQDtCFCxfQ3t6OsrIyHDlyBG+++SY2b94snEMSEaL7P60j/ioF5LLjgIAAZGZmoqKiAiNHjoTBYPAap0XvTz/L159c2k/B85qaGvzpT3/C/v37sXv3bmFLkVAUOY2ybTMYlTG0H0CPfVJaWioeLy0t9frd935DUJCASo8pe07bLCwsRGFhoXg+2VxWqxU2m02M9FIUBfPmzcPMmTOFhgSpWdtsNphMJq9qJLr2fQOO8u++goIkpmo0GoUisl6vR3x8PDZu3Ci+Hzof8vLy8O677wrbUD4W7NAyTP8ZUI8tOVL0PwBxYVIJIi3I6enpwrEip5FKiZ1OJx544AHRLyurEsu/ywu0XDojG1C+NwV6/Z1EoM6fP4+IiAhh/NtsNnGjGahzSwueLOsuz4Sj/ezu7va6McqfCYDX/vo6lzk5OSKrqtPpvMYgUXTXNxtBNyO5H0er1SI7O1ssmuT803PZqe0dj8eDpqYmoWR97do1REZG4t///jcKCgr8Hju1Wo2pU6fi6NGjSE5OhtvtForKqampWLJkCWJiYhAeHo5x48YB6KkmuHnzJnJzc0WWV6fTITY2FmazGR0dHYiIiEBkZCRu3bqFuLg4EbjweHpG8VDZFNM/6Lu7desWzGYzrFYr3G430tLSYLFYcOnSJZw7dw5WqxULFy7E5cuXxevup+NMYy26urqQnJyMa9euYeTIkbh58yYqKiowduxYfPrpp5g4cSJqamrQ2dmJ7OxsGI1GrwoAl8uFhoYGWCwW/O53v8OqVavQ1dWFGzduwGQyoa2tDfv27RNKyaGhoaKvFug57rW1tbh+/TreeustrF69GgaDAVeuXBGzi/19L3IZtS+ygSxzN5WCM3cPvvdLl8uF4OBgPPXUU8jJyUF8fDwURfHSrpDPu97OUd/HqS2ptrYWHk9P7319fT20Wi3i4uJEIF2ukqDAkRxAlyuzzGYzli5dikuXLgkVYrIdzp49C5PJhAcffFDYDmSHDfZa999YO8nGrK6uRnx8PLKysrxaIOS5wjSju729HY899phwdL/JvjY1NSEyMlJUeMk2rWzPAl9vKgfDMLfTb8dWjsDLi7ocgZMXV7kUmJxeWdEPwG29GxQ59Ld9X1EROaLnK+IiG6q+JZXd3d2w2+1IT0+HTqfDuXPnUF5ejqCgIGRnZ+Ohhx7y6qeSS017i5rJTiw5ufRcWWHPN4shL2TycZUzQHRDou1RlJce8ycoQMeRHF/5PXxLtOUgABtxvaPRaNDa2oqDBw9i1apVcDgcuHDhgtfNyh9ZWVk4deoUTp48iZycHKSmporeUo1Gg8zMTPGdAj39gMuWLROlvdQHDvScLyEhISgrK4NGo0F6ejoMBgOAnhv4Z599Bq1W6+UEMH1D14lOp8Ozzz4rrp3MzEy899570Gg0ePjhh2EwGBAQEIDDhw/fl8EDRVFQW1uL4OBgDBs2DAcPHkR+fj5u3LiBV199FWVlZaitrUVCQgL27t2LzMxMmM1mRERE3FYV8MUXX2DhwoU4dOgQOjs7oSiKGKGl0WjEDGbf/myiqqoKS5YswV/+8hcx+qy5udmvY+uvxNgf/X0ec38j3+sBiMxeTEwMzGYzNBqN6KP1LRfuT+aNgj9UCqzValFXVweDwYCGhga89NJLyMzMxMaNGxERESEE1FwuF+x2O4KCgkSAnu7p8riY6OhohISEiAA8ANHTO27cOOTn5wPosTFI2VkuuR3M4/ifhpIqOTk5mDJlitdscUq2AF9NAUhMTMQPfvADaLVar3JwuVy8v6hUKowcORJpaWkIDg4W5w1l1/3ZtAzDfHMG1MglO5O+F6GvA+kbdfS3jb7ea6CvkZ9PjoM86DwgIADNzc04evQovve970Gj0WDbtm3IyMjAww8/jEcffRTFxcXCsAX6Ls31d0z8GUi+x8ff83p7rb9MQ1+LYW/ZCX/b4DKX/pGbm4ucnBwAEMIfUVFRvaoVUiBh0aJFuHr1KlQqlVBaJBISErxeI1c/APC7bVmxEviqVCwhIQFjx47lkU0DgNYKugYoUAD0iMLNmTMHer1eCG65XC7MmTPHq5z6fjnWbrcb4eHhCAoKwp49e4TAXUVFBVasWIEPPvgAy5Ytg8fjQVhYGM6cOYN58+b5zVQ1NDRg/PjxsFqtqK6uRltbG4YPH35b1Q7wlbYC/c1ms8HhcEBRFFgsFrS0tKCxsRHFxcUA7p/vg/nf4Rt4BuDlBMrtRL6jxO5kU8hlyKRP4HQ6cejQIXR1daGyshKlpaVobm5GUFCQcNRofrdOp0NjY6OwuVwuF6Kjo73E1OSyWtovCq7Gxsaio6PDq42KeoEHs0JlMK/RO21LpVKhu7tbTN6gyjlZAZoC+zROUaPRoKurSzi08nfcG76JGIJa8OjY+SZuAO+2u74+D8MwfXP3KZQMMrRoNTQ0ICwsDDdv3kRQUBCysrJETwlFMMkRpkWIbjC80DCAd1Y9ICAA6enpfUaxVaoeAZrExMQBR+77g3yOxsbGehlPfN72jzsdp7i4uNsqSCIjI/t83b2IWq1GbGws1qxZA6vVivj4eLhcLtTV1WHChAnIz89HSkoKfv3rXyM6OlqIcZFxKPffrlmzBkajES+88AKuXLmCpKQkYVyHhYWhoKBAOLhutxvnz58XWRW9Xo81a9YgPDwcP/7xj8XIoYiIiP/xEWLuN1QqlWgLIueHMri0bviKCvXliFE7U0BAADo7O0ULgNVqhcViwYoVK8R8cQDo6urCgQMH8Nvf/lb039K21Go1Fi1ahLlz5wotB4fDId7H5XKJzC21mQUHBwslXo1GM+hOLdC/hMFgvY9cmUaf2Z+jScKecuscAOEED/QYkA1JoyRpbjFlbHvbV753M8w34552bGlhcblcePPNNwH0iC4FBgYiLi4OGo0GbW1tXj0qvKgw/vCNdvtmvv3dqH2NGbmUf7D3jUVuBh9fQ0PuObsfIWMsNjYWMTExwtFcuHAhdDodRowYAUVRsHr1anR1dSE8PFy8JiAgALm5ueLaiY2NBdBTsWC1WjF16lQvTQaCnIKIiAgxYktRFERHRwMAEhMTUV9fj5KSEi8NA4b5b0HOEU0/oGwt9XDKwc/+OLe+va3nzp1DfX09XnzxRWzYsAHZ2dnQ6/WYOHEiTCYTtFotFi5ciO9+97vQaDSw2WyiVYnWLnJ4qYqou7tbTJfwFU+T1YBJpGqwRPL+F9DnkT+n7FySwJTcTkdZat/X9xf5vkFZdwrcyWsUJ04YZvC5px1bikR6PB5kZWVhy5YtmDRpEpYtW4bIyEjRx1JbW4uoqChYrdY7ik4xzEAjqv5Kywd7f/h8/c/ge2z9lfHfz5AjGhQU5BXEMRqNXkayWq2GTqfD2LFjbztuarUaGRkZfoVTyAkmx9ZoNHoJDQI9jsKIESP6VebJMP9JfFuuyDEaSMCRznm5D7SmpgZRUVHIzc1FdHQ03n//feTn52PmzJlwOp0iI0jbphJmCuzL0yLUajWuXr2Kv//972hpaUF5eTlmzZqFnJwccU2R9gm1c/kT6RwqUEm3rJNCFVf0d3ldp59lQU56fKB9tpQR9tVWkc8H+Xf5MYZhvj4qzz16JclqxIqioLu7G5WVlUhOThYz4Ox2OxoaGvDRRx/B5XKJ+a6yQmZfPbEMwzD3G70ZeXLVi6/BJvcZ+maH/KmvUhmnv/eQt9FbaR+v18xQg+wOOYv4j3/8A9evX8fMmTPx2WefYd++fVi+fDkSEhJEaSs50f62RdcXjfuxWCw4f/48Ojo6EBgYiKioKCQnJ0OlUolRP3ztMAwzVLmnHVu5R4sMIbfbLTK5JLpDxpSsUufb0O/7M8MwzP1Kb7eN/mal7rQd2bH13V5fpZz97WVkmLsR355clUol7BSaqdrd3S3G91mtVoSFhfV6rlNwnyrXyA6iNgLgKyFEOdPL1w7DMEOVe9axvRP/LeEChmEYhmGY/iAH5AF4zZiXRdho1F9XV5eX4rHvtmi8jKygTwJK9Ds5tHLJMdtADMMMVXjOC8MwDMMwzF0A9WSSA0uBeBoFJ4ukyWNrekMWxpQdV19RK/rHMAwzlGHHlmEYhmEY5i5AboMiJV+5RJjG1nR1dfW5Lbn0WHZafYWm5BFFnK1lGGYoc0+rIvcGL9wMwzAMw9xtyBlbckgVRQHwlbIx6YQAd+43p9fIDq7b7faa00rKvXIJNMMwzFDlvuyxZRiGYRiGYRiGYe4dODzHMAzDMAzDMAzDDGnYsWUYhmEYhmEYhmGGNOzYMgzDMAzDMAzDMEMadmwZhmEYhmEYhmGYIQ07tgzDMAzDMAzDMMyQhh1bhmEYhmEYhmEYZkjDji3DMAzDMAzDMAwzpGHHlmEYhmEYhmEYhhnSsGPLMAzDMAzDMAzDDGnYsWUYhmEYhmEYhmGGNOzYMgzDMAzDMAzDMEMadmwZhmEYhmEYhmGYIQ07tgzDMAzDMAzDMMyQ5v8AZqOHJDeSQbwAAAAASUVORK5CYII=\n" + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ImageText
\"Image\"Prefix: read in latex
Suffix: L = T _ { 1 0 } \\int d ^ { 1 0 } x [ 1 - ( - \\mathrm { D e t } ( \\eta _ { M N } + F _ { M N } ) ) ^ { { \\frac { 1 } { 2 } } } ]
\"Image\"Prefix: read in latex
Suffix: \\Gamma ^ { a } : = \\gamma ^ { a } - i k ^ { a } \\gamma ^ { 3 } , \\qquad \\Gamma ^ { 3 } : = \\gamma ^ { 3 } + i k ^ { a } \\gamma _ { a } .
\"Image\"Prefix: read in latex
Suffix: \\Gamma [ h ] = \\frac { 1 } { 1 2 \\pi } t r \\int _ { B } d ^ { 3 } y \\epsilon _ { i j k } h ^ { - 1 } \\partial ^ { i } h h ^ { - 1 } \\partial ^ { j } h h ^ { - 1 } \\partial ^ { k } h ,
\"Image\"Prefix: read in latex
Suffix: \\delta W = { \\frac { m } { 2 } } \\mathrm { T r } \\Phi _ { 3 } ^ { 2 } .
\"Image\"Prefix: read in latex
Suffix: N _ { 2 2 } ( x , y , a , b ) = \\frac { 1 } { 4 a b } \\sum _ { n = 1 } ^ { \\infty } \\cos ( \\frac { 2 n \\pi x } { a } ) \\int _ { \\frac { n \\pi } { a } b } ^ { \\infty } d q \\left( \\coth q - 1 \\right) \\cosh ( \\frac { 2 q y } { b } ) .
\"Image\"Prefix: read in latex
Suffix: \\Phi = l \\ln g _ { s } , \\quad l = \\left( \\frac { 8 } { D - 2 } \\right) ^ { 1 / 2 } ,
\"Image\"Prefix: read in latex
Suffix: d s ^ { 2 } = d r ^ { 2 } + \\rho _ { 0 } ^ { 2 } \\sinh ^ { 2 } \\left( r / \\rho _ { 0 } \\right) \\left[ - H ^ { 2 } d t ^ { 2 } + \\cosh ^ { 2 } \\left( H t \\right) d \\Omega _ { 4 } ^ { 2 } \\right] .
\"Image\"Prefix: read in latex
Suffix: \\Sigma _ { \\mu \\nu } ( p , M ) = - \\epsilon _ { \\mu \\nu \\lambda } p _ { \\lambda }
\"Image\"Prefix: read in latex
Suffix: R _ { \\mu \\nu } = R _ { \\mu \\lambda \\nu } ^ { \\lambda } = \\partial _ { \\rho } \\gamma _ { \\mu \\nu } ^ { \\rho } - \\partial _ { \\nu } \\gamma _ { \\mu \\rho } ^ { \\rho } - \\gamma _ { \\mu \\lambda } ^ { \\rho } \\gamma _ { \\nu \\rho } ^ { \\lambda } + \\gamma _ { \\lambda \\rho } ^ { \\rho } \\gamma _ { \\mu \\nu } ^ { \\lambda } .
\"Image\"Prefix: read in latex
Suffix: \\Big [ { \\bf b } _ { i } ( \\vec { K } ) , { \\bf b } _ { i } ^ { \\dagger } ( { \\vec { K } } ^ { \\prime } ) \\Big ] = 2 ( 2 \\pi ) ^ { 3 } w _ { i } ( \\vec { K } ) \\delta ^ { 3 } ( \\vec { K } - { \\vec { K } } ^ { \\prime } ) ,
\n", + " \n", + " \n", + " " + ] }, "metadata": {} } + ], + "source": [ + "from IPython.core.display import display, HTML\n", + "from PIL import Image\n", + "import io\n", + "import base64\n", + "\n", + "def pil_image_to_base64(img):\n", + " \"\"\"Convert a PIL image to a base64 string.\"\"\"\n", + " buffered = io.BytesIO()\n", + " img.save(buffered, format=\"JPEG\")\n", + " img_str = base64.b64encode(buffered.getvalue()).decode(\"utf-8\")\n", + " return f\"data:image/jpeg;base64,{img_str}\"\n", + "\n", + "def display_images_and_text(dataset, num_entries=10):\n", + " \"\"\"\n", + " Display images and their corresponding text side by side in an HTML table.\n", + "\n", + " :param dataset: PyTorch dataset to extract images and texts from.\n", + " :param num_entries: Number of entries to display.\n", + " \"\"\"\n", + " images = []\n", + " texts = []\n", + "\n", + " for i in range(min(num_entries, len(dataset))):\n", + " img, data = dataset[i]\n", + " images.append(pil_image_to_base64(img))\n", + " text = f\"Prefix: {data['prefix']}
Suffix: {data['suffix']}\"\n", + " texts.append(text)\n", + "\n", + " rows = []\n", + " for img, text in zip(images, texts):\n", + " row_html = f\"\"\"\n", + " \n", + " \"Image\"\n", + " {text}\n", + " \n", + " \"\"\"\n", + " rows.append(row_html)\n", + "\n", + " html_content = f\"\"\"\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " {''.join(rows)}\n", + "
ImageText
\n", + " \n", + " \n", + " \"\"\"\n", + "\n", + " display(HTML(html_content))\n", + "\n", + "display_images_and_text(train_dataset, num_entries=10)" ] }, { "cell_type": "markdown", + "metadata": { + "id": "_ZvYNxYbBtE3" + }, "source": [ "### Load PaliGemma2 model\n", "\n", - "**NOTE:** PaliGemma2 offers 9 pre-trained models with sizes of `3B`, `10B`, and `28B` parameters, and resolutions of `224`, `448`, and `896` pixels. In this tutorial, I'll be using the [`google/paligemma2-3b-pt-448`](https://huggingface.co/google/paligemma2-3b-pt-448) checkpoint. Resolution has a key impact on the accuracy of the trained model, and it seems that `448` offers the most optimal balance between performance and compute resources required to train the model." - ], - "metadata": { - "id": "_ZvYNxYbBtE3" - } + "**NOTE:** PaliGemma2 offers 9 pre-trained models with sizes of `3B`, `10B`, and `28B` parameters, and resolutions of `224`, `448`, and `896` pixels. In this tutorial, I'll be using the [`google/paligemma2-10b-pt-448`](https://huggingface.co/google/paligemma2-10b-pt-224) checkpoint." + ] }, { "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "l0DpE_ibx9aB" + }, + "outputs": [], "source": [ "import torch\n", "from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration\n", "\n", - "MODEL_ID =\"google/paligemma2-3b-pt-448\"\n", + "MODEL_ID =\"google/paligemma2-10b-pt-224\"\n", "DEVICE = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")" - ], - "metadata": { - "id": "l0DpE_ibx9aB" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "code", - "source": [ - "from huggingface_hub import notebook_login\n", - "notebook_login()" - ], + "execution_count": 13, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 17, + "height": 303, "referenced_widgets": [ - "d14f91af605b4ddaa6a04a936afb6726", - "c85a9d2063204a92a64f11b066b14098", - "230f750695f848b580fae9e7e5fc6cd2", - "6e4a11669c8e40299882ed8c94d68d2b", - "e4c01ad80f65417a83d89a6fe456a53e", - "ba55831dc72a471e893dbd76c5b8c77c", - "315af73ed83744b099320c20dc59508f", - "2341d14200204994888759f7a1be98ed", - "e67c7eaf6aac481e82b568671c4e08cc", - "24e433a74d6b4bd194848f97999c333c", - "ac0b9d70d3ba41b49cd75488bf0aea8d", - "93228f56864747c482827fe18a6a3653", - "dbefa99013a1487eafe4b42261f8a3bc", - "ae50c0206be34c1399d2f6c4c065a4bb", - "1f77b30eeb9a4e56bd0ec0a306cb7219", - "d20cae74f2964ec7a643bb0089bb2d43", - "9a45a471f91744b68b022188177dc09c", - "6a9b48da04904bf297cc70649e60f875", - "cb35fbbef21b4ed9a62f96fcccb88f15", - "839ec515bcad402cbb8802dbf12d757a" + "f84389f96f5b4f0083393a909405d361", + "0a2efe8e7cc0441bb245a16143fccacd", + "8efc673032d94642803c17bca21be187", + "94d4353a335d4b27b0279db0ee02949a", + "2ee0184baa3e4dc9affce75c4b14e586", + "b17882b8b6424f29a9b5839478bc2e01", + "b9915f38865247269dce618c67db0d9f", + "39348d6db7dc4047bf142604b63596b2", + "af937e8993534b949629dbffeaea4826", + "918b7742e2044bbcae74a9fde46a23f1", + "3e218b0a4a34445080a5a2ed3eef511b", + "60e707662cdd4337a611ec62a7c0903d", + "f6372b23105b49ab8ade7802c5c8064a", + "508746f3b1174f9c97c8234230ba75bc", + "40941a70fc354c63aaeb084d523e0e76", + "654e31910dbb47cfb9a544dc6c5f000c", + "ae5f08a1ac7f421f91ca2e64a44a6b2b" ] }, "id": "_DgILBz3LHw1", - "outputId": "a03d44bc-5c3c-4d9d-f230-1fcb13b1c65c" + "outputId": "4733164c-e9b2-4027-e033-3db22b9bf1f3" }, - "execution_count": null, "outputs": [ { "output_type": "display_data", @@ -447,84 +628,85 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "d14f91af605b4ddaa6a04a936afb6726" + "model_id": "f84389f96f5b4f0083393a909405d361" } }, "metadata": {} } + ], + "source": [ + "from huggingface_hub import notebook_login\n", + "notebook_login()" ] }, { "cell_type": "code", - "source": [ - "processor = PaliGemmaProcessor.from_pretrained(MODEL_ID)" - ], + "execution_count": 14, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 145, "referenced_widgets": [ - "8f08e58d8dbc4d9c8d711e268c91779e", - "5933cc0787bb429a87ec6bf02caf1289", - "56427972eb68402eb0f78f66f0c54809", - "918ce9446bfb40749e41226970329509", - "3c5a3268d91b4975b02ce5f65fa931a7", - "1b6e5d8d811844b68dd38853bb2d6c23", - "72c7880d09f3463d8cd7ef84ab53c733", - "06d03215531740dab05b0c3acf0a15f0", - "b8937875231c4a1098fc521192a960ce", - "2539c990ce034d7fa802a0c7692ce92f", - "99c535c834af4f4aaf99a43f67173196", - "879fc03f3f594503bd191b38daf3bf12", - "01264b2a14994c679364a1ae687188e2", - "559594a7d2e54357b2e769c026bb47dc", - "5e0421e735a84a588ad08efbbec072b5", - "203c2abfa4f44aeaa48a14746847ceee", - "c8f3bd5ddf544d6db5aaec8e251becc4", - "8f2e90355fa94a0b9c7a2dd24ecb248d", - "d28bb2a775884189bd0dba5182796249", - "470a169789334df791dcb43ab6715856", - "122a6e6fb5ab4d39948aa1afbe1ba327", - "26e78b1b7a784679af973b9e427aa3db", - "8c2be6acc9d54d139335a71c9d4d95f3", - "f9b29007c3b84575b22336fe147878de", - "762e3605672d450188f87ebd91a62e13", - "1fc6379bdb6946e49f437343dabc2f3b", - "f330df7f8dbb4d0f805f2a5a2a499dba", - "c9eb05cddd7246dc93fe0394dbd9a938", - "ae52d4d9402d4ecdb15eb1112c6da328", - "3d5539eeb3744bb1ab2f8792f2fba682", - "38141d7ff86f4f17a4d977d84fe58c2f", - "f0ac6ae241014fb3882fe2b1ea1aca82", - "699b70579f9f4c2d94a96c961cafdffd", - "98afcff4beaa47a59b6c0c94ac1b38c0", - "f4e19b3fa78948509516bd9d27c6c7e8", - "9a2c312f321140c8abe7eeed8c24aa16", - "d88c21de0e8b4a098a08f71da0d12af3", - "d110b5500b064a719a61d6954f9ba3d7", - "871150c6294249268981b725ad109bb2", - "8718c573a70840eb8b3c8e5ef9edbb8d", - "94b60faf70b64c3f86336b6cd8787f43", - "edff2d85b0d445f89d5ce119aa4f6426", - "358d64313bb740dd934ed1f2de757772", - "45bcbfea26a34fe59ee984af88024d4b" + "5d3b1476587a4643b6d89525f79f84d3", + "bef02e81428d4cf692f1cd6e0ba814ac", + "c604aed144224913a0c6ae5002cb688c", + "1496a1539b86488e91481ae971d18b3e", + "8e3d181d47d741b0949678e0f02eba53", + "3aa1fae13f9a478cac2ad96fb56844a7", + "cde77f0c227b4afda2c2175aea49e339", + "24b0220fa4a747df95df46f453a28108", + "6b972e333b9742ef8d2c8c0fc4e74e23", + "480c0fcb041d44c0898d47e726576159", + "84fa2487fed04ef6b990e4b1bdd583c0", + "2fca4c5efaa34b3e871f8ad1aad192a8", + "b68e785045b441dda6f5addca0e35e17", + "b4a5d5b367b7457c83762a91d5552c3b", + "dbee1c9a651b44c5a5d010ce884c3299", + "8bb859ef61234b5ca8823bee9d66fe4c", + "9255c87c16d9495a80b25485bf4710d5", + "f44967749055441e9611ca5e36616a4f", + "f2f140f0dbd3483f93c028e4132c6ad4", + "b3b7f487bbda493cadfa78ec408e87e6", + "b3e78414d14545b3aaf6e3e6b2b2aec0", + "8ad6f1790b924d34b7e62aa2778a5a36", + "8dd05fa0632c491e9e8a384d45794a40", + "a5466a9fe8474c0b8f57a2ca59f6c7b8", + "8a76caa928cb44c0a29ba9c19e665d12", + "fade30557a1f43ca94949afee28b2456", + "9563585b2832451cb12c1028ddc0b776", + "ab62ae70883f4616adeee165359c20dd", + "cee6bbd8fca8481cb2c1c14fef010ad9", + "bfaa02154b2c4ba7970b283ad9016fb5", + "f69021fb4d9c4fd3800f524da9e81c20", + "4038b94a383c46a18c6f5f423ac0b0b2", + "1a403cfd7ba44c87abf5c453f9fc1ccc", + "8491ed88a8034410b0def84abf09f250", + "53608ccb553e48eb9c4e78132c44d2f4", + "7f8047914bb44223b79158b95cdbcb1f", + "34d9364fdc874be7ba10d13c32090ed6", + "2cd04d07d1cb4094b6ceff0c1fa14afe", + "e5fb8dac380644e894ed84325e8e8f99", + "0fc9f57a5509435db7961a45441554e8", + "16d7585a11d041d68cb5000b14202902", + "bc6c3eff612d43e7ae8126595bd06810", + "3bed0198202d4a8586c46ab1259f3631", + "20924d8cafe14d649a1c6d8821de5f70" ] }, "id": "ntXj4A3SyEAa", - "outputId": "7fd8424b-bcb1-4479-da7b-5e364c40c97e" + "outputId": "f924b914-b394-4e74-c786-5178895f582d" }, - "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ - "preprocessor_config.json: 0%| | 0.00/425 [00:00.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "config.json: 0%| | 0.00/1.33k [00:00" + ], + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [1662/1662 4:15:51, Epoch 2/3]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StepTraining Loss
1009.844200
2005.440100
3004.329200
4003.641700
5003.248500
6002.916000
7002.652100
8002.485000
9002.333900
10002.345000
11002.157600
12002.009000
13001.928500
14001.859700
15001.915800
16001.883600

" + ] + }, + "metadata": {} + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "TrainOutput(global_step=1662, training_loss=3.1394706432282855, metrics={'train_runtime': 15363.293, 'train_samples_per_second': 3.899, 'train_steps_per_second': 0.108, 'total_flos': 1.1381261608321336e+18, 'train_loss': 3.1394706432282855, 'epoch': 2.99534184823441})" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ], + "source": [ + "trainer.train()" + ] }, { "cell_type": "markdown", - "source": [ - "### Run inference with fine-tuned PaliGemma2 model" - ], "metadata": { "id": "1c4FK0XXCxPU" - } + }, + "source": [ + "### Run inference with fine-tuned PaliGemma2 model" + ] }, { "cell_type": "code", + "execution_count": 19, + "metadata": { + "id": "3a8sis7pHGtM" + }, + "outputs": [], "source": [ "# @title Function to render text diffs\n", "\n", @@ -995,58 +1343,35 @@ " \n", " \"\"\"\n", " return html" - ], - "metadata": { - "id": "3a8sis7pHGtM" - }, - "execution_count": 30, - "outputs": [] + ] }, { "cell_type": "code", - "source": [ - "# @title Suffix vs. generated text\n", - "\n", - "for i in range (10):\n", - " image, label = test_dataset[i]\n", - " prefix = \"\" + label[\"prefix\"]\n", - " suffix = label[\"suffix\"]\n", - "\n", - " inputs = processor(\n", - " text=prefix,\n", - " images=image,\n", - " return_tensors=\"pt\"\n", - " ).to(TORCH_DTYPE).to(DEVICE)\n", - "\n", - " prefix_length = inputs[\"input_ids\"].shape[-1]\n", - "\n", - " with torch.inference_mode():\n", - " generation = model.generate(**inputs, max_new_tokens=256, do_sample=False, num_beams=3)\n", - " generation = generation[0][prefix_length:]\n", - " generated_text = processor.decode(generation, skip_special_tokens=True)\n", - "\n", - " html_diff = side_by_side_diff_divs(suffix, generated_text)\n", - " display(image)\n", - " display(HTML(html_diff))" - ], + "execution_count": 20, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "dRR4I4QANy5K", - "outputId": "8f6aa4e8-97d7-42a2-92ed-f41ad663d62e" + "outputId": "b594b0e1-0c5a-4f18-9fb9-1701cac8c047" }, - "execution_count": 28, "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "The 'batch_size' attribute of HybridCache is deprecated and will be removed in v4.49. Use the more precisely named 'self.max_batch_size' attribute instead.\n" + ] + }, { "output_type": "display_data", "data": { "text/plain": [ - "" + "" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAAyCAIAAAD9fhrKAAAq90lEQVR4Ae3dZZgdx7GA4dhxbpiZmZlJiRxmZmZmuiHbYWZmZmZ2JDvM+ISZmZnve/az25Pd1dqSVo6iO/1jXFNdXdzVMGfl3f71r38dZm6zB2YP/L/xwO9///ujHOUof/rTnw572MMe7nCH22233f7+97/vsccef/vb37zCH/GIR/zLX/6y++67e/3HP/6B7K9//WuUnPSHP/zhyEc+8tZ665///CeGY5SyQy62kESHH1L++Mc/HulIRxrEU+AgFlPsDM8emD2wS3pAPVKtVKj/WWoKU9WKsUrS1772NdUKDOlVbVKtfvaznykr6ouxurahWhlVtVL+wAqTBlCqNMULZ100IgV+S9VK127zDosX5jZ74P+JB1QKdWEYa+NjY+VV4VCbAL/97W9/97vfnfjEJx40bbK8okQz3SgNmoMF/vznPxt+1KMeNcp2eVNl2t/pXXsHN++wDtbVM8HsgV3HA6qVYsEexcJmRfVRgw5/+MODv/nNb8If7WhHU63GVujXv/41AkPsxey50Cs92+COIxzhCKqVs56xFT4AKYObigkPOa2nKwXNBWulT2bM7IFd2QPqDvMUrM5fKoUT2SUucYlb3epWlYyf//znihRY7XBC/Na3vvWBD3xAUcspSltkW+uj73//+856ipSydZKTnOTNb34z5gqZLRVWlFETMU+9LTGfC9aWPDPjZw/smh5oC+MmS4FgoWp16Utf2k7nve99r2Lxm9/85jjHOY6y8stf/lKvUrXnnns++tGP/ulPf2qfBa/KrF1TtuQ1RcoJ9Fe/+tXRj370F7/4xVe5ylU2bdqEWCmkA4BKyiiAlC0xmQvWljwz42cP7JoeaGPFNndV2pOf/OSPfvSjH/zgB+2bXGCpJt21H//4x/eqWv3gBz+48IUvfLzjHc/+qAusKt1Weed73/seesNVQ8fMS17ykq9//ett6975znfa4o1jYKVqjYI1X7pvldtn4tkD/90e6J67u3Zbm49//OPnO9/53va2t13+8pdXnlxgMc+5TM2y31HO0NhSvetd79qwYYPjm17l5hjHOMY2eMFJEAeitSrUec97XkXQzk7NSrqNHprx4XKllN0NHthR2NqYdbY0OILu6roki9LuUdOr4oYZpfeHP/xh+MF8BwHUYwK5vDxsSUmvtpq6wiOg5Dh+Q9rlLtMqY8UptnobBcgbcU5c+1hd8R8XijD5IY8FQxo7PCw8OEMO90Y2CHTVklhEwhhS63WoccCA7f5PErGh/3DdVEqaJ4cm4xVsbMMbmNNQlicNCZlFEffUy3xCY4gDmsh0+bjuWfgIyl1ekSVXb3ww0VKgoIyBDR8K9FqYRGTZEGqkieFaowZyOISslHFHgwwTrJZGHJAYDkFeRxqMgREP21MGcgAxYR3AcyiDVee1WKkgUdIE0HMwmQ7EoUqR0xDf7W53O9e5zqVagccnPLA91/3vf3/7IF2IAQb+4he/0HWwP2tATzFKAtATSiXeU5vA7aeoJzRPfOITP/KRjzh1IlYrzbts7GnsKi12ngHGYNRrT+GUNORRYuD5aMCGUAgNDMECUJeru0Gz44Di4ckFpNAkWayoa6Voqg5bKEz/dM5f0WdOZQUmIL8LQzSD//CY1NTFY4N/lF4j/slPfmLqhsQHJZ7kUiOkJ3gwHLLSZ9AAYIYCU/y6wz/+8Y+nPPmZu5I+FDBXB83IgXq5LrcYOEwbA40KHibHZ/oq96LhK2VrCCoJR75Fkyw0RkVpmgWUIdGPPNE1CCKbYgwRu6IQ/+CenEDPQjPUSAqe5dW3v/3twXYYZUij6oKP+aCMPw4yZCABTLbKjuwiKycwB8OhQ4ISEczzeOJG0FDj/e9/v4rw7ne/G2d43OKgiMCrZS0Sl7nMZZoaKYPPVPmpeuCVtkwJcg7MmFk3velNz3KWswyalJxGZ3QFLD4WrNpNcPh8F/VwK8NS2k5quCltzMmh1hqGLdNje15L4mFFKTtecaaGGKdzTh8VZCREdURc0Xs+/OEPbxKW94pvIS8erEaWcz2NHV5qdu2///4vetGLZC38mK4U4EBdnlZIHIaSgDIGsgZD7bEw5GTaTocMzw/kgaO397+MbRo3N4ojWyi5TNaov0QaNSI+PJwq3PKABzwguPTglh/96EfovfJqUwJB/DOcDsiKkSsPDQHOBUWmeeWEt771rfhoXungqeEw8hB/mFFVDX/MYx6jt9BEDKk0D5dmuK7YArSYo6TS/e53P5ipUAzd1LzlLW8ZY5cGLR6jznLgQLI0Y0cSjiwaViA2ZDhnjCXF1dLgliuGvciYn9VJGRyiScPrX//6TnyIIYcOKB0Sj3vc46aDCy9zAYFCOaSvAWRRBJxDEJfmJUAq6SUO0mvfCpVOyQAPObVipaDF7+LdhPEUdm3AxIPSDq6oYZKKNVUi8OQpXwqUyROe8IRshkHsUyhil3PwUY7rvTFwm4FUX3X4MY95TPi0BfQJg1Ew9KQ2jIMxPQFtaClGW12e8ez0btQXv/jFa1zjGgLm1yitMNL6Yhe7mFee4RZDWC0hss7TWAvpS1/6UtOAFGwNvOtd7/rVr35Vr7sAYeNnHr7lLW/5pje9SbSe+cxnPulJT7rTne708pe/nALkpgmFvRZm2roB9cqrAgSgPKPw92rIuKpsFILtb9IFE8oc61jHYi8pXilPKCnMCTMEsb0hCOhTL/27iUDWAnaFK1yhE4dpgNt3vvOds571rOc+97mlilfieAmxXo4FcKOUU9yf8pSn4MlqTrj61a/uvgNnhwseaMjNb37z/fbbj68e+tCHcum9731vcwAHBDhjSDFRgxFB6wTnX+9616Mqntwr1XFW8sCve93rcin90U+buvyJT3ziEY94BBrS+UHJuNCFLgRAlv+Je+QjH/m+970PEwx9WXOq0vy+yU0zMoKKMo+BNerRsxmEADesKAbw9HsCX9Me//jHs9TrmFbw97nPfSThe97znr322ougpz/96Tk2ZejPHFZD8p5XHIiTgZRE48kiw29961vzj9a8EHGUn/vc565znetAquBez3zmMxvSBIFc6Ry9oxUsVqCczjsEzBQ79tKEOL28caUrXckrd53gBCcgDrKoDYbLAY7QeDBP9erptQ0CmNnReJJXMZZPJMHwIzvhNa/wnhp8wLo82R//KTeYpPD+UCaCZeZAIojYMujVWK4HsD1AOFn61Kc+VXrFpCfrfIK9y13u4lXGGzhsbOHCwUcWqcm5raWkP+tZzzr/+c8/KANOc5rT4PC4xz2OiI997GM+wUg7yuOQLDoAegKIHm7Ec+AHUGhWGhu3bXvmjWKKf45d5n8KpzNN0INZkTh/3hFAK8PxYS8zIYfa4Dvc4Q63uc1tAHYKnvwTQ7BmPXe14VTCpV5J52rF/eIXvzieiEUB/stf/rKP5QCVwk3wpz/96ctd7nLmzEjRAEHhdkxQ2hmd/OQnp9sQR0NTRRniarYg81QCBGgorIy+4hWvOOlJT3qve90Lz6Sf7Wxn27RpU/7BTV6d8pSnVKCNMr1xeOELX0grn+HIjQywLFipkVF6tVxKDdbd+c535oF29Kw2VlOaL3vZy6I04V/1qleRguYJT3gCtTWsdDEK4BVsiGfmA/LJa1/7WhXkQx/6EHGZE95OR5FSmlGqhhJVjbbJ8jpMSATMypasKd4ojqX8GD4AKqG/xz3uQf90KEzBUyYDXmQDRUfwqIJddkKmWZ5CyQue8C95yUtM0cZ6aoUZYLlzGkqnodkSyXY9ltnglcTUtq5++MMfxr30ymXDcWgYqAt9o1C2v0Uj0VOrE5Bsc79oE4SYsfxwxzve0QpmxTPrMh+9Xi3rACUHQdaiPNbslU/t1Xt9wxve0HFdHhz72MfG5wtf+IJQmYqYeMVBA9B2nFYqr5A0xEcswCNjqpgw69hIsQHMpSPiw/9UHTChaV6up//TnvY08z996mX1vvvuOzRk/t57783wffbZJ2RWDKMITYSnsTYUkXm1RKsdBJWi7obPec5zwuB5ohOdCJkZiDMMuCcgK0wG8GlPe9pSFwcRtFF68IMf7IdITgYj25FZb+yMAEyTJyKCG7Vvf/vbGwX2vNGNbuR+B01RZuOGDRswESnl72Uve5ku9ZRuolkOwASQji3mGuRoJQDmYXjy1Kc+df7JmfB2dnaaODhb2IHCnP3sZ1eIcW54Y8GGsB1Q2oQHU1LVs50ZaRZBjuJAaf+Od7zDHo3Dr3nNa1pd6DmYCMSW2pbmHdGGDxO8kpUrbCHNL3UjM4ftabvsuShYzXOAMKiv/O6octvb3laVfexjH8sR/7vUhjAV9xznOIdDELPpTbCvnglTCHBwgFL49YZcJnJdXikjDERQxqr7mc98BtvKkHKuN90gh9pgSBcZtE0HlMqQ4fQs0lZ7RyEuK9gbN260ZXUSsWDyEo875RnrSkuOmgBsb/UTJwkkwDhgi4YzrfZOKGA6yDw/ZpFn+KSnaNlwkd6mDFnBxvxTn/qUzYVtv8VHxiugeh/2sIf5aczmzZujTOGRQ5Dr0lj0yle+8oIXvCADMw1bfpsm4hDERqZ99rOf7eIWzDpT3aclNnIISrseZhoOw2STTXNeVrI5ig8x4QFWE2cIBXKyKMDzfP7ESmrZk/pBdgpg6FAp0b2aeLnx9Kc/PekUjkZtMveUpC6wrBAWFV00wV+1MiEtSDZltnvmJH1ESjPEJ398xlURE+x3bnGLWxieSi6nbUbonywf6Z/97GebEV6JY8gb3/hGlevVr341DNM0QAQNCf7617+OCQ8wgTiKUQCBwgd/utOdTiz4ttJmZtm5N2edrJFxuKS1AQSLBSUf+MAHmrzPf/7zTVyvVuXCN1QFSGzfBymgq95mKyW5Rfl2KjT2ohe9qKsurk5hcmNi4KqNx+ARU7ghnpD23TaMVb1p0gqcVyXynve8JzWyawxcCRxwRaWDgOaA+ewALJAcIXWcom94wxsKDG/iSHWXEYoat3o1r9wIKNWshUmA2mxzkdNXilwXDG2J41wn3re//e14Un4okLM4DjL3SUQ/Ntl7770ZYubz0Simrjbs86PkPrv6khuymw6LGIeSxV73kVLwZCc7mfX8VKc6laO42o2VXlllZmY1PlS6+93v3uzCXPJZKvmwucSN5pXKbkaN0EpZowTVrsp2nW/b7VMYjSlEjYc85CFkIYtPY/GHWZdmJouvn/MxFsNyC/9eYYYslrpjuu9978sVJoYu2WaWAvhQSQJoqoxNTbsVpUG8IB0x2AJA72DlwHiKU5zCvaGLDIWMkzlKNLkUHgeUudRSarXPahhDcEhJDlH9NVoZy41OPVKXJoqUo1kbK9YpEBhKDDqkOa0sXZBiSgEKK5SWCqaJtTNd0lUrQeEilIJOokMiJQHf+MY3wPAcxUWYW2bkz6Me9SiUKQwJKEt7etWryBrLdsZKEqraV1YXyKWGfDC2IVe+8pVtjgiSUZ6kqFYyJJPR86f66+ubLYUCerOb3UyWVtrQa9nCdrrRVtRSr7wCQ3qO+WvuGDXIwCjps2rTC58HwGPe0UFJqh6VQp41ZJTpm4xoko4D5KptkTQ87mlwLgAbzwW4G1yXoyzPonFL55qTxro87QK+8pWvqMcmGzEi1zogRToGG67la71pHE2w8BuYy/BHPFV3dDVEb4sbetwsngID2cDWgWDIYTnpguRiz5qjDLVISghIfOxZVIeSXpAcMTjEq83/7W53O3zcwRNkLHvpbP4gM9akkgdcjEZjiPymMAUyjaOsUXE2bYjODzD2bmc4wxk43D19kxkHCmtLzBZ/lWrN9EMVSd9Ohw70ZL5AJAUlVmRxBc4J0gWmA21j1RNnePYiSAr6IQ4+D/OnOTmcHBP8EcQne73i5juDomCI0qwXMYb42PV05vVqsrGUuzC5wQ1uYOdON6u3Kz+3PGwxioHyB0wur8rygkhVJSm5WWQfZNdJOmK51y0YDpxg40YQPs95znOs55Dc1eYUbAEWWTFSC8SXYpyvNGAubZQJW3U7C8PhYZxTbIcZS1BTl1ZOG1lKHJ59Oig67GIRl1ZofNA0iV7zmtfg1kTgLi0vZdGIFxqG8xvbOcoRmHqlEA9IqrxtFM3pLwMpBok/G9kL300ZJl6dsOyqjOU0lPJQFHJpoj2b41RKEG5avUyjALghEXgNCcA5W0oGi1brk4FxaCAyY20UzB1+k8ByYHBD6RWNp+XBZjkR5SF4AIMt5KJg4c53yUDkRGC8bNDlIsOFlG2qlaqrBO5zF6NLM0oGABSs4rSEXhimeNtw8j6MVzrVlZ1gQGOTW28uQ4+zhoY9XjMSEzDKjJRVjki+dMDoihs4moZj7nVIx9/67FMdsiFXwllR7Rl5H0/Huk2bNoHNxg0bNrhrtye3AFoBZNUIKg6j0dOZyFUa5yBzoONitlszm/lEmHjyXmpKSgdt84fyltYznelM3/3ud7HKgWjMChsrIZCX9lMomWbaPOMZz5BkbEfsCVkgh0o4p1JpBDaK7Uu+PKg2wRsyAsEPmtf4WJkcZOIft+E94sDIuDRiAyFNVDUu4pwPaV/wghe8ABKG2s5izPEFzV9jOCbbStjLWHIRFDgKGEXV+Hj1qVs1P+MZz2gyqIAwem2HTU40FLAvq1iImitnUkRKCFSfEo/rIOnMISa2rTFKpwHf+9LfbkXpxB+ZckZDUjA3C3i7k2n6iM7znvc8Wz8p8dznPjedVaIuv/F3KBHrzLeEM9/GR3zFUQUpuDShPFj5MMSmjMn4GyUxhu0xoYnclgCY8DCdDVQWHdBSSQFlKRu5yFwby8yDHvQgi1y/2xBH3NQLU5gsCiTFWCYr/bEqYcyy9IHMP+nWKz6jgjQfYSip3fjGN7aPi1UJD4aPW8TmXUVNzuiti3oAsqx5Fg9AmgAiyxXoA+i/ByWckmyJCcC63SOpN7nJTRhpg0AVSeB4KN42mUa6iyHGxK5JGgAByUOmwBtu248tJBHYcpAMyHeyRyDhBRUrZFLtqle9qjlMBzHAED17PJ0utQCqA1hFZ5w9bVVMVOVAkGBo7iaSYXFArBFhwyLenEJ/GiKQuPgD5L07SzXCXIK0FHCfxdN2wECqOkiqv5IGK8MJYqyxumhLeaPsw89znvM4AEoFBExQASHLD4bLYNYtqXMYK57GA+YPhqohzWX8Fa94RQXLrQEFFDtNdlKMUYY7QuJgqpDIOsNxU+yExr6A1cgEkWI5UBIzIYk9yeI66hmOktrMZ4VeCogabp4+icIg9sStIWE4HMBqEfEUDrKYLJR8wsnYwuBpbn/+85+PWAk2sW0kDbcnoq1iZAtgUvEwQ4yiFX2ooWEOtpVglMmAoVfNHpkflFQcXK4rXsbSUPRt/F2Bdy+Gp0CjcbC158KZZ1gqQOit87bMMpld9rB04G0prbhzOEOETCwMZxFW/OAUCaO6uZRkMrx8xtCOzBGVjeqpeocYpV7J7OaOwmyhHkrDESuODpjqlAlFJU9pYL9PW5byfE4e3nCT6HCtEslwPsHkS1/6kl0/MoVPMvjmIBl42yWG6wh4jV2UpIwA6aLG1a52NTnPDxGYCJQBW6c9KakLsfCNZGD1gIkurJEJR6zgDeE3Tmajcm/jwgNJKYjM5xCsOJYOFEPJUr3IADhACo08T+GGwwMQEwfOOYA95BDlmE0JZR5sC0eAvbSEc+/o4y4LWUWeCz+BlB/xQgZvbOI9BTLYlMCZrp5swJbqvAyDj14DZQY96IQbL8MD+DfmIgrAkD0oEZCLWFNidFnoxB4feMyxsq7KZlZQiZ7Mg8eQzTC6MAGjZKynXnw00wCslziXGi5TnQhULnsxTjTE5QtBTKMMzlg1UFeRMBNQssucgbSEumiwlZBVTJZkduxCSw36I8aKgRmiSMlFZ3ATzH2cL1bOSuYGSgWdRGyJ4wRpzRx2ZRqMVGY10fa/JgAyVqAXMuFTSjg/PwsEoaxGgHNhMpa20lGq6XI9jKGaKLJEM9lqRFsYNF7JFUqviixNzAp8OA19gSMaAbxlXzk2BF6RMrUwN2P9IKtA+/kIbdEj9szPaUUWQaaxhsYrQ2giKDZluqhq/XC1TDQCEvHUkFE7TQTCYqaX+Wo6M+3C+N86arsHVgj0ijIXKVVM8MpLwgS41KUuxQSC+N8rp9FtxB1Pp3Weue51ryvfBFrhq5dvKRBsLOXB5pQbBttwB09a+aGT8koZqUsxHiBiuALeKxGss4cCl8Y2fZDXuta1sJVX8AgQa6oVB/IDWFJJOQBbSEfGjQERMMQhQK8VGp4/FywO/HeKRQ0rOntKYzaSxfl2xDKWVzHURWeO4m0wf0pgbCHRcJp0Mi8gMRcXQ2AQ6PKsxYf5PMaHuiiDGENIvaymlRRiryEwCyVldm5tF41I5BxKIU0k3/iNB2vSVGAMo6hXynlygTLEI+PXN5D8ZTm17Vf4x3B47u6VEpokgNQwSTpWlIbRZSNtlRZ7nsXK3bZJIreUc4FHY0PLANbGU4F3vOIXSaCJtIQTPMXIJlGvIYRaYC3aJIJhQtoZ7bXXXizCypMyvuurhnpbcjmU+V57LrRfukRbjJ80hgsYlZQee8l6zCKTBJ9eiQYg8+RtEo0CSz4JBDCcXeYz2EaAw7vUkD1opA68VuAAcabPEvqgR57MObAGurbnE0lmacUqR3ER3/bhwqYdngLGslQNdRdpvyBNhQClmmgUej/OZBe25JqK2ggEo+AdXqZHb3XQkZlvmY+5+OaBkXW5JYZgDZmEGXa5MndWLTrILADlj9AgzpPwkA3hlhLVVyMTwF0bPIZoCFVujMoEWVdYddVExFgcGHUgbmFpUmIiQ0SkXovT8HMYauTGXk1pCz/YSmnUBS5wAZMLAR0i6EmNmHulgwYYOthgyiuYkrkhngU6Ymq0EjgW6JIkPAZIFnGljQku0PD5EJArBIVjnQxEXIVyGlUKJYyZxUvI+EQi4QnfAVwymKQaYpTyBAeUNfrkB1tgp0IKFJR6ixSvOsmp1yVDhiAYuuXb/LCHKshgfjRA7F1a6bCS4+LVvl39gvFU5NRallQLJQEaSKzVRQYQgA/V2SO54Y2CMeU0evgpoFpDLRrI+yzxxMRwSis3TMJWYbaPdUikFQ4wzqeQfvJng2M+WwdUSZrgbDg/WiTlBCkaJSUETRBQg4Ht9nHATQU0xEDJAYAkxZcjFuHjibNNAQIOFVcAibjJJ+5iXa80py3bBdtChBW8korez3M8o+dM+UFWDJHlGa/U04xiFO8ZJWNs1zG5yEUu4grDOu/qRBIgZoI1FjewRmdPe14hK/DZTiUmgI1y2FFieJsIEbEr4WSvhFKYSjIME3cujioAtlDDWFaz1/2dMykkWRSjOfMNlxgWD55EjJIf8NfYRbpXSCKs0gJHClki4hoUBw0HBMRpXO2VLHivRGNS4GAAkGY4cU64XoXSEClk4SHC2ExY8Fo6QdAWDSaJ4Mx99tmHJzds2OBcL6zF15UF+pwp65ZGL8JNf/lAUNsTRumiFQw8WEoLN9gWiSyzF5OuC+ApwyeIdeWcnlZNTrA9dK7kFgeXElsuISaFIRRDkya9GuuVn73SzebUbFdxZAK8KcCrFEaQhmgAcklvmlMDf3g0cQ5vVMwRwAtZrqCDMJl3yDRyeVI2in5e4lVNWLtTw5Yr3HejsSrzvFdxIZFpfMhdVIKEwVBMy1sSdcEjgyHdWATh8ScXfvChJIKFOFPUfyiEL/utY/rsk/FSYl3dG4x1qvgFAzIKGQIwFnGasY0XeAeGonIaTwPLKjTwxJf3ypMlt7gKkmlgrC5aMolojqOM0FKaIMMpYwYikK/M4z5reBtjIvICV7JZKTRJ2gvg4FWADcRWeOQ6WwSewqwwlhpESyn1BQEO9JR8FKaMLh4Aa/R0t5Usr4LEQIA0NQqrBdFhDqNWBtRLNHE40wpDzEWFaEhkej3LVJoAnF8YYpmyotqi0gRglCy3tNrJ0h8Sh6TggCEX0cdwynBLNipDeHImSjScjEYv70HiWQSVA85B4zhsScAKT9qi4XOBMMqFETeynfPRoGdvowDsItEofoAkKM4AycDnaACUISW3oCfCK/caTj3DERQUulHDpIKkHjJskWlxEBeA3PDkDcTYagZGYKCfbl772tfGUE23B7RYUkNDUCw8Bd2rWNDHWBy8hqFYBnpmHSXZxcPICqg0K0XpAG+g2FEy72HoFbL47rfffhKSV/nf9wd4nFOYLArDaJxGEKB8BuiKj7GVeNmLyZI/FucsfkDjNScjpmFTbMFxaeoRxEu6VDRXY5A2EJ5U5aJ6hU98Odzy1sQxL4o4SomtXAKobS5IAzRyg1H0pwZK6tEhTVBim6u5i5JVQHgEulhaOMTdK7a9Zgsya4wNY1EueRa+KC3wclNDD46wsRJjknCB15BFSUWfe6WgV1F0F2CxIsmFsUOQwOOumW+puxh2YMNNlzecw+FcpsobmHqR1fAfonm/gdG0s5UHllD4TKjLq+HNOgAOZZt0ceth1gkGtd2qoNQoI4q+rYCN4vqEDtHcqkumLqgP3IHHn716I6h3jEqZROuCz2oArUrQiOE1P+RTx92J8Bu7/KmdnPbNUY7a3vOSdQzsmSBPfKaivUKiDFjSa3GdNOgDiKZb6kUfng68Kr7OHfX2xC2GBuKZRUVNkjhb0UrOOMJLjFghk0ipiknEuoQpw8GDZ0M8dQ3lp0gwhoOenvXmvWHg4Jw4skwkk4czTUhe7ZdW8HEYWo2BgHgmK5VKiSRG2cASEjxCjMZAqkbcq6ckkTyf/OQn6eADNIcA7LaiHGqghNFiOOxSCnVNySKgKuLIyGUXms2bN/uds3x2QHEWVpsQ69Uw0QzxpBId7DfBeSO8V/Qt0mDDPccrWOMENOVG0t0kWA90UQDnJaqD8tC8863T2ilP3DvL6mFLQmmOgxg1xYbhigwljXIxgmcmLNa3XlBzjWar2d0TvjhG4AmmpRmlQnnV61XR9QnM+ZZtDuoxlfcbN260TUNg1Fa1rF35zJie/EUBT3dPbfqIgMlZI6ExgYyV6Nr0OVzwjgC4n6IwbRH4mauVgZswHHFdqcCOw5T6wuPOyBGP//2+xnag6yqKjSRQ1im8auPqVdvWqm1L4rBjVEsCgMd4ZhkfOhAnB1xW0pyGfsdcqnGvrxYWXlmBbDpw2eu0a31hcaSeoEsG+kubnCNPDuUQ5zpCRdO1F+ew1G+zaVXFmRq+PboZKxwsFTipbjMuw70yeYjg/15ppRY4xOkSNWPbMZRgkNLPt1RL+5577mkdKgNHGmRFSEJ96HSQjFWyRqDHvKOSxNaoZwgCLWXMShPQL37FiIikRLDyudhh1QxG6mmYMIMBw4Nxh7H8OiMk0kDidR3IY/FfmLaaYL5YKXJtzJTVFM62ihHpNNHr53mW0MhyHwd5zfsE0X+ox6IRP4phmHUOm5a7eA57p6J3KFx4iKBA+9bEZUJwxkazJe/RfNUWh0P+tAWwe+cfzSheGg6cMoHUNZSPplcxcqnvV7LoqcSuNfhMea4vnKMoQM9a/gm/vrIOIbdxWc63EpW7qDQdmxunmIOFcZiO8ipb+JwIT4ZPOQxKMbJz6XdYqk/4iMEKq7/+sWtRVX34Utqo2qU7bs3B2DZQ/e0HuiUq5FQrY807yBSbqhQSKyL2XvpKUNZ56lq1LT78o9Yc65xgnS09HcsBGmS9no6Xmt8Tu4vtTwfItt+GVCyoiMY0Y79kdX0gJJyyNGgrHkPcMoAyMJ1jaUi0V7/ucZPlS5arJZWLaEd3fqFVw7M52Fhb5SyiGIbi4WexPnPY0MJrFI24Z66cYtYdZguefMWBzv9gPvTMhLyKhiHgjjZ6V7b0X/lcSbk2xmW/8PlhmiSTarxUfJe5oogShxs35jdBkWo2iS4+uFQXnWluLErc1ha9vr1DQyZoFAizvlIOlpts5AG1A2V3qRwr/WRjWk055MYp5mBhvtUGGTNlizwhwpOICKIZ/L2aNf1QDgwvdt29gh3BXJioUIb7UZ5LTz8ocepnhYDiX2EiNOt8GvJbHK/o02TlvMM2xQYNubjB23uOselJ+fisfC4SDtFoScKoAI8B+Abb6vs8aaOoRiTblgoSrPS6ufA5T0VzciQVt8Fh+wE+ZTM+dCOO+xRWhdnx0zwx573qHULprDFtYPTCIGYgGBPLiB9ku4MELzM5nyDboS192EV5U5puo9q2CA/prKDSwqTV2iDbToAmrt79CsxvKfKbsIovtqRPmXOXxpOWAXhlKxOo7TcEfdmE59ih73T4DoLprK2M3dAhIAKUO0iNwZY/eck6qk5BmuEjh+EH2TYDmLBoDGcXo0pvyIUvltog8AZWy1QZX9jaasHQyncVw2Wgn9G6CHPG79uCykV562hF1lOrBBsFoIDJjiZNhoeTNURjTjENANlTeviTEsMddFIszjFZ+fy3aoVF5nmClzXIhDFJl+1Mr6bZoBywwEjcgV8XIHFDNwoMtqnkNaFD9DAn5VsZkNkSKn+ArhXjPLgFNHYZcke8inRs5cTQcKUgCg/3ruxdLwxX5Bm3mcONmG/JG9EMtQHjyNAhffgWhzivl6qr8knPnkSPtox4ECzD74hXOmBbigbvCCl4Mgp/ThYFT81rlg6JykHw/vvvr0Bs3ry5V+tNQFELFkpbJzVxIMekIwJnZIDgMQchE9qTDgimyJiPp/sv27fhGRpOE2+QBSxqfFYBalW1A98O+m94c0Y5pLdVt0VDuXWjhs7kB+cpxATgfND47YY4Ds8KMGbWc68AKwCVAO6ArAkAz7w5rdCGK+fUQ9BuGeA+bsoTZrQt+WEQrBfQDoXCAEsWDW1aB3N48fZKee4d+GUAK1Zty8gO9pU4goTSPSiG0Qv3lrxBJSnBtyilLP3FpZoFbngJVkocrALbSbAs4l5XZRh+S72rDtlmZGf8UpSL8OGxbea2xkDmlOQ8H+AJqRklmk2KOPhdmxD7LS68ALm4pCcCVysI7K89FbV9993Xr/PF1Ks1zMQBGEJEM7EoE5GBiViSecAjTYwayDRBqakhpPimiSy3UKZZbMgqTTc6DRetqgyI3XgudS4ei3J64E8TSsRRm/XCMGOssdOiOzhsD1A1HByoR5xXOmjBXlVoXYNsCgwaBLT1hULvloinA3cQzEWMohVlpiJyMsw0OlOCZTATVm3LyA7hK1ZRCuXKII7eaHLpWBWldfjIWOe1XWRwvYfmc5nCh6ZosqaRLdD/KT+kDG+UXe52/NrAR2o5NvLN5iP/+EcQ1Avf0Ht1wxUwAm3IGFUXPltyNSfo0gDMb6ynj3ik9BvD9nFjhsZz2VNdW/yudyyGqmBVbRmd1/AoiQSrtcaip0RdSgaMV/VYllulK7r1bueTkTgQZ/0H8JonZK+MtERQySpBPRV6GIIsN3myoiUCkoa0dT1sTk6JdR2ajYsoljPFmzJJ5+dCIDoaJGO1LenGhFXblujXxmNVlIWS9OCGlAnpBkNhygtHgZDu1u2ig4ZpWCGLA4evLXf7e0mspeHQc/s5bxsHczKrzUaKlX58BabbtvFcOWoYO7pgDnDEvwuijC7Jj9JP//y5ewtMAZKB/fzVD2v8Ssvtku9a/rLNT/n9QE/6GVtAMS9FAVgVcalSb2rowtbTqDB6KcB8Y2t+R+kLnj+k80WizR0XpV5Dlj0XB7dlqPl19sDsgV3VAypL2wj7CT+s9VeNNr/+GLuqClY1nAH9s8gKh3KjKUN+bed7Wt9eYFqctspFSmHF2qhR9SxvdPAXdf6x1kRX3dbgf8Atw1bJnolnD8we+C/1gMNHtUOlsPvzj0zYQ23evHnjxo3KhGoF6bn30h9XAFQreB8Qx06qM0EF7pA7oX1Td2F25dg6DPnFqdurPihXpNSyNaoVcXPBOuQ+nylnD/zXe6BDmcOdE5mLFDss/3iJv3a22YFhnoLl3/byd/jRKC5tiKojeretYOEcf0fjdmr++Xl/JOsf3nHY1DsK1touno+Ea/tn7p09sEt5QMWxu2m7ZJdUMfK7dr/+c8tu/2VXxWAHNBsxx8DqiEulNkcNn57vDqF37Kdwi9hlN1n+vQ3/3zb/gJX6RQ0q0UeVpN4aPOeCtYZz5q7ZA7uaB0atURoUCI2F6pFftLuc8meDXt3E+3pYBenOq7qWLxDbZE0v1w+hj/w4RkHU0PtXLvwPMlQrrDAfdapt3RoM54K1hnPmrtkDu6AH2iUpE05n6oUCZO8D6VQIcHCzx6lwODN2U648KWdKmC77o345uA2uIcXezXdkf47js2DlUg3FtgpYZaxWrsp/LlirumVGzh7YZT3Q97ipef1O2OlvVIrxMRHZOAYiqMRsw/YKn8E80Sogzirm2FWNfdwaHyJ3+O9ipn6Z4dkDswf+4x5wS2XrpEz04yknNV8Mq0Q99aoj6lqqVp5stRQspcTr6DrkthiIOaGqUj82xK3zIAAf+yy9U4mrMp93WKu6ZUbOHpg9sDN6YN5h7YxRmXWaPTB7YFUPzAVrVbfMyNkDswd2Rg/MBWtnjMqs0+yB2QOremAuWKu6ZUbOHpg9sDN6YC5YO2NUZp1mD8weWNUDc8Fa1S0zcvbA7IGd0QNzwdoZozLrNHtg9sCqHpgL1qpumZGzB2YP7IwemAvWzhiVWafZA7MHVvXA/wEx/3YNvtROgAAAAABJRU5ErkJggg==\n", - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAAyAZADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iql/f22m2E17eSiK2hUvJIQSFUdScdqzbPxZoeoXFlBbXyvJegtbAxuomABbKkgA8An8KAN2isVvEmkLDeXU17FBa2kzQSXEzBIy6j5lVj1xgg47gjsas3Gp2tvqdrYzMySXYbyCy/K7KMlQf723Jx3APoaANGiiigAoopCcDJoAWis/S9Ut9YsUvLMs1tIx8uQrxIoONy+qnse45q1NNFbxNLNIkUajLO7BQPqTQBNRWRL4g0yLTrfUjdI9hNKsa3UZ3RjcdqksOilsDPTJHbmqOpeIPsWuTx3E8VppmnWIvb2eQZY7yyoo9vkcnHOQoHWgDpaK4vSPG0V3cazdapNBpml211HaW7XoFvJ5vlB3V9zEZ+YYGB361c1PxbaHw3qup6DfabqUmnwNPIiXAZQApbB2ZIJ2nFAHUUVgPqd1beLbaxmdHsr+2d7fCYaOWPaWUnuGVsjpjYfUVi6j4p1aCK/1C1hsxpcFzLD9puSVWMRRkFiAdzFpsxgKM/LnBzQB3NFZ2lX0t5oNlf3dubWee2SaWA5JjYqCV9eCcVkp4+8NSWt3dJqitDaWy3criJ+ImJUMPl5GQemaAOnoqKKaOeFJomDRyKGVh0IIyDUtABRRRQAUVn2OqW2pyXItSzpbTNA77cKXX7wU98Hg+4I7GrrMsaF3YKqjJJOABQA+isiTxBpq6TdanFcpcWlqxE0sB8wJtxvPH90cnHoaralrEg1fSrOzmgWG4jkvJ7ljkC3j2529iWLoM9l3H0oA6CiuI07x3BqWu3jpNFb6BaWMU73V3H5JZ5XYRsGZvuMqkjKjORzzW3B4k0vVVlh0XV9MvbxIy4jjuVfAHGW25OMkdqANyiuPtvEd7Jb+FdUm8pbPWIo4p4VQkxTSRl0YN/dyCmCP4geMGpNQ13VU1O/j06C2ktLFoIZ5Z2CLEznfK7EkfLHEUOB139eMUAdZRXKaT4wgfwlaa1rjw2HnlwBlsMFdgrqCN2GUBuRwDzUp8RJNrLeTd2q6PaaeNQubvcGDo5cJtPTYBG7FvZR60AdNRXD6X49s73VdTkuriHT9Htkt0ikvk+zu80qtJjLN02bGAwD8x9Kvp4xstS8OXd/o95p11eQWpuGtxchwmAT823kdPSgDqaK5aLXb7+09BklVDYaxbbQipzDcCMyj5s8qyhxgjgoOeTVa58RamIr6/tY7QabDfNbfaLhtiQxRo3mzMcgsPNBTA9M80AdlRWP4Z1K51fw3p+oXlo1rcXEKyPCc/KT9effnnmptS1zStGMX9qalaWXm58v7TMse/GM4yecZH50AaVFc3qHiiE6bb6hotzYahbG+gtZ3jn3BRJIiHBXI3DeDg0uu6vf2+pQ2Ok20d1draz3ckLNt3KqlY0BPCl5Coz6K1AHR0Vxuk+NF+x6xd601tbWWn3CwfbYixiYlV3DvyrkqSCRnvW1Y+I9K1G+Fja3ge5MPniMoylo+PmGQMj5h09RQBNrOr2mg6VNqF4X8qIDCxrueRicKijuzEgAdyak0+W7msYZ7+1W1uXXdJAkvmCM+m7AyQOuOM5xnrXNawP7X+I+h6U3NtpsEmqzKeQ0mfKhz9CZGHuvtUHjtb1tU0Rjp17qOkxi5kuLS2QuJ5ggEKSAfwkl+vy5Az2yAdHoWtx65DeSx200K215LaHzcfO0bbWIwTxuBA+la9cd8MrS4sPAWm2d1YXFnLAhVkuBh2Ync7EdRly3X0z3rsc0AFZGu6vJoum/2h9ke5toW3XRjb54ocHdIFx823gleDjOMkYOjNNFbxNLNIkUajLO7BQPqTUVrd2mp2KXNpNFc2soJR4yGRx04PQigCSC4iureK4gkWSGVA6OpyGUjII9iKnrjPAbvZjWPDj526NftDBntbyKJYhn2V9uPRR06V2dAHD/ABPv1t/Bk+nJPHDdas6WEO5gM+a4VzyRwFLE9vXFXbPRr6C1uZ7iWK8ltZN+kouVSJVg8teNx5JaTJJOQR0rqGRX+8oPbkU7AxgUAebO1lD8BIpJ2gVm0IsrSMOZngO7BP8AESze/Jrd8VT2lxoWlXcU8UhGq2Jt5Y5AQWM6IdpHXKs4+hNauj6KmjW09pFIZLMztLbxMo/cBjkoD3G4sRnpnHQCnXujwX2p2F1O7GKxdpYrcABDKQVDn1IBbA9TnqBgAp+K7rULWzg/s+S+SRpDua0sluWxjoQxAA96x/D+pa7NrMMV5Nq7wMGyLnSEgToSMuGJH5V3WBRgUAZepT61DIg0yxsblCPnNzePCQfYLG+f0rm/Fd54iHgDxFJcafY28i2EhiNtetLxtO4nKJjC5IwTXcVDPBFcW8kEqB4pFKOp6MpGCPyoAzbo6jaWtrHodhYXEKptxPdtCEUAbdu2N8jH06DrUUE+qSJN/b1hpltZqmd8d4ZhnI+8HjUAe+ataLpzaTpUGnm6kuEtwY4nkADCMfcUkdSFwM9TjJ5rRZQwIYAg9jQB55o0thf/AAZvFaaGWAWV2JSHBCjMh5Pb1rTh8PHW7eyv7qd3jvtLitr+FyQZMDekikfddWZvY7vYVu61o8OtWBsJ3ZLWV1NwkfBmQc7CewJAB9Rkd61AMDAoAxtG8PWOhm6NqJ3a7l82Zp5mlLNjk/N0ycn6k+wq5qGmWuq2E9hdIxtp1KSojlN6kYIJUg4INXqKAOeudEu5NR+2w3Ee+1spILATbpNsr43SOTyfuqBjnG7nmmP4M0m40XS9Mulnli07Y8LJcSRN5ijHmEowy2cnPqSa6SigDynx34gn8ONc6Ta6o+l2dhon2i2KODLcXDOY4k3PkkKVBbHJ3c8VQjsdE/4RbXrS3vrMQy+GrSHMsjId0fmqJGGPlUkoQe+c4r12W1gmdXlgikZQwUsgJAPUDPr3qVY0RAiKqqBgADAA9KAMXXLy4TQBcaa9wZJNhjktLUXDYPOQhIBGO/vXM6ZqfiJtTtVuJ9ceFpVDrLokcaYJ5ywfKj37V6HikwPSgDP1GXVYo0OmWdpcuT84uLloQB7EI+f0qjHd+JTFcG50vTYisLtEYL55SZAPlBDRIME981v0UAcZ4VfUofh54cbSbOzuZHsYWmFxdNEAxQFjkI+SWJzWxaT65NI6atpmmwWpjbc8N80x+hVolGMZ71Lo2jLocFxawSs1m0zSQRMo/cBjuKA913FiM9M46AVqkZGDQBx/gi5sbpNfgtpreVF1a4GyNlYBflHQdqz/AAto/wDanhXw1exXAZba3ltWjf5kntHbaUJ9gkZB/wBnHQmux1Kx+3abPZxzva+enltLDgOqnrtPY4zg9utT2dpBp9lBZ20Yit4I1iijXoqqMAfkKAMjRvCWm6HeS3Vr9peaWJIWM07SDavAwDwOAo+ij3zsywJLC8fzIGGC0bFWH0I5FT0UAc6PDUcMmkW9uxTTNLJkigdmkYuEKRjLE/KoJIHrt6YqKLwjZ3fhp9I1gG7+0TNc3Zjd4hLKz7z90g7QcAAnooHaunooA898W3fh7wNb6Veyu41KIzw6aLi8lIZpSPMaViSWQfKSWzjAwM4qHwT4SsI/DOnCyvnvtMuNPksLxZkKrdR75GEid1G55APVXHcCvRyAeoBoxjpQBiaR4asdHuru5he6luLsoZpLmdpSxVQufm6EgDOPQelWV0a2bRBpUpdoDF5TlWKMy9+VwRmtOigDmbjw9OJrL7DcLHFpttItjHMWkxOylFdyTkqq5AHX5j6VJJ4P0q58OWGiXcc81rZ+WyFZniZnTo7FCCTn5ue/PWuiooA818ZXWo+G1gtdK1e4toIrO5uhDGEkkKQxtJI8kkocklzGo6feYkk4ruNJgZdNhMmoTajvHmLPOqAsGGR9xVGPwq48MUj7njVm2lMkAnaeo+hwKlAAGB0oAz9S0q01S3WC5EvlxyLKBFK0fzqwZT8pGcMAR7iqVroJFzq819K8p1ALCNjspSBU2qobOQcs7EgjluK3qKAPOPG+g6X4a+FOv22nLJDE1mI0SS5eTAH3VXexwOTwPU11ugx21zo2k3i7JJI7RUSRWzgFV3Dj3UflWyyhhggH60iqFGFAA9BQBxemZk+LmvtcOVlj0u0S3QjG6IvKWI9cPxn3rodTuNahkT+zLCxuU2ku1zeNCVPsBG2R+VYWoD+zfinpV6+fJ1XT5LAn+7LE3nIPxUy/lVnxhbWJtbO+1S88vTrOUvPaNCJUvNylVjKfxHJG0AE5xxQBs6dLqcsDNqVrbW024hUt7hplK4HJYouDnPGPxrjdWuvE58XeHi+kaUso+0+Wo1KQq37sZyfJ449j+Fafw5tLyw8IQ2l9MrzJLKDCJRIbVS5Kws2TllBAI7dOgFdLLZW093b3UsKNPb7vKcjlNww2PqKAIg5bTA+rR2sR2gzJ5m+Jef7zAZHTkgVhfDq6t7rwTYmCeOUL5gbY4bB8x+uK6plDAhgCD2NAVVztUDPoKAON0EKvxQ8XhQAGt9Pdsd22yjJ98AD8BXS22q2F3qV7p1vdRyXlls+0Qqfmi3jK5+o5rmfAyG91DxN4gwPL1HUikBC4DRQKIQ2fcqx/XvXa4oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAxvEWhxa/pRtWla3njdZ7a5RQWgmQ5RwD1we3cEjvVe88O23iXSrSHxVptlczRHc0aMzRB+m5c4PI9emcc9a6GigChpelWOiadFYabax2tpFnZFGMKuSSf1JNX6KKACsjXrTU7/Tfsem3SWjzt5c1zk74oiDuaMD+PoBngZzzjB16KAKmnWFvpenW1haRiO3tolijQdlUYFW6KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k=\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAARgAAAAoCAIAAACq4XLCAAAYyUlEQVR4Ae3aZbRvVdUGcC+NdAnSA6QGDRICLyAt3T3oULq7kW4QaRg0SijdHQoKCEoKKCkKSjcvvL9zH8Yce5y4nnPu//B+2fvDvmvPPdecz3zmnGut/T932Ndff/2d73zH/X+HX6OMMsroo49O4iLwOGzYsDy6f/HFF/W2hCMedDPCUdNgzaVGzl0k1L766ivjbgBq+meffUZ/jDHGKAsDGiQQLj7++ONxxx03cz/99NNRRx21GSCFgtTN/ieffDL22GNHWKjy+OWXX4422mi5wznmmGN+8MEH4403XtMCAEIea6yxmsLmmE2PPblq+k0U77777oQTTgiqKfDHCO8GYAgKS4mCkA5hT7NN1wMad9BvQYVTaOiVHRQFPLooEHoMqwPCOdTKwyCGzNX0hB1yjEtMxt7Kx6ATELoZKQsGqZVy7dFVj008xnhkxKBZ6J9//vlAeymFmCovFyzzmzth0FZRllqvA6ZgM91FwTiQGHExUiF7Fbb7gxkVNbH8Rvjcc8/NMsssiuy73/1uXn344YfjjDMOdx77AxuMJo1lfxADkDrlV59om1op3nrrrckmmyyQ4qU/oQ0ihI5M+aaacQEri+7yrTgkJo+phpFxFhaURUqtacqrZrkEBkmuAKDjComFM4+DaKR4lzOVBI+SUta1FnrLhfDZj4sm2m5jqCiD2jOuWjLpZB3N3K5IhvOcKaXWzbJHaiw35Znobm4WAt4Zr3bySu4IrYCxb2zgjiimhPxfg2p67Oe4I36bqayxxcJ+bpmQo+z/IaFJaT9BDrVaVyPlqtqNy6TKK2nAvgH0MiFJA8LEDsvd8sdaVUm8J/FNeU8vqiR2IDEYmTUVKh7jNI5qkU7x9fTeTZKSBaNphE6WocjzyhKrGoTmVfYiA5p0DNy7We7rMUQ5yE088cRqKydSNZeMFAxqLITebvaDoWc6+vI4IPlI+jUdsNpmPb7//vsTTDBBE4PUkPefsebcoR6PgmsBSEOoB1RJSQ/QfId0ksF1EQssV+TKl6l4NE5sBhZm8riLsOcdJBiCKudmdnqq9VNSa7Z4WebdwFz3MgtY3PVqEzNlhAJll0HaxitoE1SO9XhgORKEDLomVl111UUXXZTN4NSZTAFTsI0TCzDGWg69CaEwl3LkI3MvUyPp1/R00UcffQTPLbfcMtVUU910001o9ChGJ73E5YNzZAAP0dyuryCmQUzRiCcSiU/hJuvZWLGWt/1Hw2CU2WfTlcdKNoN0sqx6lXLsaV/FuAAIBrM0wEDBxCwX3JnOr20tdw3grUJnn1DsMjr++OMX4G6QzHIRpo4LvyY3N7MifPPNN6eYYgrKqf5454Kv/m+q6MrFo3XaXLGDihNjjozTMMa8h0Y62bhAMp0yCSSD460bA3nslF/wUMdmPvaKfFDfeeediSaayPeSKOj42WYER+JeQX4Lwq7VC+mqAcvlL2vDe++9l71VAN5KT0Iqtf4MWOZC8lJbxowziJpIyohXdnMnftw1X7EgW//5z38mn3xyyoVq0GxKEi/cxQs7Cb9ZXvoKLd1+aiuoBiBFP42RV7DpPcEm5SLl4vbbb19sscXsDNNMMw01lrMq1aBptq8xtHWZmHSkDwEAJqdHHhlPXPQhacJjnGbloi9fA5VzNPJ+g1NqNFKWmDfeeGPKKacEJonm4tFHH7X8zTHHHKmEgeIcUv2uDx6814L60ksvPfLII08//TTGncWdIuRMKahjW60w9thjjwEBkrZkNLPYefHFF1977bXVV1+dRAW74l0V4u6yyy5TH8oiVYJTPLoDs/nmm2u/ggrhgJCUMstQuVh4/fXXb731VlFb6vQAR+RCfvvtt6nNO++8q6yySk0c8eCf//yn39NEYQr8HvfZZx9lffbZZ88zzzybbLLJpptums0kjTRia329ZVO1/fKXv8QbHeVlUVCF1157rSicf2xBalGm8IarV199dcEFF1xqqaXSxnLRl+XByTvlVy6gxTwYBvCfe+65r7zyynHHHSfpV1111UUXXSQivTTjjDPecMMN9YPe4GB3fpa1E7l1SZJC50ZhnX/++f/4xz8spTvttJPy+sUvfuEx+oQiN8tdzJlu4JLgejSQ6Ty6e6XO0iE6yrheGbAs6z/60Y809mabbfbXv/71hRdeQJyF3yKkweiUNRXPV6bHTuEhzCuxRCgBLEe5Ga+lnSbL4lX6jz32GI+afMMNNyQ56KCDJJKjTHQ3N9H54vdozLIiNubLIOmxb5Nwfcopp2RLn3nmmQkp8OiVi9lMNBZUvLDmIoGKwS694ecF98gNfvazn/3qV7+qRxjCyfPPP5+e/+lPf2odFAXq4PFD+SWXXGIizCBVOCYaN9mgk8fwmXsklIMWsLLAGrk0+WzjCLBnnnnGwoRGj7PNNtull15KWcjJAvuuGidHJGrJvZihkGvnnXe+8sorjSn8+9//nn322UPvWWed1WWocQFp4YuAfpDDRgJAgW/M6Pyw6+vIxZ9vuIwNLHK77bZb5dJWYAHwVv6CMmNcCDIUu2fAFGHRRFOmy7iYr7/++vvuuy++3CkT+pAwNvewww7z58XDDz88CtxNMskke++9d7oiFFc70SFxT2GhO7MiYS0DRWxrhaEiIqnMGU833XSWPW8jhOH73//+k08+aXryIU8ZkADszriDqAHwcWQs8XfccYeBi9pcc81lT5t++ulXXnll6edo+JuvK+sgwb/11lvvueeeXjEVhRgMmITGe/Bbj+EMhhDunokHH3ywxJ1wwgmUXdQ8HnHEEbGZexLxr3/9qymMo/JeLNGBpMk2CcslD85DDjnEHnjiiSfGJn2PRx55ZB7rbosuhQTlABJJ7LgHSYhyAkpVeGRcjpZccsmFFlpokUUWyaKQGjPLtcACC5Q1NoWJlirCYC4kQzH45tPfJmBJ1vF8WM9w4TQiDSHXkvaDH/yA0J7r/EMN1/YoewvK7BhmuQcuHUKvCK1PlJ1knDdwJNSf//znK6ywwnzzzXfAAQdkl6DMtUZVl+YqaDQZsGauvV576CVgOIWT2RyNkIUpaqoKNsqOf+qS0GUiI/Y9A0RbsOlwBAZNvWrLNWaEBUgM6sQlBybONNNMNBl0B0C8mestCSS+oPDDJvv2Lu3nvKpzjjnmGAapPfHEE3fddRe1c845Z6WVVuKUprlwulNAC/Df+973FBbMSQHXILEMIe+itqxYUChrgPnnn19czpCWf6/YCfMG8IvRFFBNlwKPLAuNF+Dd6ZD0ei4KNo5QzRrjyYgphAwSAhZCOIUWEkI4KUcevx4l0SuPVg2DhGngAixHOKtVJCEWA9re6RRRArQFwemzgndnoj/+8Y//M/x68MEH4zcBqge0OCsRihd7bOIqZclvXAz1vYsI7nGnMjK++uqrDVSAswESVT+mfvKTn6Q3KGNQ9dORy8svv5yC6dKDHTrJhHraaKONLCrKRTAs+PRabbXVttxySzo+InFkmaHsUdk5wbOJSssPy4TIrfamxogsBmH9BpB8YI2cowQSIYl0KllyiXFnH7kiIjdWN8bUcvFFwm+KWDjCTLBpbFNAMsVpLRbyp3dvMfDDH/7QgXDSSSe10PiN7qijjvLFwjLlBx54gFBoHhkEDwx3HgVr4Xj55ZcjoaDy0mbG8bLxxhtbxZzQqPncYtxc7eQzyWlKDelDyq64EGnWNe1EKArki8tYUBy5eDGGzaDeRoeQBUUpp6jAiTthl4PhjZQB49x5hZD4pRm/UQDSgHGXV8lR0KYNrI+QSI1ZEsrpeuuthw3HeF1h6ZlzzjlRtOKKK1pznY9w69TqZwa0wAYA5k3nRTmlf8hdTNEJ5viFEA8BNkT3ruZBR6xbgZTLww8/LHMA8e2o/eyzz1Kwh6S4ycWfKepAiUOJCxdhV5aGv7UOYcpaKCrR4k4LYceOxBdqkOIYHfafeuqprbbaypKGfRIW0GTsMpAqRjASakhoqoC0Eww635cos3Q4Uu6MqHKa+EW3rz6maDpdmKhvKXsLuUc6ybfwuZa8lBSFBKsNWPaoxIWZdvWR/bvf/Y4d8CRbaD6OsSHl1gsnSUZg4CJ7OACUhUDfWJtRVjc2bd7F8re//c1igTcwQi+PZ5xxhukOh+RKnySfCnPPPffvf/97BiVrm222gdnYLKYy5gJUdyUFiSakIKEgIWeLLbaIGpvkzBJ6G2Kzt6ALk5KIoiwW4OWVKTLCPnfGhObGIF/xS+7SOe4mul9wwQUWAgPWXP5GtO666/oVwQmI8PTTT0f+MsssI3ykYV55ULMiw4AftWQRoaNEAcYev5YwxpEJgEgJmWIBz95S88iatwZDenXtSFLrLg2q0N3no5OoozaaYLJv2EyWXXZZgNQTTewjF1anVQ0WNslFUvkTHmVEoIBN+ZNvFeYPbegwsIr49MK7aNWTi03TY8FEiXFJJ0bQ566YLEjMynqcagwSJejLgRemYAPD6uVz5fjjjydU9zqZHSscMIAZXHzxxdNOOy3MLq/kRnQ0PSoR9iOHCgPZT1jGDxghgVOulZqJArH98ii0bbfdFp+KCRju6CtimwZhTLHsHGhZcfBjkCaQwrnuuusMFJA1xScTNWMGbXS6VIWR+F3k8ccfN0DgDDPMwCDkYZgjsFlLINwJxzj2BWtgooMAbrMbiMhcQq/MlYsg8fiXv/zF7z0WIArA+w1m6qmnxr+MOJnvvvvu+hl4hQtA/IZ5fvHPb4rY0lN7puXSl4xX0oFkfXX33XdL+vbbb8+aw/O+++6r2PQPU74m/vznPzNuSfrxj38sOgZZdse/gV/C/PoFg9JCFIXFF1/cRO4WXnhh+bX6iEh0hIrKYEivrkZSpu44Aui2227T5Q5yUivfEnDaaadpGFAsCdTCtRZH380333znnXeKSs7QbUDNnUEl6NsXZfSR5TSML2/vvfdeX5AKXS6tptZybDr1+pWTcZWRDkFBUGGKBRM9Klw51gnYdMmrOlt++eW10x/+8IewRplxaipbCZquTyTP0cuxW5oxzoKygIqaQAiNTc+ZyhS+sJFgdVE8yh+nogZSGzj35vBmrgqg7AgHibd0HOjlVZv5jeHCCy8UoBCyNaERq1dccQWD5qpUUGHwZcW+rAtKnXlFYY011iBZa621nLQBM9EdHt8SdPywYXe15HFkbhqeI0F5mybxyAL711xzjZbGyf33368tNaQ2wD8ScFK0C4Qp5ys7BhLYwUx0mDXwCBg1YWZQfhkpvxRcyNcS+sRZVMUrcV+S+++/P8AgCccdY3rbCVZCf/3rX2tas2addVZFBTmJHzNk5Mwzz8y3Ir8abIcddlh77bUNoBWI9lMDkMDsUTXyDgy6UhjD4QzhratcXFmMDX7729+6+4uH4hOn4EW1/vrrQ49HWUGWMULF5koO1CXQqXg7lXi8EiFT6U9FfPLJJ0uh+nOuI99uu+38TupYpd+suL4mtZaJCoidFAE1qWI58PhSlP4k4kcwZcqpcrRc2RxuvPFGgF1Yo8x1NnfTfX1pLU2o/ph1mcgyHeGAp9vlVX1nYfMKeK8kyVjbWwIUtJ+MCJUgeCwYSy0FgwMPPPChhx7605/+tOuuu3Lk4OQPHezz5ecH+znLGKOMOkIDCzD77jINIaG1Rgv5bYp3QshVGE3hmEXn6KOP9gM3+XLLLecT/O9//7v1W13aOpQjVAym0E1HmtBMx4mUOT45eVqtbJt2Bj8nOhpoLWqKGOeUVS19ElMMkGZlAQk/IdCAd/F66zJFjPHrEfPxC79H1hS0X8A1pIUABn2CB3sFF4xI2Y477miP1dssSy6DLlFIqzORzVO8lgmpBJKaUmTW9LijCaG5/PoYAcZAlWKVNTopmwJMMoQX6vHoDp/Nx4nLr1UWPFkUpBOdyvCHAvsGHay593p51eslJFc+JywzSLE57LLLLsjVpVxbvIWnCj2qOb9uKSYMKk21YrH3iNP8FcvaRg01TlMnnXSSld7ZWhk5UGEtAApeJKrQJulnD5+w0pBVgE6iFqZUKRd17BdbqXJm0KvSA4P+99ek/fbbjy958suKqjXX0mjLlVpjS486kzwwbI96yURIuBOmw4wzGzX04sGgLo+E2tsi4rBErvLyltyg7nrYoWCJJZZgzR92/XnKWx3uT8mK6Z577vGICpRqyDXXXBPbTmXaG29OgIceeijSqFmn/Q1qgw02AE8dO0OaiJOll14ajLgjGdDVl1+UHnvssT4TsKR+rJVWTOSjyJ7DRfiPL6uYgVXVDukPiX6ck2gTffqSixRUpSgEFoqlXvMbg9/+vet/rMSrwOTeccWJDnRnTXeX3xt8ECds0PuC2GsXESpiU0x07LYdW1ocCB2NkjberanWFR+d1Di1L1m6FDS+pJ93R02PKoNCJIrYGKcSQMFp2++HJEAym0UrY0IY/PbtT6KVPysueS763AnZ3cGMTbmHlmX6BjwqMoXuVwRTAtse6Hc5jwC72x/22msvdeAXCEcUErNMV8pC839BMrHXRvLK35EUTb0NY+RCgCePv/nNb6z01gsZiX13p0ErsV0aQvilD3tmmULNI7ZBzRT/JcKChQ2+6JiYX5YdECwQrPHlPtCrL7+YwSRrnJ533nmnnnqqrwDda0WAihxmq5iB/LqnDhGu1W0s2JZZqSTnwhrHTlYx6YPflVx0yy9T/y9X14dmrsBqjiu1hNBD/I1qb/942+tF19E8M1RqBkikjCN0KEHnFj9FSDwM5GUegHrEqel+rVJ2qtO3gb1Lg1GuCpAGj7kbBI+BsnYuKjl9fqOgXWucgbR55Ypxf1930JVFqdXtNqgkvowAWWtkJoKageOTA4+SImnGkrfghWHt50uAMMFGWKhSYUJYZ5116GjXxMumn79tpIARSlAm0jEXw831whTdZXfyE7PLWT2LvfO2Pc2WaJbpcWrc/2vEfrWKjQhy26BDhIMxy6HLqceZuacjq7atlRzm1CTkPt3truAlKZnVV3572vwWJF2NBLErziTAlbFV2QonkcgqhYFiqv5kTe5dWZBiEC/yp8qz8BeGZmmagjJ3hPo0kgxZcYZx8qRPrkMopOBIqhpYzppH2EyAx2bHUhMyO+Quj6y5c+fRyc2Hsv7RvbwHdpnlqyZSNjYXacbaXkGk8/USuYu8rkia5Z6JFHh31x5RxoYTo//e4TF85q7nQ13U8jZzIwHPXHewsSQiZa2gszmT8Oh3BUdunyVlZBADeLr5FV0l2u9vsmZfYjnZ8akGiVmYr8SlzPxdxFk0XIHtLZz2Ih8dFg6rLSMhisdKRLf8DiKEkZzS9fnLBEzNgojRbokn7Cn5r+5DXNTSHnjJ1pS1H5XBQAcdKRFjamhq1ll5ZzPdHmWaNctEsXgbSSzHSGIsgx6bs0z0SD/N4JGX6NiCku+0lleyC0xCo0PiSt0YFDxnJx+cziqlM1yxl1tw5p4wnTbpBS05j7oxj8rIqlSBZFYIiWkSsTQDNGbW3eEwtSiWCH2Q+MGGcXNz7wVf36IR+I1HYHx2+q6TJrBdjPmrifNbQqhGqoUjg+oW+n6x0O0+tIzTM33lt2+kQ/um69AcD9JfuWmyA7HgkT5oINqmDKb4upnKIT4uSrOpo7jRB6orvLtX4ZZmkuSRkVij7zENXB1S+uJlx51aM8DwkLlRJomCakjhupO4ouYxwGo9Eqm31oLIy2nPQTVeXpmVQSbaqz2mbgyyBucRqlRVQTU38GIhchagCvMOTl4hSiAGEUYtWcjEgd579RtHCSe9YSw1MPsTn59z/Baqn3kXjlehrtrJdI1NHqjpK0KPhC7jIO8rvxS+taurkSpJvEpeHt2x3HzlbS3J/ceXoix98Qs7LKSyuYgXSCI3BVnhyN1jFKpGAyOWwzL7HgGOhXJH2LOO2SlTpZlBWrHeGqjLlDLj1ag1KyA9Bjzvphg3nfa6NPS0QNIEL64ESO4XoLwNDwm/zEKVwE0PDBgqjyamzgyCv1vvpX9SvmWTcj8vTnv1C1Lhrx6ok5gDs7+w+TgsosJkQUV70EZCjUGQxF7Z8dhrfvuJvLNq3/zYgIskKdYzLolBSEm0A0JQU0IER6Zn1SwSYzAKpc9pjQ0yMZnO9KZ+NZ5ZTR2Ww3tCaNpkhIW4iPFS7gaMPGeewlNsBAmFWKjSIXGVnUCNsOe9WRwMVrDQVuuyX4t6FMpXFZa5rrKfYPOWi3pFTocRRBUwbyOv6f0fdHnt4dd0risWjzlB1MKXfibXKtTKe9SyWERYR4/wmcfy2C2//YfdWc1hzPlJqr1aBloGRoaBb/5nw8iYaOe2DLQMtI3U1kDLQAcYaBupAyS2JloG2kZqa6BloAMMtI3UARJbEy0DbSO1NdAy0AEG2kbqAImtiZaBtpHaGmgZ6AADbSN1gMTWRMtA20htDbQMdICBtpE6QGJromWgbaS2BloGOsBA20gdILE10TLQNlJbAy0DHWCgbaQOkNiaaBn4P9b/DMVdbbfLAAAAAElFTkSuQmCC\n", + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAAoARgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3meeG2iaWeVIo16u7BQPxNVTrOmKiOdQtAj52sZ1w2OuOeawPiXcvD4C1K2hCtc6gF0+BCM7nmYRgAeuGJ/Cuc0/TL9viF4f0W+g05LXQtOku40s4225fEKbtw68ORj0J9KAPUqK53xVrcuh2cEkE9lC8km3N2krKQB2EYJz9ax9A8YXmqaxDZy3ukSrIG+W2iuFckAnguu3t3oA7aSWOGMySuqIOrMcAU5mCqWYgKBkknpXB/EC6vpFh0uOLS57W5mtoPst5CZ/Pkklx8yBgVRFUvnuQOgBzp6Pr7uNK0y9vtNvtRuFleR7WTYrRKzBXVD97OACB3yRwKANv+3dI27v7Ussev2hP8atxypNGskbq6MAyspyCD0INeIWVvB/wpTVQYItv9vBcbBjH22MY+mOK9euNc0bTJ0sbnU7C1n+VUgknRG5OFAUnvwBQBrUVk6FrUGvWDX1pzb+dJEhzy21tpJBAK8g8EZ/Ouc1zxFqsOsaHHF4e1dEOoOrBZrcC4HkTfKP3vqA3zY+764FAHZz3ENrC008qRRr1eRgoHbqaqDW9KyoGpWZLEAATpyT+NYni6aS++GfiCW4sZbVzplyTBcbGZMI2CdpZewPBrlbC3heH4SB4EYGAscqDyLIkH8wDQB6tTGZY0LuwVVGSScACsmXxNocU0sD6vZGeJXZ4FmVpAEGW+QEscAHIArlvFfia4n8DjUrJLE2l1ZSzvFcjzjOpwqQhAQTvLgMeqjIxkjAB2Goa3pelQxy6hqFraxyY2NNKqhskDjJ5HzDn3q9HKk0ayRuro4DKynIIPQivPT4Y0/XdDtrDxP8AZLxdPvlt7RdIjlVIANn7tkGQMYKkn7q9wcmu1vbibTbOM2unXeoEEJ5cDpvAx94mR1B6eueaANGg8CuG8I69ql5dalDc6NqhQ6pMnnSywstuvHyH94Tx/sgjnijxR4m1nRfEEMMENubFrK4nweXfy06jkYPmPCgXvub2wAdLoWoS6rosF7cW0dtLJu3RR3CzquGI4deD0zx06dqkOt6UGYHUrMFTggzpwfzrk9E1qTRpF0SWWzkijngsLPEvltIyxJ55y332VyenU5X7wNcwkMS6V8XsQoMG4Iwo4/0Yn/69AHrtvcQ3UKzQSxyxN9142DKfoRU1cjaa9pmieHLK0R4Ptqaak8NijBGkG0AAYHGWOPxzXSWl5Bf2yXFtKksT5wyHg4OD+oIoAtUVj6jql5Y3CxW+hahfKU3GW2eAKDzx88inP4Y5qfTtQub5JDcaTeWBTGBctEd/08t2/XFACnW9KDMDqVmCpwQZ04P51at7iG6hWaCWOWJvuvGwZT9CK8iSGJdK+L2IUGDcEYUcf6MT/wDXrtLHxBp2k6DYWFs0D30dnbMtmjBCQ5RAeBwNzjP1HrQB19Zet6hNpenfaobaOfEsauJLhYVRGYBnLNxwDnHfpWXJ4tz4h0uwtNLu7uy1G2+0JqEKkxICRjPHoQfbI9a52XXNV1HVr3S9XFrBZw6lBuKnAiSNDcyKzZ5UIsGWxjMjDp0AO2ude0mzv4bG61G1iu5yFjhkmUOxPQAe/b1rUrgNK8P2Wv6hoPiHXLaYeIY7UXHmQrKkQGflHPCH5s7MgnJyCAam1zxHq0WsaHHF4f1dEOoOrBZrcC4UQTfKP3vqA3zYHy+uBQB3NFVLG4lurRJprOezkbOYJyhdecc7GZffg96t0AFFFFABRRRQBRv9J0/VPJ+32NvdeS2+Lzow+xvUZ6H3psOjabb6jJqEVhbJeSAh7hYgJGHoW6mtCigAoxRRQBh6n4U0PWLsXmoaVbXF0I/KE0ifOFzkYYcjHOD1GT6mmy+GbZ/ENjqqSPEtnayWiWsYURFGK8Yxx90dPQenO9RQBj/8IxoJs2szounm0Z/MaD7Ouwt6lcYJ96xpvBckniuLV1vrZbaP5UtDp8ZKKREGw+fvHyUG4gkKSB2I7GigClYabZaXC8NhbRW8byNKyxLtDOxySfc0XenQXtzZTzBi9nMZ4sNgbijJz68O1XaKAK93Z21/ayWt3BHPBIMPFKoZWHoQeoqj/wAI5oubb/iU2X+iY+z/ALhf3ODn5OPl69q1qKAOL0TwQ+m6zeXt1f295HOu3yv7PjjKgBlC7h0Xa7ZAAJLE5wcVrT+DfDlxb2cE+iWUkNkpS2RogRED1x/P689ea3qKAOS1TwkZNR8Ny6Yttb22k3LSPGxcEoVI4weTk5Oep5JPIPW44xRRQBR0/TLfTTdfZwwFzcPcSbmz87Yzj0HHSs7xJ4asvE9tbW99DCwimSQs6EttDAsisCCu7AB9R29N+igDn77wxaXl1o00TvaJpU5miigVQrZUrgjHHU9PU+uat/8ACOaLsuU/smy23RzcDyFxMf8Ab4+b8a1aKAOR1bwXb3d3pdxpj/2e1l+6AhRdixb1k+VCCA2+NMHjgnORxUmn+Hr3S/E8NxbXKPo8Wn/Z0glJeVJS+5mDY/iwCxJJJHTpXVUUAFFFFAGV/wAI5ouy5T+ybLbdHNwPIXEx/wBvj5vxrD1PwPbzarYXemS/2ckCCFxAqgLGpZlEalSFbc3X2HBwMdjRQBzWk/brXxDcaSLCW30W0tIUspFYNG/94MT824cAckEZzzTrzwjpd94oi1y5s7aSWGEoFMXLuSMOxzhiFXAyOMnn06OigDmLLQLq18daprZkg+yXltDEqAvvDqTkkZ29xz14A45ztXenQXtzZTzBi9nMZ4sNgbijJz68O1XaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q==\n" }, "metadata": {} }, @@ -1087,10 +1412,10 @@ " \n", "

\n", "
\n", - "
F ( 1 ) = - ( - 1 ) ^ { ( d - 1 ) / 2 } d ! ! = - ( - 1 ) ^ { ( d - 1 ) / 2 } 2 ^ { ( d + 1 ) / 2 } \\pi ^ { - 1 / 2 } \\Gamma \\left( { \\frac { d } { 2 } } + 1 \\right) .

\n", + "
H = \\dot { x } _ { i } \\Pi _ { x ^ { i } } + \\Pi _ { x ^ { i } } \\dot { x } _ { i } ^ { * } + \\dot { \\psi } _ { i } \\Pi _ { \\psi _ { i } } - \\Pi _ { \\psi _ { i } ^ { * } } \\dot { \\psi } _ { i } ^ { * } +

\n", "
\n", "
\n", - "
F ( 1 ) = - ( - 1 ) ^ { ( d - 1 ) / 2 } d _ { 1 } = - ( - 1 ) ^ { ( d - 1 ) / 2 } 2 _ { 5 } ^ { ( d + 1 ) / 2 } \\pi ^ { - 1 / 2 } \\Gamma \\left( { \\frac { d } { 2 } } + 1 \\right) . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\nonumber . \\

\n", + "
H = x _ { i } \\Pi _ { x } + \\Pi _ { x } x _ { i } ^ { \\ast } + i \\psi \\Pi _ { \\psi } - \\Pi _ { \\psi } \\psi ^ { \\ast } +

\n", "
\n", "
\n", " \n", @@ -1104,10 +1429,10 @@ "output_type": "display_data", "data": { "text/plain": [ - "" + "" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAARgAAAAoCAIAAACq4XLCAAAYyUlEQVR4Ae3aZbRvVdUGcC+NdAnSA6QGDRICLyAt3T3oULq7kW4QaRg0SijdHQoKCEoKKCkKSjcvvL9zH8Yce5y4nnPu//B+2fvDvmvPPdecz3zmnGut/T932Ndff/2d73zH/X+HX6OMMsroo49O4iLwOGzYsDy6f/HFF/W2hCMedDPCUdNgzaVGzl0k1L766ivjbgBq+meffUZ/jDHGKAsDGiQQLj7++ONxxx03cz/99NNRRx21GSCFgtTN/ieffDL22GNHWKjy+OWXX4422mi5wznmmGN+8MEH4403XtMCAEIea6yxmsLmmE2PPblq+k0U77777oQTTgiqKfDHCO8GYAgKS4mCkA5hT7NN1wMad9BvQYVTaOiVHRQFPLooEHoMqwPCOdTKwyCGzNX0hB1yjEtMxt7Kx6ATELoZKQsGqZVy7dFVj008xnhkxKBZ6J9//vlAeymFmCovFyzzmzth0FZRllqvA6ZgM91FwTiQGHExUiF7Fbb7gxkVNbH8Rvjcc8/NMsssiuy73/1uXn344YfjjDMOdx77AxuMJo1lfxADkDrlV59om1op3nrrrckmmyyQ4qU/oQ0ihI5M+aaacQEri+7yrTgkJo+phpFxFhaURUqtacqrZrkEBkmuAKDjComFM4+DaKR4lzOVBI+SUta1FnrLhfDZj4sm2m5jqCiD2jOuWjLpZB3N3K5IhvOcKaXWzbJHaiw35Znobm4WAt4Zr3bySu4IrYCxb2zgjiimhPxfg2p67Oe4I36bqayxxcJ+bpmQo+z/IaFJaT9BDrVaVyPlqtqNy6TKK2nAvgH0MiFJA8LEDsvd8sdaVUm8J/FNeU8vqiR2IDEYmTUVKh7jNI5qkU7x9fTeTZKSBaNphE6WocjzyhKrGoTmVfYiA5p0DNy7We7rMUQ5yE088cRqKydSNZeMFAxqLITebvaDoWc6+vI4IPlI+jUdsNpmPb7//vsTTDBBE4PUkPefsebcoR6PgmsBSEOoB1RJSQ/QfId0ksF1EQssV+TKl6l4NE5sBhZm8riLsOcdJBiCKudmdnqq9VNSa7Z4WebdwFz3MgtY3PVqEzNlhAJll0HaxitoE1SO9XhgORKEDLomVl111UUXXZTN4NSZTAFTsI0TCzDGWg69CaEwl3LkI3MvUyPp1/R00UcffQTPLbfcMtVUU910001o9ChGJ73E5YNzZAAP0dyuryCmQUzRiCcSiU/hJuvZWLGWt/1Hw2CU2WfTlcdKNoN0sqx6lXLsaV/FuAAIBrM0wEDBxCwX3JnOr20tdw3grUJnn1DsMjr++OMX4G6QzHIRpo4LvyY3N7MifPPNN6eYYgrKqf5454Kv/m+q6MrFo3XaXLGDihNjjozTMMa8h0Y62bhAMp0yCSSD460bA3nslF/wUMdmPvaKfFDfeeediSaayPeSKOj42WYER+JeQX4Lwq7VC+mqAcvlL2vDe++9l71VAN5KT0Iqtf4MWOZC8lJbxowziJpIyohXdnMnftw1X7EgW//5z38mn3xyyoVq0GxKEi/cxQs7Cb9ZXvoKLd1+aiuoBiBFP42RV7DpPcEm5SLl4vbbb19sscXsDNNMMw01lrMq1aBptq8xtHWZmHSkDwEAJqdHHhlPXPQhacJjnGbloi9fA5VzNPJ+g1NqNFKWmDfeeGPKKacEJonm4tFHH7X8zTHHHKmEgeIcUv2uDx6814L60ksvPfLII08//TTGncWdIuRMKahjW60w9thjjwEBkrZkNLPYefHFF1977bXVV1+dRAW74l0V4u6yyy5TH8oiVYJTPLoDs/nmm2u/ggrhgJCUMstQuVh4/fXXb731VlFb6vQAR+RCfvvtt6nNO++8q6yySk0c8eCf//yn39NEYQr8HvfZZx9lffbZZ88zzzybbLLJpptums0kjTRia329ZVO1/fKXv8QbHeVlUVCF1157rSicf2xBalGm8IarV199dcEFF1xqqaXSxnLRl+XByTvlVy6gxTwYBvCfe+65r7zyynHHHSfpV1111UUXXSQivTTjjDPecMMN9YPe4GB3fpa1E7l1SZJC50ZhnX/++f/4xz8spTvttJPy+sUvfuEx+oQiN8tdzJlu4JLgejSQ6Ty6e6XO0iE6yrheGbAs6z/60Y809mabbfbXv/71hRdeQJyF3yKkweiUNRXPV6bHTuEhzCuxRCgBLEe5Ga+lnSbL4lX6jz32GI+afMMNNyQ56KCDJJKjTHQ3N9H54vdozLIiNubLIOmxb5Nwfcopp2RLn3nmmQkp8OiVi9lMNBZUvLDmIoGKwS694ecF98gNfvazn/3qV7+qRxjCyfPPP5+e/+lPf2odFAXq4PFD+SWXXGIizCBVOCYaN9mgk8fwmXsklIMWsLLAGrk0+WzjCLBnnnnGwoRGj7PNNtull15KWcjJAvuuGidHJGrJvZihkGvnnXe+8sorjSn8+9//nn322UPvWWed1WWocQFp4YuAfpDDRgJAgW/M6Pyw6+vIxZ9vuIwNLHK77bZb5dJWYAHwVv6CMmNcCDIUu2fAFGHRRFOmy7iYr7/++vvuuy++3CkT+pAwNvewww7z58XDDz88CtxNMskke++9d7oiFFc70SFxT2GhO7MiYS0DRWxrhaEiIqnMGU833XSWPW8jhOH73//+k08+aXryIU8ZkADszriDqAHwcWQs8XfccYeBi9pcc81lT5t++ulXXnll6edo+JuvK+sgwb/11lvvueeeXjEVhRgMmITGe/Bbj+EMhhDunokHH3ywxJ1wwgmUXdQ8HnHEEbGZexLxr3/9qymMo/JeLNGBpMk2CcslD85DDjnEHnjiiSfGJn2PRx55ZB7rbosuhQTlABJJ7LgHSYhyAkpVeGRcjpZccsmFFlpokUUWyaKQGjPLtcACC5Q1NoWJlirCYC4kQzH45tPfJmBJ1vF8WM9w4TQiDSHXkvaDH/yA0J7r/EMN1/YoewvK7BhmuQcuHUKvCK1PlJ1knDdwJNSf//znK6ywwnzzzXfAAQdkl6DMtUZVl+YqaDQZsGauvV576CVgOIWT2RyNkIUpaqoKNsqOf+qS0GUiI/Y9A0RbsOlwBAZNvWrLNWaEBUgM6sQlBybONNNMNBl0B0C8mestCSS+oPDDJvv2Lu3nvKpzjjnmGAapPfHEE3fddRe1c845Z6WVVuKUprlwulNAC/Df+973FBbMSQHXILEMIe+itqxYUChrgPnnn19czpCWf6/YCfMG8IvRFFBNlwKPLAuNF+Dd6ZD0ei4KNo5QzRrjyYgphAwSAhZCOIUWEkI4KUcevx4l0SuPVg2DhGngAixHOKtVJCEWA9re6RRRArQFwemzgndnoj/+8Y//M/x68MEH4zcBqge0OCsRihd7bOIqZclvXAz1vYsI7nGnMjK++uqrDVSAswESVT+mfvKTn6Q3KGNQ9dORy8svv5yC6dKDHTrJhHraaKONLCrKRTAs+PRabbXVttxySzo+InFkmaHsUdk5wbOJSssPy4TIrfamxogsBmH9BpB8YI2cowQSIYl0KllyiXFnH7kiIjdWN8bUcvFFwm+KWDjCTLBpbFNAMsVpLRbyp3dvMfDDH/7QgXDSSSe10PiN7qijjvLFwjLlBx54gFBoHhkEDwx3HgVr4Xj55ZcjoaDy0mbG8bLxxhtbxZzQqPncYtxc7eQzyWlKDelDyq64EGnWNe1EKArki8tYUBy5eDGGzaDeRoeQBUUpp6jAiTthl4PhjZQB49x5hZD4pRm/UQDSgHGXV8lR0KYNrI+QSI1ZEsrpeuuthw3HeF1h6ZlzzjlRtOKKK1pznY9w69TqZwa0wAYA5k3nRTmlf8hdTNEJ5viFEA8BNkT3ruZBR6xbgZTLww8/LHMA8e2o/eyzz1Kwh6S4ycWfKepAiUOJCxdhV5aGv7UOYcpaKCrR4k4LYceOxBdqkOIYHfafeuqprbbaypKGfRIW0GTsMpAqRjASakhoqoC0Eww635cos3Q4Uu6MqHKa+EW3rz6maDpdmKhvKXsLuUc6ybfwuZa8lBSFBKsNWPaoxIWZdvWR/bvf/Y4d8CRbaD6OsSHl1gsnSUZg4CJ7OACUhUDfWJtRVjc2bd7F8re//c1igTcwQi+PZ5xxhukOh+RKnySfCnPPPffvf/97BiVrm222gdnYLKYy5gJUdyUFiSakIKEgIWeLLbaIGpvkzBJ6G2Kzt6ALk5KIoiwW4OWVKTLCPnfGhObGIF/xS+7SOe4mul9wwQUWAgPWXP5GtO666/oVwQmI8PTTT0f+MsssI3ykYV55ULMiw4AftWQRoaNEAcYev5YwxpEJgEgJmWIBz95S88iatwZDenXtSFLrLg2q0N3no5OoozaaYLJv2EyWXXZZgNQTTewjF1anVQ0WNslFUvkTHmVEoIBN+ZNvFeYPbegwsIr49MK7aNWTi03TY8FEiXFJJ0bQ566YLEjMynqcagwSJejLgRemYAPD6uVz5fjjjydU9zqZHSscMIAZXHzxxdNOOy3MLq/kRnQ0PSoR9iOHCgPZT1jGDxghgVOulZqJArH98ii0bbfdFp+KCRju6CtimwZhTLHsHGhZcfBjkCaQwrnuuusMFJA1xScTNWMGbXS6VIWR+F3k8ccfN0DgDDPMwCDkYZgjsFlLINwJxzj2BWtgooMAbrMbiMhcQq/MlYsg8fiXv/zF7z0WIArA+w1m6qmnxr+MOJnvvvvu+hl4hQtA/IZ5fvHPb4rY0lN7puXSl4xX0oFkfXX33XdL+vbbb8+aw/O+++6r2PQPU74m/vznPzNuSfrxj38sOgZZdse/gV/C/PoFg9JCFIXFF1/cRO4WXnhh+bX6iEh0hIrKYEivrkZSpu44Aui2227T5Q5yUivfEnDaaadpGFAsCdTCtRZH380333znnXeKSs7QbUDNnUEl6NsXZfSR5TSML2/vvfdeX5AKXS6tptZybDr1+pWTcZWRDkFBUGGKBRM9Klw51gnYdMmrOlt++eW10x/+8IewRplxaipbCZquTyTP0cuxW5oxzoKygIqaQAiNTc+ZyhS+sJFgdVE8yh+nogZSGzj35vBmrgqg7AgHibd0HOjlVZv5jeHCCy8UoBCyNaERq1dccQWD5qpUUGHwZcW+rAtKnXlFYY011iBZa621nLQBM9EdHt8SdPywYXe15HFkbhqeI0F5mybxyAL711xzjZbGyf33368tNaQ2wD8ScFK0C4Qp5ys7BhLYwUx0mDXwCBg1YWZQfhkpvxRcyNcS+sRZVMUrcV+S+++/P8AgCccdY3rbCVZCf/3rX2tas2addVZFBTmJHzNk5Mwzz8y3Ir8abIcddlh77bUNoBWI9lMDkMDsUTXyDgy6UhjD4QzhratcXFmMDX7729+6+4uH4hOn4EW1/vrrQ49HWUGWMULF5koO1CXQqXg7lXi8EiFT6U9FfPLJJ0uh+nOuI99uu+38TupYpd+suL4mtZaJCoidFAE1qWI58PhSlP4k4kcwZcqpcrRc2RxuvPFGgF1Yo8x1NnfTfX1pLU2o/ph1mcgyHeGAp9vlVX1nYfMKeK8kyVjbWwIUtJ+MCJUgeCwYSy0FgwMPPPChhx7605/+tOuuu3Lk4OQPHezz5ecH+znLGKOMOkIDCzD77jINIaG1Rgv5bYp3QshVGE3hmEXn6KOP9gM3+XLLLecT/O9//7v1W13aOpQjVAym0E1HmtBMx4mUOT45eVqtbJt2Bj8nOhpoLWqKGOeUVS19ElMMkGZlAQk/IdCAd/F66zJFjPHrEfPxC79H1hS0X8A1pIUABn2CB3sFF4xI2Y477miP1dssSy6DLlFIqzORzVO8lgmpBJKaUmTW9LijCaG5/PoYAcZAlWKVNTopmwJMMoQX6vHoDp/Nx4nLr1UWPFkUpBOdyvCHAvsGHay593p51eslJFc+JywzSLE57LLLLsjVpVxbvIWnCj2qOb9uKSYMKk21YrH3iNP8FcvaRg01TlMnnXSSld7ZWhk5UGEtAApeJKrQJulnD5+w0pBVgE6iFqZUKRd17BdbqXJm0KvSA4P+99ek/fbbjy958suKqjXX0mjLlVpjS486kzwwbI96yURIuBOmw4wzGzX04sGgLo+E2tsi4rBErvLyltyg7nrYoWCJJZZgzR92/XnKWx3uT8mK6Z577vGICpRqyDXXXBPbTmXaG29OgIceeijSqFmn/Q1qgw02AE8dO0OaiJOll14ajLgjGdDVl1+UHnvssT4TsKR+rJVWTOSjyJ7DRfiPL6uYgVXVDukPiX6ck2gTffqSixRUpSgEFoqlXvMbg9/+vet/rMSrwOTeccWJDnRnTXeX3xt8ECds0PuC2GsXESpiU0x07LYdW1ocCB2NkjberanWFR+d1Di1L1m6FDS+pJ93R02PKoNCJIrYGKcSQMFp2++HJEAym0UrY0IY/PbtT6KVPysueS763AnZ3cGMTbmHlmX6BjwqMoXuVwRTAtse6Hc5jwC72x/22msvdeAXCEcUErNMV8pC839BMrHXRvLK35EUTb0NY+RCgCePv/nNb6z01gsZiX13p0ErsV0aQvilD3tmmULNI7ZBzRT/JcKChQ2+6JiYX5YdECwQrPHlPtCrL7+YwSRrnJ533nmnnnqqrwDda0WAihxmq5iB/LqnDhGu1W0s2JZZqSTnwhrHTlYx6YPflVx0yy9T/y9X14dmrsBqjiu1hNBD/I1qb/942+tF19E8M1RqBkikjCN0KEHnFj9FSDwM5GUegHrEqel+rVJ2qtO3gb1Lg1GuCpAGj7kbBI+BsnYuKjl9fqOgXWucgbR55Ypxf1930JVFqdXtNqgkvowAWWtkJoKageOTA4+SImnGkrfghWHt50uAMMFGWKhSYUJYZ5116GjXxMumn79tpIARSlAm0jEXw831whTdZXfyE7PLWT2LvfO2Pc2WaJbpcWrc/2vEfrWKjQhy26BDhIMxy6HLqceZuacjq7atlRzm1CTkPt3truAlKZnVV3572vwWJF2NBLErziTAlbFV2QonkcgqhYFiqv5kTe5dWZBiEC/yp8qz8BeGZmmagjJ3hPo0kgxZcYZx8qRPrkMopOBIqhpYzppH2EyAx2bHUhMyO+Quj6y5c+fRyc2Hsv7RvbwHdpnlqyZSNjYXacbaXkGk8/USuYu8rkia5Z6JFHh31x5RxoYTo//e4TF85q7nQ13U8jZzIwHPXHewsSQiZa2gszmT8Oh3BUdunyVlZBADeLr5FV0l2u9vsmZfYjnZ8akGiVmYr8SlzPxdxFk0XIHtLZz2Ih8dFg6rLSMhisdKRLf8DiKEkZzS9fnLBEzNgojRbokn7Cn5r+5DXNTSHnjJ1pS1H5XBQAcdKRFjamhq1ll5ZzPdHmWaNctEsXgbSSzHSGIsgx6bs0z0SD/N4JGX6NiCku+0lleyC0xCo0PiSt0YFDxnJx+cziqlM1yxl1tw5p4wnTbpBS05j7oxj8rIqlSBZFYIiWkSsTQDNGbW3eEwtSiWCH2Q+MGGcXNz7wVf36IR+I1HYHx2+q6TJrBdjPmrifNbQqhGqoUjg+oW+n6x0O0+tIzTM33lt2+kQ/um69AcD9JfuWmyA7HgkT5oINqmDKb4upnKIT4uSrOpo7jRB6orvLtX4ZZmkuSRkVij7zENXB1S+uJlx51aM8DwkLlRJomCakjhupO4ouYxwGo9Eqm31oLIy2nPQTVeXpmVQSbaqz2mbgyyBucRqlRVQTU38GIhchagCvMOTl4hSiAGEUYtWcjEgd579RtHCSe9YSw1MPsTn59z/Baqn3kXjlehrtrJdI1NHqjpK0KPhC7jIO8rvxS+taurkSpJvEpeHt2x3HzlbS3J/ceXoix98Qs7LKSyuYgXSCI3BVnhyN1jFKpGAyOWwzL7HgGOhXJH2LOO2SlTpZlBWrHeGqjLlDLj1ag1KyA9Bjzvphg3nfa6NPS0QNIEL64ESO4XoLwNDwm/zEKVwE0PDBgqjyamzgyCv1vvpX9SvmWTcj8vTnv1C1Lhrx6ok5gDs7+w+TgsosJkQUV70EZCjUGQxF7Z8dhrfvuJvLNq3/zYgIskKdYzLolBSEm0A0JQU0IER6Zn1SwSYzAKpc9pjQ0yMZnO9KZ+NZ5ZTR2Ww3tCaNpkhIW4iPFS7gaMPGeewlNsBAmFWKjSIXGVnUCNsOe9WRwMVrDQVuuyX4t6FMpXFZa5rrKfYPOWi3pFTocRRBUwbyOv6f0fdHnt4dd0risWjzlB1MKXfibXKtTKe9SyWERYR4/wmcfy2C2//YfdWc1hzPlJqr1aBloGRoaBb/5nw8iYaOe2DLQMtI3U1kDLQAcYaBupAyS2JloG2kZqa6BloAMMtI3UARJbEy0DbSO1NdAy0AEG2kbqAImtiZaBtpHaGmgZ6AADbSN1gMTWRMtA20htDbQMdICBtpE6QGJromWgbaS2BloGOsBA20gdILE10TLQNlJbAy0DHWCgbaQOkNiaaBn4P9b/DMVdbbfLAAAAAElFTkSuQmCC\n", - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAAoARgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3meeG2iaWeVIo16u7BQPxNVTrOmKiOdQtAj52sZ1w2OuOeawPiXcvD4C1K2hCtc6gF0+BCM7nmYRgAeuGJ/Cuc0/TL9viF4f0W+g05LXQtOku40s4225fEKbtw68ORj0J9KAPUqK53xVrcuh2cEkE9lC8km3N2krKQB2EYJz9ax9A8YXmqaxDZy3ukSrIG+W2iuFckAnguu3t3oA7aSWOGMySuqIOrMcAU5mCqWYgKBkknpXB/EC6vpFh0uOLS57W5mtoPst5CZ/Pkklx8yBgVRFUvnuQOgBzp6Pr7uNK0y9vtNvtRuFleR7WTYrRKzBXVD97OACB3yRwKANv+3dI27v7Ussev2hP8atxypNGskbq6MAyspyCD0INeIWVvB/wpTVQYItv9vBcbBjH22MY+mOK9euNc0bTJ0sbnU7C1n+VUgknRG5OFAUnvwBQBrUVk6FrUGvWDX1pzb+dJEhzy21tpJBAK8g8EZ/Ouc1zxFqsOsaHHF4e1dEOoOrBZrcC4HkTfKP3vqA3zY+764FAHZz3ENrC008qRRr1eRgoHbqaqDW9KyoGpWZLEAATpyT+NYni6aS++GfiCW4sZbVzplyTBcbGZMI2CdpZewPBrlbC3heH4SB4EYGAscqDyLIkH8wDQB6tTGZY0LuwVVGSScACsmXxNocU0sD6vZGeJXZ4FmVpAEGW+QEscAHIArlvFfia4n8DjUrJLE2l1ZSzvFcjzjOpwqQhAQTvLgMeqjIxkjAB2Goa3pelQxy6hqFraxyY2NNKqhskDjJ5HzDn3q9HKk0ayRuro4DKynIIPQivPT4Y0/XdDtrDxP8AZLxdPvlt7RdIjlVIANn7tkGQMYKkn7q9wcmu1vbibTbOM2unXeoEEJ5cDpvAx94mR1B6eueaANGg8CuG8I69ql5dalDc6NqhQ6pMnnSywstuvHyH94Tx/sgjnijxR4m1nRfEEMMENubFrK4nweXfy06jkYPmPCgXvub2wAdLoWoS6rosF7cW0dtLJu3RR3CzquGI4deD0zx06dqkOt6UGYHUrMFTggzpwfzrk9E1qTRpF0SWWzkijngsLPEvltIyxJ55y332VyenU5X7wNcwkMS6V8XsQoMG4Iwo4/0Yn/69AHrtvcQ3UKzQSxyxN9142DKfoRU1cjaa9pmieHLK0R4Ptqaak8NijBGkG0AAYHGWOPxzXSWl5Bf2yXFtKksT5wyHg4OD+oIoAtUVj6jql5Y3CxW+hahfKU3GW2eAKDzx88inP4Y5qfTtQub5JDcaTeWBTGBctEd/08t2/XFACnW9KDMDqVmCpwQZ04P51at7iG6hWaCWOWJvuvGwZT9CK8iSGJdK+L2IUGDcEYUcf6MT/wDXrtLHxBp2k6DYWFs0D30dnbMtmjBCQ5RAeBwNzjP1HrQB19Zet6hNpenfaobaOfEsauJLhYVRGYBnLNxwDnHfpWXJ4tz4h0uwtNLu7uy1G2+0JqEKkxICRjPHoQfbI9a52XXNV1HVr3S9XFrBZw6lBuKnAiSNDcyKzZ5UIsGWxjMjDp0AO2ude0mzv4bG61G1iu5yFjhkmUOxPQAe/b1rUrgNK8P2Wv6hoPiHXLaYeIY7UXHmQrKkQGflHPCH5s7MgnJyCAam1zxHq0WsaHHF4f1dEOoOrBZrcC4UQTfKP3vqA3zYHy+uBQB3NFVLG4lurRJprOezkbOYJyhdecc7GZffg96t0AFFFFABRRRQBRv9J0/VPJ+32NvdeS2+Lzow+xvUZ6H3psOjabb6jJqEVhbJeSAh7hYgJGHoW6mtCigAoxRRQBh6n4U0PWLsXmoaVbXF0I/KE0ifOFzkYYcjHOD1GT6mmy+GbZ/ENjqqSPEtnayWiWsYURFGK8Yxx90dPQenO9RQBj/8IxoJs2szounm0Z/MaD7Ouwt6lcYJ96xpvBckniuLV1vrZbaP5UtDp8ZKKREGw+fvHyUG4gkKSB2I7GigClYabZaXC8NhbRW8byNKyxLtDOxySfc0XenQXtzZTzBi9nMZ4sNgbijJz68O1XaKAK93Z21/ayWt3BHPBIMPFKoZWHoQeoqj/wAI5oubb/iU2X+iY+z/ALhf3ODn5OPl69q1qKAOL0TwQ+m6zeXt1f295HOu3yv7PjjKgBlC7h0Xa7ZAAJLE5wcVrT+DfDlxb2cE+iWUkNkpS2RogRED1x/P689ea3qKAOS1TwkZNR8Ny6Yttb22k3LSPGxcEoVI4weTk5Oep5JPIPW44xRRQBR0/TLfTTdfZwwFzcPcSbmz87Yzj0HHSs7xJ4asvE9tbW99DCwimSQs6EttDAsisCCu7AB9R29N+igDn77wxaXl1o00TvaJpU5miigVQrZUrgjHHU9PU+uat/8ACOaLsuU/smy23RzcDyFxMf8Ab4+b8a1aKAOR1bwXb3d3pdxpj/2e1l+6AhRdixb1k+VCCA2+NMHjgnORxUmn+Hr3S/E8NxbXKPo8Wn/Z0glJeVJS+5mDY/iwCxJJJHTpXVUUAFFFFAGV/wAI5ouy5T+ybLbdHNwPIXEx/wBvj5vxrD1PwPbzarYXemS/2ckCCFxAqgLGpZlEalSFbc3X2HBwMdjRQBzWk/brXxDcaSLCW30W0tIUspFYNG/94MT824cAckEZzzTrzwjpd94oi1y5s7aSWGEoFMXLuSMOxzhiFXAyOMnn06OigDmLLQLq18daprZkg+yXltDEqAvvDqTkkZ29xz14A45ztXenQXtzZTzBi9nMZ4sNgbijJz68O1XaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q==\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWgAAAAoCAIAAABcqPdaAAAtF0lEQVR4Ae3ddZQ9xbHA8QfEjbgnxN1dCBB3d3d3NwjE3d3d3RMgEHd3T17c3QXyufvldC7XfrsJvMdhd/6Y01NdXV3e1T1zd7c78MAD/2eTXb/73e+OdaxjEfqPf/zjEY5whCMf+ci//e1vd9xxx7/97W9HOtKRwP/xj39st912NKN36Obvf//7EY94xD/96U9HO9rRtNNb+H/9618RgfnPf/5zhx126PHPf/6zXo/gIMbqdfd4wAEHoN99++23bwqTanh06XIPjs5Rj3rUP/zhD8c4xjGCLLzHnq7RCA2frkHt5z//+QlOcAJdpgCPvdgeZFEgeBqAFs7oXdH4/e9/f8xjHpMg6S3O4WOe0vDwl7/85ShHOcoKCvNdqYKlqC5t//KXvzze8Y43dN50RHBBIBTOB52GD+QBX9YwvC5EfvWrXx33uMf1aPajH/3oSGkPTS6j8F/CM98wN58kFwdAVpfZmWM46uq5oFFa2simIDkqQ7BRZspqq0nN9x7knfMdh1cINfFd/sGZ8ga5QNYASY8E12CeHvXSMmAxH9Cdj/IkOUgXYxjOwOya+2ZsRPI2yCBRELrQmNPdxTt5SbMjCx9j7vBR/tnPfpbTDPMDLrwQF0K4RTME7o6ygQJYm+DgZQ3EoY2MEJ9wsAGnR21jw+F2CycF1BXP2rKGeyrSoBYM1DBdmve4ocvA4pYOUcC5rIEC4tq/+c1vojZiCc+UAJgCk6hoCXP13fAuBGWNn/zkJ/D5CTFxskIPq8muvzcnKb1+97vfJTUHIIVLF3PgwWWpQxNwGWVdDEEW3ksVnEqbCJyEy6GPFMcwfKOp/KAZJxxtsosSqZ67D7lpE7DH4lYbAu+p4U7LYwi4x/BDGF3sBIJgvQxsLu1IeWRFj9KHIVw8tIkvrKGFWVuceGRma6zGoNmQmXv0ATFmlmnkZpzGF8/xCSg3TXcNQUZDb6ltGm2008OYPZ71cvqBo0EK96Hk6a7V7aGi0GgmYw39NzU0STzkob15wVfPNdObBkxXSp1W6QzmIfgoFWJ7WCd9coCEyhOajuC//vWvV0wd/925xKBpIGA2pbRhuxWk5rsmBfmypHW4hHM4WVy6JTi9y8q2LdrcomTPuTVoVnqWpBlSu1VOg/3cWwT08lReZRNRXcAGiNMbqyDSQgcfBLWhTzyEb1KWqx5GGVcgWIJsFGpjNeBA2uBwBp2ZBoeL5+BINUpDLYCgRqIhAtkdQmWCBs6rEdoTDbYph6Qzc43HIXL8805EYpKY+AFHEDWN9a/8g76BiPziF79A8zjHOQ744Of73//+KU5xCgxgPgPVZV66Ykd36qVPorkPmtMNQzzOC8iC03tD1DCf0qaHH0ptXFEXnr/61a+e+MQn5qKUAEgJg7FYWsHAME04VIEOA1ELv7V5hKCLcgbNFdRmu3CzqS5eRV5WqVF73BkjbXCRGt2FHA+uTd3TXaNd+ke2sWOKlkFo3/nOd0JmJw1lcI/uiE+TNV1AIWGtlrw8jhVjjJppYGAINYOMuAQ3IxTGfvzjH/Mns7tQIz62NTAQqdE1M9d4HKxqDMHN/rWvfa2FGuZYJwdkDN9QA0vDQA2UOwaFz3/+89rpCifTcw21DOT1NMjOZJhv0oqm9Qz8b3D4Rty6X/rSl77//e9/k5vcRMZ873vfi2xm/elPf0pAvM1YeXrexIem1vjhD3/4ox/9SG9W/sY3vvG9732vNiCLj/Y0hdXtSf7ebJcoKjxU6el3uOPwsML4f9cu+hFjRbt2WoYJx0AW/dSnPgXOQmkyIigPe3C+2u6MPUxleJzEwPB1FKJ29atf/U1vehOyxWT0l92bAqZ0A8fj17/+dcODj1GIg7he/OIX3+UudwkTGxibTj1pQG+pYQyfb8AcOGVJpG5+85u/7nWvg5wgIKqG+bHbhNAMVvn6W97yFsTRcZ/WBp49XulKV9pnn30GNXGSSuWRodXRu6KxppjJbYj/zne+8/KXv7z0atR0rl9B5L/vMrtLWfrUpz4VtVOe8pQ3utGNNDhhxt13332vfe1rgwyGZxq65Bd31xvf+MZb3OIWTEx1LhDWefOb32wKhssD1xA3cNt0iYM/tavnW8Ly4Q9/OF/MyaitRgql4uc+97mK4bFdZxtmG8ja7373u89ylrPc8pa3TOV1ca/h2S984Qvve9/7Ol275CUv+da3vhVlXegUaRe4wAUe+MAHjgX50Y9+tDAYhjznOc95s5vdDOWxCq3HcXHV7Ni+4x3veLKTnezLX/5yNMFFER7Q/OhHP6r4dNQiJED23HNPe5aTnvSkT3jCE7797W9DwGRCxXPthXcIIfPUxz72sUQzEbLo048hVQHNu5DCCiBqpL7nPe+JGuWEmfbAk+vsZz87EyS1/HK1q13NzuXKV77yfvvtB19VVdeKWeoiBUwX+u95z3vkXDMC3u1udzvvec+7zeGHCAIXoihmwsbDHvYwbPDPYx/72BwV/VxXIqANhnZhb+FlefjEJz7xrne9q/TBE8597nOjgCxzUB0KcgeIGYfLrV+ETZc4Ug3dsYrdnVIwSL6YBmtTKH8V8602bBkcvpxSMDCDpeDOd74zYG4NEkGjXvnKV+68885KSlaUI5gqK7bmo3/Ri15UZoGv5Oam9rR5Btd5/etfv9tuu42UwTlGRRP9mTvextKKvVhFzbaWe0EG6dJG//znPz/2tPmliV7+8pebS42Ayac85SkoYE+XeYdEMzP2qDelGb733nubTpVmlN6HPOQhcp9Jh1/CWUhkBbCxtvoyOJXKApCzCDVqU9SFLnQhDGu/5jWvufCFLxzOmc50JrKMpLxiitGVsDFsPbjVrW6li64okBuQTtdAPvQaKdy9BkGcR+RvRHZd4hKXeNWrXhUDeF54sd3pTne62972tnphch7e/o53vKNRiDz4wQ8+z3nOw2lT3UbF2UbiyGx0Z3qTRT1H7B6kuaF5xPFgguRjlDZf1NVdg/kbyB6JB6g9hgw6Gog30JCQB51ptNGGE9qA1GgUb7vgBS9ojX3Uox4FDpg4zDPCDwSFDAYnuWDihFo84lP7fve73+1udztsF9gQjMrk4A4jrQ8eVRNO1x7xiEcM/eT9KKdkdDh6ve7nOte5VAF6TZGWEBnb7KEimSgOYymcBAcRQqpc1BBBCm/4hCNJifCmJqZ5r3jFK+oCESEq5JKgdckQQEPcXR6RHSls8GZGw5UbSJUdUp1HRU0DsREdXSik8FjV5ZJx1iY56GZ7EildiOy0006Gt99pFDx6ONvZzqZqi08ZHPPCw0ALg4V6jz32gFa+bvbsS4q0qrex05LqxfnTnvY0U8fNDW5wA2cN2mlSY8gC2WP30cBhkDTZwKgN28HhA80LGD80o62riS5zmctc73rXM/AjH/kIIqh98IMfZKN6hx6GlyYdW7j4Hn8zKqAV7oY3vKFHXQYyLl11SDTo6F3n9e+jfpqauUhiDXTHgWNnGcsEpOqQvDNnrowPHBgLzd3xLzTyx58jXEDaAUcB3B1z/EbcGsgAzorN0uzahgBSDX25Z0XEOxg3BDOmQLMhC+9wXNNdaQQ1erS0SsY4dG5kFsSJ85nPfMbe77SnPa3q4KxnPSuWnv70p/NFXssRuaDPPVS/17jGNexx3ve+9+HTQAQpwaZG/lbTxjlh2fg617mOHQpWPZILw0wufRjyile8QuZC01i7BmmFZ0CzUbfFwLlJeQz+sU1k2eea17ymatNm3tJnauGxyy67XOQiF8Ehccgi8Bynne9857vYxS52mtOcBgMO5MGxeqlLXWrXXXet7jWLua573evSLZWib7d8/OMf36SMgjdMom/1vupVr0oD9nSA4nD//fdX/Z761Kc2EGOAxMcbuajlSU96khLmRCc60Qte8ALxgBp1YeYZz3gGsoxOA6Z++9vfTi6L4R3ucIcvfOEL9G+4GseW6lrXutY97nEPDkaHhMIhFZ3jHOd46EMfij1jpXuj7EHIbgpskI5H3ec+94klpZMijn2JwLuEk3Tzuc99Tt2n/IFsLpb64he/iOEznOEMzEoKGkjP7mZ5wAMe8JjHPIaZpFeVDvHBGZ34uCVydIxiWXdDNEhnXhfB8c+p3A2UvNxtoK5whSvYCbrbCZqXobFKuqtc5SoZ9LOf/ezFL35xEMmC+2GM9qQJaqQWekNTumeRW9/61iYli7k+8IEP8Iqb3vSmlMDE3IOWXvayl1kRUbBLJWkCUrudoxIM/9SFlMWJybCHbfeNXYguvMxqAl34E0Ia+AacRh6PcLQzOZ6mcYxqnYQDTpuR0qC+MKeHgDPDoDxNiosg0jUNX08bTZSTSJzc+MY3Noqm+JNG0zGh7bHHN7zhDbogc3oN4rsEp8PtM57xjJK04UKrswMlHxyuzE019tprLxRaARKWWtBnVL4lmAkrtESyPMW5ITvi5p0I3vWud+Wpwow3mEtXSyWnQflFL3oRTI7IUZzYiXkQun32s58tLD/+8Y9bT1zov+QlL/Ghl8WZxgS2WhfwTne6EyLiDf1WaUKN4xtzuaQYZG3fMCxBiGdDwDGgWhY2lMDhcEsQhiBaKuV5Bdi9731vctE2xojv8FWor9Ge6ORtb3sbgqiZV0Ne0CVNn/70p6dVDNt0sALnPuEJT0hYHiIdd4REezY+P/jBD9AUNulW/pVTcqS8CD8Y0xZ1qi1J2UrwvOc9L0FEkQYNvPSlL/UWvGrIXtI7IJrBjBrNcGlLgsCSqifmTWGvpMsjvQV0JzhdpYQYGF1h6uUbJpWGzKtx2cte9v3vf7+G1GwvGUuO2O91r3vJ1EYJe71061zDAZmswTE6LQKUXHbffXdoNJzLyYzGGsJveZH6ixSWQKaUpEiB7XiWnaf3biritmOYRHBD1+KX25gwa9y3pJhbDgZxUaL1WUbApUfCQHYxrRTIqICUyHuwYngDOTfuPeoKYlnQBucE7KSXdxoShclMa6U7qVDWxWUDGlXD1AjW3uYdZTh8hdNbAcI3LyKmJhEPlgVYRZkgrzPz7W9/e+W3hl4LvmLvOc95zslPfvIzn/nMxHdHhLvbV1s9SCERUBSC8HXhE+e0JM7FpIAxHQh3sYCDoCzemJPfIKiQkZgM5FKY1IiOAsFAqwoIY1tVpAaZ5frXvz74bW5zG0dfagGhcve7391ibt9h/aFGSsOVk3loMg5qNE/hllyZi+rkF64PzV2v4RZn9a1yDE1OJrZpTDqjIgum9wtGKWRElOj60pe+JE0ggr4G9qjCOiYIGRcD/AFZFjTcymn9pA0FEUVRrIwmMxqopqBVYaBi0oZPRRZ5Cdos4p/LmVchQFcU6KJkDoYNTJooF8KALo9eOnzyk5/88Ic/bGEXdd4u4QqOtX1t9A5MKaNJOmJVksKkRYKBqIUFLf4MSl6kuA07kgicUZRUZnGxF7N+7GMfIxqG+T9MxGlSSrI4OUWChgJD0wbVGaK0VOkYyApwsERjtCfBMdzjHvc47qduUmASEOcGyv7UhQ5qtKfwkfe1jXr84x8vrUi7GHDwISXZ8Cp7dRGZaA6JixoKtDdhDgMhUx0cDKPsMeK61n9NuFl4SaLgzUTIQt1M4LVD4PomxgS16o0UtrBCSMYuAEqNHNSoaFIZ5LIGTGqKLNWD62Utd49kM9BEEXdnJL1midSAr6chKagU7BHEISaZQQFPvyZycm59k+bZgEOINDHDY3RhQJuHYQarMUOomORkwzwcC3ucKT5pxoKjQLWwIGtGlw2zILeiKkorwk1HFuut6QykEEQ0zJvLEtbqAfLIRz4SkxIft6M9+sQYuDt/4p1ynwxoFZJZ+JyoE6iswGt5DzrYRl9vKcNEphY53k0QWfCgZt9BP7wch5SjoLXQGWtGo+DTg3xEFejAd/mMgmhyH4ahuQCxl64Sh7qM5TAGKhwwZuWHphpC1ux5BR1KHyJf5IgE2w10ZCtlPGSCIM7ZkEJQw7xspMtF87jFtnfkYlJV782UjEPn8OURQG4pYalEJD4pGxtPfOITac8JMQr8UMZhIGQxbzoQZsKD3Lc2yYIbNlxU5KoNqQbdkg7PnEFCV9UyohpBXYBtXRRiFgxwTqzKnhYGo2QNXSbFCQSU8ys6F24Q6IeNWPnJT34y05vOuRjjcpuvfOUreOaWcitOIINTF1LpDTClZZoFIq0ELU0cRmHOZATDUI8mNk25CiskoQ7MKSApFxoZ2J6K8URUbd7AS9yVqd5HGosIagSovoLmkS3HLPWijAh8j1YVnqqBPlUaO7HPAQdgD3CdF33BtIh1dmDtQsHsJELT3ZYbh9hQK+JWYLOZsMGJgTjEjG2ChgtvhEITERpAh0IQUfRCow029mhtsf4rUwUeeR/0oAchpehF3BbDIoO4ePbazGmFUU7gPLavsURgBnHsmdGxRWmFlyPSUYK5LPgUThVYEvCGiEYzShaYp21McjXE6RAa7ckR0kcKd2doBwfcVK1rqZeYmIzbQbbzgi+GJUekvMBT3KJ8kpOchBQQ4Kc9uUxmxBh5acOFMg2YCJOI2+lgoFyTAr0aoGHMy0EQdBliXhWWKKJAj5KIQweqNpHp0Pe+ozikcDVLQHDKwYl8oU6kW7WbfRNdQaM6lRqcb33rWyTVsMJL04ZLK5VdUglVk1GiJzIpVAoKQ/QBiYMf9I3tApclGdQLbMeoLg2CsItglruh4d8dYzRQZYSC1MCLFDhSIbJMQzrULAyvfvWrWZ+SLWaG2IwwDQruzIcrAcU3kNXmeHkgrXJmK4ReRYe74WykqiIml6YuRCDzEA1G4RIoeLTeFBfgG7swseIaezxczqOxJaAzOQU8dnlAtg8T67SgnUXhKBfZQBYHFCrclzEohTZBylDoaCPlrlemsBdgFUoEcYWsEeYabF03IrgGA0oAuutcDRxXCnXlpb0DuXg2opwAzoc+9CEItg8066MpMW+PQPtOIuAoaJXZmFE1ML+NA2DctiESG6xurCFkxAAK7uCWO8ohLBM6zUKQTngYCpwYzei0JVaCYpJr2qqopVFD3/4cS4jD8fLYKsoVWIEzUb5EgH9RJCp8AsQXbRbA1cN2IhmC/iuq8SDGBDCHSwRk1fZJgThWBa2UpNfFNwRkHAoAyCLHjJb0bERGGx+VBe2ByINCEdti1dSQCYuOPaBNn15ERLsMSwOqfZJKOvbqEodIoFsBSTQhbUWlbWOpSPiRiLNRo4MAbLiYz11I8B/W1FBadhAomyg0CMIByD6R5MADPcKvjWFtEyk68BAQZYUPNXokC1ZNZ/ZxkREbLnAIDA0HMgRmRZDO0bS5UFagZsGQOyA861nP0munqQyRJeELKA0rUFNHxD2tWva4n0dT2NTAlMpZmQZkHAkLk9I9mqRzKmTT3VjnU/SWCKxmIvtQwurNEzTWfy094zCxEHKybbtoPhRZjuRsoKFXu7Xucpe7nOl5VSmNnRxcqwlJzvu5hQrTCY31VkGlCORMlEuP9tKclTeX84ouKkhmk2qg4M4qKgVndTwVJyCUaKDGsiu0KIdT253NeLCQUA/TvjXKCiBmrHWnOtWp7HJtGkULJ1BM8lpLgX2pDY7YtmxatazJFitwOMzGQpKLgwBCmYtbSPwa7MEt7DaFcZICYttaTRY+bfUAwYM0SlFW9U4W6VYxYrlTqEMAhyDSaNLUjvq4y2tf+1pE8IPz6m1JQU7hDbQkvKUAolE7VXz605/mQwoQENTEiTTklIEaRbJa3caH4QyhH6FrUlbGAK6ke0fIiGvI4Hr5HJFxiHPiuBvITxzN2u4xPZom5cpGcWLmZkE88xAlWPsCKrW7wcDzn/98MeMNEZ9We9tqUTunYgIKdzLqgLDNPH+TH2EqFoxlJss1sjRDUTQsaToalDUErRmpvfwLaPOiQOCoqmOpx2lCYpJUsNGJbCLwnAtwSzgyl10bHOkPNYcOJMV/jkdA9PkqMWmjR0pADRwnQTzCQZ+zKTScN7O4FQhxdY1NMRMoFpivA2/a5hsspWakH8PphIBomgUDPMrKJLNzPAZyAKREpWfZkGOgL59CtgQqEjnzM5/5TBKhYzhbqEosVx6xalWGrGJinTgH38BFcjHv7uINpUmsaHNKujZBvSG4V+VqcH1xpcaGTL8g/Fu9KlUruhCRL8QhbvbYYw+ULUecDxoLMb/h2uR0dxGAVTyi7y4pkhNvEbcosSiXogKYY8gYDu4KHlD49YjsGBJk/m4snLwEqxoe10hu7DZPeUAspFjiK4hzFOHqEW8LL4q1/BpLDzSgwVdW4C8kAriMe9nTSpjpp5WjvfDCgLBMFpbVkB+FqGJYSegRk7lNONyGU4oBDGBjAJfxyegERAQ+80FDQZws4x/B7CsxeXnJZIZQrLELLwgLL4YQS7K/oJVkB6tWzXjGlcwoZXBakIXEVwCXybsMziKmS5AYYA6P2vinDY+SkSwAQgMJVYygqTeN6f3mN78ZBcMlIOuiwm2EswQk/0Y2i4dseNN5HI26pu+T8iwDGFzFohGGgyWZjDekTRocI7VNAF/agxCvolqZYM3xGKaJaUFFqkoEoV/BIJFLLgqncBAnzJh0TGETIXP3qFeGVpJ4TOPB0dfl7gKPDW16xGGQQTDrjsdljRm0plv/PR7m7zmidGDZt4pKpkIOn8vYIIUkazWGkOZXIC8jAr6Mc0uoeINA+TI4U45QWUZNCstMLI55r0IdxamEJaCxljQjgrglo7UURC+F8IRllBsFZwaBLZbxX7ZyVyhZuvqScjjDxCEOfs1QHo+ym3Vb7am8Ug3FCeZjxsqnYZsmy+ua53DQOaQauE7JMwRbQfMB9YgzJggwZ9x1jKI3bb0FF5ezhIMEpzR5RN2tMYZAnhFwISfhTzZCWi3+GmpCH0HzDG0looMJ9nZYxWmaEmmJJkdRweKmdGNWH/Co0BQdxg5PUqirMA1vcbNMqc3sgFBDx+ylLUNcSFmWATtRR03WjDfzVj2GaTpoQ07qrk1UlPUOifAPAqFce3B3+vdTAz0j69IwChDZDV2xN39PTHZqy+bwNZx/c3DwFhEoQeyp3WAqnt3p8OBY235axrxkZDuggCdmnJjRlfjzd3SgDWQLHZuClNSi0ChEPDKxVwMauaau8JdxTNWuLAVHw4xILeMf5SbScH5hh6We1Y7O/B3BhVdycfjYQ4Fo0cmHRVdvUsH55zzl1ZBl8i6Dm4Wu0kCUYxtLXU61NOyhbIc1hqWmhxioi0TGatAPcygYi2tTeMfEOsbq5ZmChTKNSqV0UmzqXXZN3o2JT0GlWLCq2xQJXWWbcsMeydwWSVtQ49GFSXe2jhzaHLixm7B5Uxr4pMem10bLl0h6XcYKdWWI3XgHTmLYbsrbJidzXkr1GHJ3s/AA5yAWMZzY7zlIcxpEEqW1DbAhBFaqwSetItP+VhnGxoAuTLoroSVUW1ml8qCfUrA6IP+XDaIxraKJwlmODkFYrgOjeU6yCBzGpkYIskYnPvPI/wEEG/bMiDsm4CXUQsMaVLeQWl1EoGorATNBy17ha6OZkyBln2tVZAu9WUpjBf2IrP8uYTnccY7I0LgiBQbS8PqJwEwP7iTi3ljVGHrmvSizBRNwwv8v54lPus06akNH8vxBzOJ5obzph04UZRQlbH1MECYrkIX1O1WcHy5SKME13zUg5p0c9YtnDuFMRRx6m+XAnEOLcNPLbU6zDcAEDSrbBLN84VWCQtShN+/nKI6y3B1hwgTBU07De5zfODN3+t0ZjMMzOLRQzDC2gQxmCIigcryn+HTcpYRxgNwpqSGsS3hSwQHs3Mtc4ICmc5EWnx69ubDWGeWiNVOgb6CJAs7cDQliuMbQWo8zyCsex8AZnCJTerVZw7MaGP+QaXgGs0d2hUNprG6t8EgESdnB50L8ZcBl/At+B7F2+BxL7LmbgjNYNhaSoj2eSgopT7qhc21DOI8pNFgEhEfqcqkrGd0j+5oLfVJL9BoL6c/obbA9GjOj7Ph4qfNRCoTjblL8s/UMZo/L6IBjkjdigKpFprY1j5iKZWshxyA7txGuDtrYYiH9ZcAZuZahDTgfxtK4DI8C3nQ5gHdoSnbMgIhHWm1saKPNIpyNZZ3OCARhKMAhCwGvh5gGnOAa8khiokCHgGPxKDYHb9ONyeFwkemu0KAvhIS6747NildFhJrWAsIVcOOM1wovsHGD7zwGRW0DfTVE77QswnEGaOci9QiAiTetFU7SBzhjIA6ZjgzvsBcC53PZJYkTR9+6iMo7KQsmkTgHNPBCHZ/UkXUR1MgJMEZsWoim6TDsYEX1ZOz8FRvgGWA8YmYeeQVk2n7TaDw73eIfY6zOkMRZhg+O55EyjEWB8kkxTXab7WX8sxFqOKExSdZ7XCLbEDH6Qpo0KXFgw6UBucQHmf4zQUqb2G+HHXhkr8AIwpQcne+WZRbSNxZmFwSPGHNnx4X4XAjzFAiBh9CnaCdRvjE/ZBm8JZN3EcpFfJLis5VGUMikHjGPH1MULPP0DykIHya1a5ogtZgab3Tey0psk50zzPADs4HcDNvQsK3NQLRkCNOIZauXtCuh0x6y9jIa/I3UhseAga5pNqbbkyA0AFGrvdcWNhEmkxdswjkTPmxVPOZP9udO7Lxq4XaKN8bDkGkGuwRDnRUB5RFtH974wBkHOHOJasAhrUfzUoouHokOxSHrzi1g2rP4FohdcSj7yFmAhug11qh+ggFoiEuD4ZvO1tQpLGQQcLmsjY/2smsIAiHjxfAy/PXDGY/GrNWDPfJafil/IZF4LjCUHhwXct68EH8ZcFnAUB0BESyj8ScRIvAEz0JSOEGKNlz07NFwboAO0VyAtAcIjXVoGymmJGZT8FeeupB4wKF8RFyA7ulh4ShTWFTRxwwEWa/XcAuR8bkQzq/Mwr01WIe3sAhxAN2lVJW1sUQgOArL6Cwk/h8AE3yoYlAgI1XQrdhxt+rgmcmSfaCNBm7TPCtwHkOKcQ0CMpAwN5w4k7DZfntAxjJK8HoUQVyCBgbBmcbknwMYgBvRa4xoF6joevnko5R+hyN3GObliIMPBw0+O+kzfo8qBd7j7tcNFn9fB3hLjxoOcKwA8S0jAxuOvsiBLLnQDrZcFGRG331A8EpMgihNeoHvmBbQ4avTIPtMFrWIUQGVqWV4fE6PZ2gYzgMoIqujo8tjc8GR4xBZpmhoWat79nOnRGMPkcv6QBVMEkvuUmETzdPHBkcxOwQZHAIP7nEeeQUkceYROBDlMD0e9DKWihJvbDSPDIINqjOK1XIs+jQEvCmKq1xNGxAmexmrbawaGxxwIf3BJ4KD5gDOD4HD4o7h8Mz65kUfeznbPP5qCFLc0hVaDEgWVmYQWlqmltVk9SK1TZxpBOKQumvA46cIwqqYp0/6F4bL6KMgBASU/EIQojH3cH6uKPD1upvFpO4WaWWId21e08IsZS+z10F/PQET8DDhLZ0pVRaIyhEVF+i6vK9C2kzMT5WQ/cDGy1dd2i7vWcWqzxD9fMh3ipTuvRFbuvbdd19OBtmZhWVN8CNiO2qUtCfRyAKqCY+cACc+yAnZzwcMB+HZhJfCIDQ7ZETct67/QANDh2zRcOstUzJKdvEITsP8T4MVaL67j69UkSyCSNaX/SPCkTQ8qgWCcPSA7sNVxEC9sYGsR/Td4cB0hdCdkzQWfsQd94BYh0KIZ36CYXHipzqWPR4VPJyYxI9Hcxm+5T9pprvP5KQJYU4z07qaxhntSUbkGdmJxj0ykt2pNxoKAY+RYACe5OWIbAQ5SyueJT/7cL2NZQ91h+2D1KPAHtP46lkOchRnLhui/AadfIX5nYM6webEccIDvFrvg184pvPJo3rBLCGgzIcYXu/Ca0y91VimAYYrbqk0K8P0qZ7SxmeU06OYo0eG9o2sImX8WJ6T0b/eYRevRZ2R+TjVt+e+jMgxIHgT34cS2vlPNN0L4DIUgkHMhavyVxCeqWFts6pZQkp5Zh/UjHXtvffenE2VGkuIJCZOfGvb+oQOOGSNrYsGUoWYzdZWBcDhFfMqmiQOl9BtpEMsj4KWmZkk1Y/EbJPirUr2Yy2W8zJZjmisrYSx2uZmdW1GigKf8K4EJuC46sKrtLLrrrvGq7laRlBLhu4+p3X+Ymwrhkb+qnfhNWbZamxTA2k+c/g2R9VqCOMypWCj5+zLLnmCT54dXcER1cO39DKEqN55550d4DnRYPFIiVvUvBq3G+U8TYTUGKsRZY3Sx6gLzAIfhyGUhnzbrtrNVyHkCR4ND6HNL1JYwryxeNhvv/2U69KlIa6Rknrc5PeRfKf1kM6nIaM9OUoscxtZRqBiO7ryfalaLaCA8c7cLkY6N5h5Sg3MYPPiA8csHb4dFJxmDc5INsbOTeKPgfMejy6bGnmKc5QCjGXyEJBCx68z+nSvnIJmxOEPSbYaG9IABTJKIde2Ip2n9jKFinLsH7NsvRYAR1qsEJp5a6Dpjb5kYR8BaHnX9ouMfEDb5/YxyeVKEIYU6oMUmypI867sa2rIITjwMkS90yLEM7GUFEN8bNuoW/xAhiNp+0i0RGb2xGmWMXCTNxgiPdMwzaSiZTqZ/FC3V6EM0wmQSJZBnFasnT9O/sqO0tQZpyMPHxo6rRThzk4gsJmjF3+qjOfJBazSbqLDc9MDSisIImLB8UWWBjQX4phzpoWIV7YoOwTGt/yi16nHGtbkXxaShyvsv//+IHDcjeKLGsPb5sVr+NZ9mQaozhmzTzn8rRCFpDLBL4zoX7T7fsd6YKB8rWrwDttG0p/VkdzZFA6zMrQfd7K+z20YSOgqMeyQvdFXPKoirf88DxEG9WcKpA9tn/b59gc+OzKxhQSyWtJP3R2fIc4Z9tprL58VOCnrD6ZYKrBhIquL3/j5XMgszK0gxYA3/fDVEXIN15IRzGKTYqvl53C+j8Q/TvxGQ87yDahev3jm8BwYe3wYZOtKA44dGEVxwDdohlbpealyCrlSrwF8ovWBGepiTpaGwDacJkxd1bcVfuwNYuyIZKuZfAEYNXeLQ0OigKzekdWMDQJoljCj5t6Q5mpIM0LG58JL19a1QgMUKMz80sknvCwlhrmI+PcjfZFJ4Yzup73aXsZLBHYHorfvnZ2iQVZ7imoe5vesTaQ8qSTscZdddoEm6atVDfeGxS9cWLYCwe93LR5CWgqA5iekRnmj5/MkvPEBb/H8Ap25rT0VPg5ffKzMT5yjST12uApSY/fcc09jcxKy7LPPPnqxzWNVRpYrM/pxsxcu3vr5CzeQc0syam9dNEDnLroViUMhK/QzqTiongndjbSSsBON0zWIiz2kIv6BnIQ0kjSgXs6UwbQVAibWMJ/VzCMvQY0TuCtbmJNdUeCyPHJ6CP8AgYkfs8SP4UhJgYZwHXMZ0islCGzv0YK28NK1da3QAG3TJJX6naUDUTr3jT9NOtd0Ls5MDCHqvMmyKRCxwlgKENXUrssXE47JjYKpPgUxl8hkLH7CmkoDa74fMVjeEfRBhJLB+m8dc6kCvGjjbCD8pF/NGyUxOcnieyj7KFlaQZxbehnnNb/dh1MSnJsCA7KegjRPkNo4CVdEDWUNeY2/efujTuGWVh1ZRhLx9xCwajVy5cMrtLR5uqjRRbeMQjMWAEpbpR8mL8GwlgFZPYh7vXyl7MC0rAhewq636mAMqas7oOkHnenjqOg0ozwFZ6Q6vjioRaEujhvaDPFp5K32OjWQkn3mZ7NQeIhJ9qVk8ZalhLHdK4KAtiTSSnCbiN133x0Fj7KANpwOtjRkf5saNO1AG+tu5XCcqcF2mb7NC68D7O4MArWcgWM4yJC2eLCCQj6SEaQJpyeYlDJsnOHIF4Z4w4JIxY6Vxv5FsjMRlgys14+tsZQj5cyGzHgayKa9RqQXkulhhX4mq3V+wwC0rN2SHrBeVq/Q0CUt6QJxr5efhdy9ru4gctjAVIaE4x6dZrQpBZHq6uUiA02jLKjhJZx7NVEIEa+9dd+QBihZpIl8P0jnNMr7/twZJTNTlaOsoSSRCAAVDlxKJEP2JY4IZDtewQSjBkQQD2oNfzzGH1Lwxs2vuRUyvqqoalALyDLxab3RaCKkHFXYrfBUb3PB0e8zUMdn/aEGrNrs2J6YzrwWQ6OkEkP6zMwQA8Edh1Xw+rNDxHTS4bcLkiA6nMd5jSGxmvvFzya/j0if1slMJE6r6KCsMQ3aam8GDVi35QIx5ixAyAlFwSY1iExd/pqB5dpeww+9/LjZwu4Psoo6cEcSvvTTZffhtasgdPdX0VBzeb/me2KrvS8AuaCDc+9ZfL5BpaZQtjiCLcL9GgBQlYGmD3bsmHQ5qZVZfLslsM2idvDdoFD37Y/hPi+Sy6QAJzK+adZwcMa5HbiqU6Qz/DvKRVZNJKPJNT669UJQgxROTEjnEBcaVi2qkuBmsPWhIeNkR3po0N2ieRjXgBJAeKsF/D0ebzGUEr5f9pcHnXdIEA6kxJ62ytGjX/34CKJF2/IuOBWJ/gEKiJwidxjox5CiXSby11tUKH454s67/F7R+YIyRGUqXJ3F0ozc5BTDRsl2xkB0bCUg2EQ4kRXPKhFtH5VgoD/pZKwc4XAU5/6hDBxv4pyA+IwV8z42cwpTuSEHtbvBp4SCrHf5+FHvyD7ORxF3yqaYwrlC+zBuqcMme1uJ47Bpl0OdK6uu6tRdBBY8tiR2ASASigATt0JOlApdXZ2TQZ7eHhZ41vM2m9HEujMLW9EBB9HlUSqxQxHnHWR41FUS0dBlXlHdNrapO3qTvMbUUYDvagpDRlEdq4NhCaLiImFhqoOSl5jIRmfrvlENbG1VNqqxwwm+OCSJ4BRF3nFYuqUG0SUCyxQja6gaVAfCTLS3E9YW7YYj4jCyrCGe9YJ0JGk/goJ80cZEGhpZw0A7DknKWG2ZyCiYEkoMQJYvsFESEeowtZuxzBUDpoZZ1kBh5CCyeIRv/wVITG1ZRkqqDTidAfVuXRvSwFbFsSF1HX6Qx3re8p5gMoLQFaIyBYhwlVYEsMAWZi3R9iPWcL2VFas1Ygj6MGUfmaIgR1YbZWTlCG1EzOLQxDmFxqgpcOJIxctgCM1epsOkYkdbhRIyUnKBVBUmIvAlFEmntIJUDQhyCnwMjIkAt64NaWArcWxIXYc3ZOEnwITZSBYjwESX+ExgaOBFuOLfMi5oxXxf1ox1vtg2xKGGGBaoI1YBfYkjL5SDPCpM1CBj2R/w+BHwIzGpWVyKFKNCG8gg6qC6tAfzpUWQGlKVVEgc75XjOeIDDebWtSENbCWODanr8IMs9gSnQmCEruwgWUgihJQLLMguoeWyidA1kEFCE5BSg5MCvUZVrUAzcFpT4lmdIk3At4mQcRDUVi9A01CVGIKfEdilJ0xCiENTlMhQA8fAYNiMEkEswYepy2MnHaWzhuMcNTyjoF1hNc3qVnudGvgXhY0boLU5PLsAAAAASUVORK5CYII=\n", + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAAoAWgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iioI7iGaSZI5UdoW2SKrAlGwGwfQ4IP0IoAnoqpe3lvp9q9zdSpFCmMuxwOTgD3JJAA7k1HqGr6bpUayajqFrZo5wrXEyxhvpkjPWgC/RWXDrlhPqUVhFOskssTSxshDIwUqGAYcZG9Tj0INTaZqNvqtil5aFmt3ZgjMuN4DFdw9QcZB7gg0AXqKgnnS2gkmkO1I1LscE4AGTwKWCaK5gSaCRJYpFDI6MCrA8ggjqKAJqKKQ9OKAM+XVrCDVrXSpbhRe3KPJFDglmVfvH2HPfrVu4njtbaW4mbbFEhd2x0AGSa8ntf7WT4raLc6npixXsy3nnSLdrIqRtsEScAYCqpwDyxLGpo7+9fx/crPq0z2a3lyrrb3sqSW8awPgSQEbPLBGVkXndtByeKAPTdPvrfU9Otr61k8y3uYlmifaRuRhkHB5HB71CurWp1p9JDP9qWAXG0xkLsLbchuh57CvNnvrm6sfDkkutalFK3h2aW5SOaRPMnVY9m7A4fd5h7E7SOmQaV3qN5e6fDfvqF4mqxeD/OJh3Rs93kEAlQPmDj7nfPIIoA9X1DVbPS40a6kYGQlY4442kkkIBJCooLNwCeBUVvr2mXehNrdveJLpyxvK06ZICpndxjORg5GM5GK5fxFrmnWHhjRddv7J9Q1KMI9lsjc7ZmQBmbYDtUZO7g+gBOBXPpDJp3wrhbRdRv45prtkjlMRt3u7qaYIrhSQyoHYkIcEhRkEZyAenxapZTT29ulypnuIDcRRnIdoxty2DyB869fWo9N1WDVDcyWyymCCZofNZcLIy8Ns7kA5XPQkHGetcQXZ/ipqzx/aTfwaelrZIWYrl1eV5GBPEW5Ykz03cdc1UhvHtfBfgFGupbPRZ4UTU7iCQxbD9nJAaReUBl6nI54JFAHqlQTyiCCSVg5VFLEIpYkD0A5J9hXj8+qXsFlrKXWvauZbXTlbw/NI5ia/lxJ84Vf9axcKoVgfl2n+LNXdL1TUj43R7/UnkiW4lNxDHdyq1uq27ErLbkbDEGBxIv8WAcmgD07Tr631TTbXULVi1vdRLNExUglWGQcHpwayx4u0v7AL5nn+zu7rBsgeR51Q4aREQFimf4sYxg9CCfNdHutStNItrCy1C8mM3hGZwkxbat2oUIoUjCFV3DAxkLk5PNb+r6vpWgeFPDGpR2Zn1NbNYdLkSKR0t1eNFd28sH5ANpxgk8AeoAPQbG/tdTsYbyynSe2nQPHLGchge4q1XittOfBulaBJpupXi6XFp149vb3EbRG6lQHC7OcvLJJvUHBCxgY+9nd03WNWt/DOq65a6j9uaz0W2Jkud0kMlzGkjz7QCOuUBIPBBB+7igD0Oe9trWe2gmnRJblzHCjHmRgpYgfgpP4VW0rVYNWtpJIQ6vDK8E8Ugw8UinDK3b0ORwQQRkGuP1+SOT4paAs/wBr229q08McbN+9nkdYhtGcYRPMZ8dFPPUVo2Us0fiDxobAF5kMDKo5Bn+zjt0zgR59sUAdlRXjcWraj/wi6Xuna3q9zqUtlbf2vCAZTYv5iieTaw+STaXAjGBhSwHGabqeq3Sz3kGla6DoSXtqLa5vL6fyJWMUpmjN0hLgAiNs5IDDBxnFAHq0OqWs+rXemqX+0WqRySBoyo2vu2kE8N9xunTFR3er29nqNrYNve4uN7gIOI40+9I5PCqMge5Ix3x5BcX2ox6LqF/BqGrQ6pb6FatEjuzSST+fMfmYD94QrjAPBVwSPTv7Rorjx14ge/8AJktZNItDAepaAmfzPfGev4e1AG1p/ifSdUv2sbS6L3IiE6xvE6eZETjzE3Ab0yQNy5FbVeGC9s9WuL280OHUbEaPpU8NhapbSoRbp8zM0jAENIdqKF3Mq5PBPy7Wma9fatqR06DXZLySF9Litnt3IFyI8SXUxIHKMCVJ6ZAHfBAPWelYsfiTTpJ9PWKTzINRLra3KcxSOoJKZ7MQrEdjtPOa4y48V6+2keIlu4UeSw0wys+nq48q8BbMKuGPmBfkLFfu5w3XFLBFp9l8O/D9pavIy22pafDbzOxImcTRh3iOeUIMmCOCM44xQB6ZRWbqv9seUn9j/YfM3Hf9r34x2xtqtpn/AAkn2o/2p/ZX2facfZfN37u33uMUAbdFeWXuo6j/AG3rRbU9Qi1u01AjTNMiYhLu38ldi+X90oXLFpMErt6jpWTNrN9/ZVodN1++aebSZZNYlmeSQ2tzmIIWQZMLbjINiYOM4BwDQB6H4t8R3PhmyN6mnrPbRW80800s/lIhQLtTO0/M5OF46jHer763FG2mxvBOt3qGPLtwvzoNoZy3YBQeSe+AMkgVxXhzQR4o0531HUL/ADZai0ltJaao9xAT5UeGikcZdR82M5KsX5rVlLad8QZN0m2C38Pf6PI6NKwKy/vDgctwIsgcnj2oA7fNYtz4k06AJIZd9v8AbPsUs0fzJDMTtCv6ZYhc9iRnFedeHL9NV12SSHxNrd7bRPG0KwSOTcoLctLK8ZwURnYKMDAZQq4ycJpElqfgprk0zSvPNazXdxNIzMhuZd0gVT/fVigOOjDB5BoA9Ni1a3fWptJffHdxxidVccSxk43Ke+G4I6jjsQTp1ymquB478MAFhM0F4GxnJj2Rk59t2z8cV1dABRRRQByXjPV9X0ldM/spID9ovI4GMvO5ndVCY7Aguxbtsx3rM8P66YL+W6muIU026in1C5aQHejPMq2wzkjDRDAUZJIGOCBXWa7pEOt6NdafMsREqEI0ke8Rvj5XAyDlTgjBByOCKyL/AMOSad4TOieGbayh3IY91wzLs+QhZMgEs6sEPPYdRgUAUbrUW1rX/BYkt1+yXQnvyFcSR70jXy/mAwf9YWHuAeo4h8ELFdprXirV3ha8mvriItMR/oUELmMRc/c4Usemcgmtq78NGPStGh02VIrrRjH9keRcqVCeWyNjnDISOOh2nnFWbjwpoVzqn9pT6VbPeEhmk2ffYdGYdGI7EgngelAGLb+DtPvPCsEGnTzWHm3D38E6RCOSMTFiy7ONuY3ZMduD1FdVF9ksEtrCNooQE8uCHcB8qjoo74GKwp/CNreeNpdevIIJkFpDHArAlllSQuX9sYjxj/a9edDUNFjv9d0rUpDEDp5ldB5QLlnXbw/VVwTkDqdvpyAc3DdS3PxbuWkvo1t7CySyjiZceZNPmYovOCwSFWJ4OD0xg1qeCVFtp2p2MeBb2ep3MMCgfcj37gv0G4gegAHatSTR7SPUZ9WtrK3GqPF5YndcbsDjcR+Az1wMU3w/o0eh6SlospnlZ3muLhlCtNK7FncgdMsTx2GB2oA4xvH9/vbbqWgBc8AwXecf9813GmXz3mi2978kzvFv/cZCuf8AZ34PPvitHH1/OloA53/hItU/6FDWv+/tp/8AHqP+Eh1Pr/wh+s/9/bT/AOPV0VFAHO/8JDqf/Qn61/39tf8A49R/wkOp/wDQn61/39tf/j1dFRQBz3/CRan/ANChrP8A39tf/j1YV1bNe67Bq1x4R8RSywMjpC15bGEOgYK+zz8bhvb8eetd9RQBzv8AwkOqf9CfrP8A39tP/j1Zul3F5o8dxFaeFNeEEszTJA0tnshLHLKmJchSxLYOcEnHHFdpRQBzv/CQ6p/0J+s/9/bT/wCPUf8ACQ6p/wBCfrP/AH9tP/j1dFRQBzv/AAkOp/8AQn61/wB/bX/49WfpF1eaLY/YrbwrrzW6uzQxvNZ4hUnIjXEw+Udgc4HGcAV2VcVqnjoaf4xi8PpZwNK7wKPOuvKeQSMAWjUqQ4QZJG4H0FAGn/wkOqf9CfrX/f20/wDj1Vb/AFC51Ozlsr3wXrMttKCskZmtQGB6g4n5B9KztO8Q3mmaTpMFvp91fy3mp3dkxu75XeN0eY5L7eUHlt0HyqB1PWqfEtzrV94V1TT7SUS3L30DWj3JWLdGCpLkAjaGQ4baTyOOaAOgh1rULeFIo/B+thEGBme1Y4+pnzVTSru80i3kig8Ja4zTTPPNJJNaF5ZGOWZsTY9BgcAAAYAqUand+LvBmn6no0wsFuzFNL57EERBv3i7l5UkAgMP0rjY9b8Q2/h+5j0+eaW21HXY7TRbq4nLSGEspJDMCWjISXax5xzyMUAd7/wkOqf9CfrP/f20/wDj1J/wkGpgY/4Q/Wcenm2n/wAeqLWvE91p2oppen6UdQ1FrKS+aHzvLHloVUhW2nc5LAAYA9SKz73x+9tBqN6ujyHT9JEQ1GR5wskbuqsyRqAQ7IHG4Fl54GaANb/hIdT/AOhP1r/v7a//AB6s24uby41i01QeFdehurYNHujls/3kbYyj5mOVyA3GCCOvXOVd+Ov7Zudb0KC3SFoIbxXkjvWS4g8pSFdk2qQGOCrKzcYzjOK1vCPiaa+a10i8spILkaXb3yOZQ5aN8r8/HyvlTxzwRznigDR/4SHU/wDoUNa/7+2v/wAepP8AhINT/wChO1n/AL+2n/x6uZsvEdzZ+ONYm+zyTafd6nBpVsz3RAEqxMzlEIP8RIYggYUYBIIrb8EarqWtwaxqF4V+zSalKlltfcBFHiMgcDjejnPfd2oAp6Pbw6BK8ml+AdVtWdSpKTWx4zkjmfjJ5qxc3V3ealZ3s/hLXHNkzPBF51psVyNu/HncsFLAdhuPfmuyooA53/hItU/6E/Wf+/tp/wDHqP8AhItU/wChP1n/AL+2n/x6uiooA53/AISHVP8AoT9Z/wC/tp/8eo/4SHVP+hP1n/v7af8Ax6uiooA50eINTAwPB+s4/wCutp/8erOvrq9vdQsL4+FdehuLJ2aN4prPLKww8bZmOVbAyPVVIIIrs6KAOdHiHUx/zJ+s/wDf20/+PVn6ld3eqrbJdeEtcMUE6z+Ss1oFkdTld377kBsNj1AzmuyooA5GznuH8RNqMvhfWUuZ0S286aW1KW8QOSAFlJxk7jwSePQAdRHcQzPIkcqO0Z2uqsCVPofSpqqQWFnaTXE1taQQy3L+ZO8cYVpWxjLEdTjuaALdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVhXfhq0vNQe6nmumV5oJ2gMv7vzISGRgMcHIGcEZwM5oooAgi8IWkK2SrfX/8Aod3LeRkzDJlk3bi3HOd78f7R9sQ2XgnT9O+wfZ7vUEFi07wDzgQDMSXJ+Xnkk89M0UUAOfwPpb+Dl8MedeLpqrswk5Vymc7CwGSvt3qvF8PdIt7aKM3GoyyJM0y3E12zy5MRixuPOAhIH93JIxRRQBpXXhmxuL61vInuLS4tLZrWKS2k2ERNjKHOQRlQR3BFUpfAeiSx3duq3MVreLEl3bJOdk4jAC7s5OSoAJBBIHNFFAEkvgvT7lpGnuL58/aBGGm/1An/ANYEOMgY4AyQO1WNN8LWWmanHfwz3bzx2cdiPNlDAxISVB45IJJz15oooArS+BdFlitY3W4zb3M90HExDPJMSZCxHJzuI+hxVzQfDOneHIWjsBNtwEHmylyqAswUZ93Y56ksck0UUAblFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//Z\n" }, "metadata": {} }, @@ -1148,10 +1473,10 @@ " \n", "
\n", "
\n", - "
H = \\dot { x } _ { i } \\Pi _ { x ^ { i } } + \\Pi _ { x ^ { i } } \\dot { x } _ { i } ^ { * } + \\dot { \\psi } _ { i } \\Pi _ { \\psi _ { i } } - \\Pi _ { \\psi _ { i } ^ { * } } \\dot { \\psi } _ { i } ^ { * } +

\n", + "
\\psi _ { j } ( C _ { r } ^ { \\vee } , t ) = \\frac { 4 \\sinh 2 j t ( \\cosh ( 2 w _ { 1 } t ) \\cosh ( 2 w _ { 2 } t ) - \\cos ^ { 2 } ( x t ) ) } { \\sinh 2 t \\cosh h t } .

\n", "
\n", "
\n", - "
H = \\dot { x } _ { i } \\Pi _ { x ^ { i } } + \\Pi _ { x ^ { i } } \\dot { x } _ { i } ^ { * } + \\dot { \\psi } _ { i } \\Pi _ { \\psi _ { i } } - \\Pi _ { \\psi _ { i } } \\dot { \\psi } _ { i } ^ { * } + \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad

\n", + "
\\psi _ { j } ( C _ { r } , t ) = \\frac { 4 \\sinh 2 j ( \\cosh ( 2 u _ { 1 } t ) \\cosh ( 2 u _ { 2 } t ) - \\cos ^ { 2 } ( x t ) ) } { \\sinh 2 t \\cosh k t } .

\n", "
\n", "
\n", " \n", @@ -1165,10 +1490,10 @@ "output_type": "display_data", "data": { "text/plain": [ - "" + "" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWgAAAAoCAIAAABcqPdaAAAtF0lEQVR4Ae3ddZQ9xbHA8QfEjbgnxN1dCBB3d3d3NwjE3d3d3RMgEHd3T17c3QXyufvldC7XfrsJvMdhd/6Y01NdXV3e1T1zd7c78MAD/2eTXb/73e+OdaxjEfqPf/zjEY5whCMf+ci//e1vd9xxx7/97W9HOtKRwP/xj39st912NKN36Obvf//7EY94xD/96U9HO9rRtNNb+H/9618RgfnPf/5zhx126PHPf/6zXo/gIMbqdfd4wAEHoN99++23bwqTanh06XIPjs5Rj3rUP/zhD8c4xjGCLLzHnq7RCA2frkHt5z//+QlOcAJdpgCPvdgeZFEgeBqAFs7oXdH4/e9/f8xjHpMg6S3O4WOe0vDwl7/85ShHOcoKCvNdqYKlqC5t//KXvzze8Y43dN50RHBBIBTOB52GD+QBX9YwvC5EfvWrXx33uMf1aPajH/3oSGkPTS6j8F/CM98wN58kFwdAVpfZmWM46uq5oFFa2simIDkqQ7BRZspqq0nN9x7knfMdh1cINfFd/sGZ8ga5QNYASY8E12CeHvXSMmAxH9Cdj/IkOUgXYxjOwOya+2ZsRPI2yCBRELrQmNPdxTt5SbMjCx9j7vBR/tnPfpbTDPMDLrwQF0K4RTME7o6ygQJYm+DgZQ3EoY2MEJ9wsAGnR21jw+F2CycF1BXP2rKGeyrSoBYM1DBdmve4ocvA4pYOUcC5rIEC4tq/+c1vojZiCc+UAJgCk6hoCXP13fAuBGWNn/zkJ/D5CTFxskIPq8muvzcnKb1+97vfJTUHIIVLF3PgwWWpQxNwGWVdDEEW3ksVnEqbCJyEy6GPFMcwfKOp/KAZJxxtsosSqZ67D7lpE7DH4lYbAu+p4U7LYwi4x/BDGF3sBIJgvQxsLu1IeWRFj9KHIVw8tIkvrKGFWVuceGRma6zGoNmQmXv0ATFmlmnkZpzGF8/xCSg3TXcNQUZDb6ltGm2008OYPZ71cvqBo0EK96Hk6a7V7aGi0GgmYw39NzU0STzkob15wVfPNdObBkxXSp1W6QzmIfgoFWJ7WCd9coCEyhOajuC//vWvV0wd/925xKBpIGA2pbRhuxWk5rsmBfmypHW4hHM4WVy6JTi9y8q2LdrcomTPuTVoVnqWpBlSu1VOg/3cWwT08lReZRNRXcAGiNMbqyDSQgcfBLWhTzyEb1KWqx5GGVcgWIJsFGpjNeBA2uBwBp2ZBoeL5+BINUpDLYCgRqIhAtkdQmWCBs6rEdoTDbYph6Qzc43HIXL8805EYpKY+AFHEDWN9a/8g76BiPziF79A8zjHOQ744Of73//+KU5xCgxgPgPVZV66Ykd36qVPorkPmtMNQzzOC8iC03tD1DCf0qaHH0ptXFEXnr/61a+e+MQn5qKUAEgJg7FYWsHAME04VIEOA1ELv7V5hKCLcgbNFdRmu3CzqS5eRV5WqVF73BkjbXCRGt2FHA+uTd3TXaNd+ke2sWOKlkFo3/nOd0JmJw1lcI/uiE+TNV1AIWGtlrw8jhVjjJppYGAINYOMuAQ3IxTGfvzjH/Mns7tQIz62NTAQqdE1M9d4HKxqDMHN/rWvfa2FGuZYJwdkDN9QA0vDQA2UOwaFz3/+89rpCifTcw21DOT1NMjOZJhv0oqm9Qz8b3D4Rty6X/rSl77//e9/k5vcRMZ873vfi2xm/elPf0pAvM1YeXrexIem1vjhD3/4ox/9SG9W/sY3vvG9732vNiCLj/Y0hdXtSf7ebJcoKjxU6el3uOPwsML4f9cu+hFjRbt2WoYJx0AW/dSnPgXOQmkyIigPe3C+2u6MPUxleJzEwPB1FKJ29atf/U1vehOyxWT0l92bAqZ0A8fj17/+dcODj1GIg7he/OIX3+UudwkTGxibTj1pQG+pYQyfb8AcOGVJpG5+85u/7nWvg5wgIKqG+bHbhNAMVvn6W97yFsTRcZ/WBp49XulKV9pnn30GNXGSSuWRodXRu6KxppjJbYj/zne+8/KXv7z0atR0rl9B5L/vMrtLWfrUpz4VtVOe8pQ3utGNNDhhxt13332vfe1rgwyGZxq65Bd31xvf+MZb3OIWTEx1LhDWefOb32wKhssD1xA3cNt0iYM/tavnW8Ly4Q9/OF/MyaitRgql4uc+97mK4bFdZxtmG8ja7373u89ylrPc8pa3TOV1ca/h2S984Qvve9/7Ol275CUv+da3vhVlXegUaRe4wAUe+MAHjgX50Y9+tDAYhjznOc95s5vdDOWxCq3HcXHV7Ni+4x3veLKTnezLX/5yNMFFER7Q/OhHP6r4dNQiJED23HNPe5aTnvSkT3jCE7797W9DwGRCxXPthXcIIfPUxz72sUQzEbLo048hVQHNu5DCCiBqpL7nPe+JGuWEmfbAk+vsZz87EyS1/HK1q13NzuXKV77yfvvtB19VVdeKWeoiBUwX+u95z3vkXDMC3u1udzvvec+7zeGHCAIXoihmwsbDHvYwbPDPYx/72BwV/VxXIqANhnZhb+FlefjEJz7xrne9q/TBE8597nOjgCxzUB0KcgeIGYfLrV+ETZc4Ug3dsYrdnVIwSL6YBmtTKH8V8602bBkcvpxSMDCDpeDOd74zYG4NEkGjXvnKV+68885KSlaUI5gqK7bmo3/Ri15UZoGv5Oam9rR5Btd5/etfv9tuu42UwTlGRRP9mTvextKKvVhFzbaWe0EG6dJG//znPz/2tPmliV7+8pebS42Ayac85SkoYE+XeYdEMzP2qDelGb733nubTpVmlN6HPOQhcp9Jh1/CWUhkBbCxtvoyOJXKApCzCDVqU9SFLnQhDGu/5jWvufCFLxzOmc50JrKMpLxiitGVsDFsPbjVrW6li64okBuQTtdAPvQaKdy9BkGcR+RvRHZd4hKXeNWrXhUDeF54sd3pTne62972tnphch7e/o53vKNRiDz4wQ8+z3nOw2lT3UbF2UbiyGx0Z3qTRT1H7B6kuaF5xPFgguRjlDZf1NVdg/kbyB6JB6g9hgw6Gog30JCQB51ptNGGE9qA1GgUb7vgBS9ojX3Uox4FDpg4zDPCDwSFDAYnuWDihFo84lP7fve73+1udztsF9gQjMrk4A4jrQ8eVRNO1x7xiEcM/eT9KKdkdDh6ve7nOte5VAF6TZGWEBnb7KEimSgOYymcBAcRQqpc1BBBCm/4hCNJifCmJqZ5r3jFK+oCESEq5JKgdckQQEPcXR6RHSls8GZGw5UbSJUdUp1HRU0DsREdXSik8FjV5ZJx1iY56GZ7EildiOy0006Gt99pFDx6ONvZzqZqi08ZHPPCw0ALg4V6jz32gFa+bvbsS4q0qrex05LqxfnTnvY0U8fNDW5wA2cN2mlSY8gC2WP30cBhkDTZwKgN28HhA80LGD80o62riS5zmctc73rXM/AjH/kIIqh98IMfZKN6hx6GlyYdW7j4Hn8zKqAV7oY3vKFHXQYyLl11SDTo6F3n9e+jfpqauUhiDXTHgWNnGcsEpOqQvDNnrowPHBgLzd3xLzTyx58jXEDaAUcB3B1z/EbcGsgAzorN0uzahgBSDX25Z0XEOxg3BDOmQLMhC+9wXNNdaQQ1erS0SsY4dG5kFsSJ85nPfMbe77SnPa3q4KxnPSuWnv70p/NFXssRuaDPPVS/17jGNexx3ve+9+HTQAQpwaZG/lbTxjlh2fg617mOHQpWPZILw0wufRjyile8QuZC01i7BmmFZ0CzUbfFwLlJeQz+sU1k2eea17ymatNm3tJnauGxyy67XOQiF8Ehccgi8Bynne9857vYxS52mtOcBgMO5MGxeqlLXWrXXXet7jWLua573evSLZWib7d8/OMf36SMgjdMom/1vupVr0oD9nSA4nD//fdX/Z761Kc2EGOAxMcbuajlSU96khLmRCc60Qte8ALxgBp1YeYZz3gGsoxOA6Z++9vfTi6L4R3ucIcvfOEL9G+4GseW6lrXutY97nEPDkaHhMIhFZ3jHOd46EMfij1jpXuj7EHIbgpskI5H3ec+94klpZMijn2JwLuEk3Tzuc99Tt2n/IFsLpb64he/iOEznOEMzEoKGkjP7mZ5wAMe8JjHPIaZpFeVDvHBGZ34uCVydIxiWXdDNEhnXhfB8c+p3A2UvNxtoK5whSvYCbrbCZqXobFKuqtc5SoZ9LOf/ezFL35xEMmC+2GM9qQJaqQWekNTumeRW9/61iYli7k+8IEP8Iqb3vSmlMDE3IOWXvayl1kRUbBLJWkCUrudoxIM/9SFlMWJybCHbfeNXYguvMxqAl34E0Ia+AacRh6PcLQzOZ6mcYxqnYQDTpuR0qC+MKeHgDPDoDxNiosg0jUNX08bTZSTSJzc+MY3Noqm+JNG0zGh7bHHN7zhDbogc3oN4rsEp8PtM57xjJK04UKrswMlHxyuzE019tprLxRaARKWWtBnVL4lmAkrtESyPMW5ITvi5p0I3vWud+Wpwow3mEtXSyWnQflFL3oRTI7IUZzYiXkQun32s58tLD/+8Y9bT1zov+QlL/Ghl8WZxgS2WhfwTne6EyLiDf1WaUKN4xtzuaQYZG3fMCxBiGdDwDGgWhY2lMDhcEsQhiBaKuV5Bdi9731vctE2xojv8FWor9Ge6ORtb3sbgqiZV0Ne0CVNn/70p6dVDNt0sALnPuEJT0hYHiIdd4REezY+P/jBD9AUNulW/pVTcqS8CD8Y0xZ1qi1J2UrwvOc9L0FEkQYNvPSlL/UWvGrIXtI7IJrBjBrNcGlLgsCSqifmTWGvpMsjvQV0JzhdpYQYGF1h6uUbJpWGzKtx2cte9v3vf7+G1GwvGUuO2O91r3vJ1EYJe71061zDAZmswTE6LQKUXHbffXdoNJzLyYzGGsJveZH6ixSWQKaUpEiB7XiWnaf3biritmOYRHBD1+KX25gwa9y3pJhbDgZxUaL1WUbApUfCQHYxrRTIqICUyHuwYngDOTfuPeoKYlnQBucE7KSXdxoShclMa6U7qVDWxWUDGlXD1AjW3uYdZTh8hdNbAcI3LyKmJhEPlgVYRZkgrzPz7W9/e+W3hl4LvmLvOc95zslPfvIzn/nMxHdHhLvbV1s9SCERUBSC8HXhE+e0JM7FpIAxHQh3sYCDoCzemJPfIKiQkZgM5FKY1IiOAsFAqwoIY1tVpAaZ5frXvz74bW5zG0dfagGhcve7391ibt9h/aFGSsOVk3loMg5qNE/hllyZi+rkF64PzV2v4RZn9a1yDE1OJrZpTDqjIgum9wtGKWRElOj60pe+JE0ggr4G9qjCOiYIGRcD/AFZFjTcymn9pA0FEUVRrIwmMxqopqBVYaBi0oZPRRZ5Cdos4p/LmVchQFcU6KJkDoYNTJooF8KALo9eOnzyk5/88Ic/bGEXdd4u4QqOtX1t9A5MKaNJOmJVksKkRYKBqIUFLf4MSl6kuA07kgicUZRUZnGxF7N+7GMfIxqG+T9MxGlSSrI4OUWChgJD0wbVGaK0VOkYyApwsERjtCfBMdzjHvc47qduUmASEOcGyv7UhQ5qtKfwkfe1jXr84x8vrUi7GHDwISXZ8Cp7dRGZaA6JixoKtDdhDgMhUx0cDKPsMeK61n9NuFl4SaLgzUTIQt1M4LVD4PomxgS16o0UtrBCSMYuAEqNHNSoaFIZ5LIGTGqKLNWD62Utd49kM9BEEXdnJL1midSAr6chKagU7BHEISaZQQFPvyZycm59k+bZgEOINDHDY3RhQJuHYQarMUOomORkwzwcC3ucKT5pxoKjQLWwIGtGlw2zILeiKkorwk1HFuut6QykEEQ0zJvLEtbqAfLIRz4SkxIft6M9+sQYuDt/4p1ynwxoFZJZ+JyoE6iswGt5DzrYRl9vKcNEphY53k0QWfCgZt9BP7wch5SjoLXQGWtGo+DTg3xEFejAd/mMgmhyH4ahuQCxl64Sh7qM5TAGKhwwZuWHphpC1ux5BR1KHyJf5IgE2w10ZCtlPGSCIM7ZkEJQw7xspMtF87jFtnfkYlJV782UjEPn8OURQG4pYalEJD4pGxtPfOITac8JMQr8UMZhIGQxbzoQZsKD3Lc2yYIbNlxU5KoNqQbdkg7PnEFCV9UyohpBXYBtXRRiFgxwTqzKnhYGo2QNXSbFCQSU8ys6F24Q6IeNWPnJT34y05vOuRjjcpuvfOUreOaWcitOIINTF1LpDTClZZoFIq0ELU0cRmHOZATDUI8mNk25CiskoQ7MKSApFxoZ2J6K8URUbd7AS9yVqd5HGosIagSovoLmkS3HLPWijAh8j1YVnqqBPlUaO7HPAQdgD3CdF33BtIh1dmDtQsHsJELT3ZYbh9hQK+JWYLOZsMGJgTjEjG2ChgtvhEITERpAh0IQUfRCow029mhtsf4rUwUeeR/0oAchpehF3BbDIoO4ePbazGmFUU7gPLavsURgBnHsmdGxRWmFlyPSUYK5LPgUThVYEvCGiEYzShaYp21McjXE6RAa7ckR0kcKd2doBwfcVK1rqZeYmIzbQbbzgi+GJUekvMBT3KJ8kpOchBQQ4Kc9uUxmxBh5acOFMg2YCJOI2+lgoFyTAr0aoGHMy0EQdBliXhWWKKJAj5KIQweqNpHp0Pe+ozikcDVLQHDKwYl8oU6kW7WbfRNdQaM6lRqcb33rWyTVsMJL04ZLK5VdUglVk1GiJzIpVAoKQ/QBiYMf9I3tApclGdQLbMeoLg2CsItglruh4d8dYzRQZYSC1MCLFDhSIbJMQzrULAyvfvWrWZ+SLWaG2IwwDQruzIcrAcU3kNXmeHkgrXJmK4ReRYe74WykqiIml6YuRCDzEA1G4RIoeLTeFBfgG7swseIaezxczqOxJaAzOQU8dnlAtg8T67SgnUXhKBfZQBYHFCrclzEohTZBylDoaCPlrlemsBdgFUoEcYWsEeYabF03IrgGA0oAuutcDRxXCnXlpb0DuXg2opwAzoc+9CEItg8066MpMW+PQPtOIuAoaJXZmFE1ML+NA2DctiESG6xurCFkxAAK7uCWO8ohLBM6zUKQTngYCpwYzei0JVaCYpJr2qqopVFD3/4cS4jD8fLYKsoVWIEzUb5EgH9RJCp8AsQXbRbA1cN2IhmC/iuq8SDGBDCHSwRk1fZJgThWBa2UpNfFNwRkHAoAyCLHjJb0bERGGx+VBe2ByINCEdti1dSQCYuOPaBNn15ERLsMSwOqfZJKOvbqEodIoFsBSTQhbUWlbWOpSPiRiLNRo4MAbLiYz11I8B/W1FBadhAomyg0CMIByD6R5MADPcKvjWFtEyk68BAQZYUPNXokC1ZNZ/ZxkREbLnAIDA0HMgRmRZDO0bS5UFagZsGQOyA861nP0munqQyRJeELKA0rUFNHxD2tWva4n0dT2NTAlMpZmQZkHAkLk9I9mqRzKmTT3VjnU/SWCKxmIvtQwurNEzTWfy094zCxEHKybbtoPhRZjuRsoKFXu7Xucpe7nOl5VSmNnRxcqwlJzvu5hQrTCY31VkGlCORMlEuP9tKclTeX84ouKkhmk2qg4M4qKgVndTwVJyCUaKDGsiu0KIdT253NeLCQUA/TvjXKCiBmrHWnOtWp7HJtGkULJ1BM8lpLgX2pDY7YtmxatazJFitwOMzGQpKLgwBCmYtbSPwa7MEt7DaFcZICYttaTRY+bfUAwYM0SlFW9U4W6VYxYrlTqEMAhyDSaNLUjvq4y2tf+1pE8IPz6m1JQU7hDbQkvKUAolE7VXz605/mQwoQENTEiTTklIEaRbJa3caH4QyhH6FrUlbGAK6ke0fIiGvI4Hr5HJFxiHPiuBvITxzN2u4xPZom5cpGcWLmZkE88xAlWPsCKrW7wcDzn/98MeMNEZ9We9tqUTunYgIKdzLqgLDNPH+TH2EqFoxlJss1sjRDUTQsaToalDUErRmpvfwLaPOiQOCoqmOpx2lCYpJUsNGJbCLwnAtwSzgyl10bHOkPNYcOJMV/jkdA9PkqMWmjR0pADRwnQTzCQZ+zKTScN7O4FQhxdY1NMRMoFpivA2/a5hsspWakH8PphIBomgUDPMrKJLNzPAZyAKREpWfZkGOgL59CtgQqEjnzM5/5TBKhYzhbqEosVx6xalWGrGJinTgH38BFcjHv7uINpUmsaHNKujZBvSG4V+VqcH1xpcaGTL8g/Fu9KlUruhCRL8QhbvbYYw+ULUecDxoLMb/h2uR0dxGAVTyi7y4pkhNvEbcosSiXogKYY8gYDu4KHlD49YjsGBJk/m4snLwEqxoe10hu7DZPeUAspFjiK4hzFOHqEW8LL4q1/BpLDzSgwVdW4C8kAriMe9nTSpjpp5WjvfDCgLBMFpbVkB+FqGJYSegRk7lNONyGU4oBDGBjAJfxyegERAQ+80FDQZws4x/B7CsxeXnJZIZQrLELLwgLL4YQS7K/oJVkB6tWzXjGlcwoZXBakIXEVwCXybsMziKmS5AYYA6P2vinDY+SkSwAQgMJVYygqTeN6f3mN78ZBcMlIOuiwm2EswQk/0Y2i4dseNN5HI26pu+T8iwDGFzFohGGgyWZjDekTRocI7VNAF/agxCvolqZYM3xGKaJaUFFqkoEoV/BIJFLLgqncBAnzJh0TGETIXP3qFeGVpJ4TOPB0dfl7gKPDW16xGGQQTDrjsdljRm0plv/PR7m7zmidGDZt4pKpkIOn8vYIIUkazWGkOZXIC8jAr6Mc0uoeINA+TI4U45QWUZNCstMLI55r0IdxamEJaCxljQjgrglo7UURC+F8IRllBsFZwaBLZbxX7ZyVyhZuvqScjjDxCEOfs1QHo+ym3Vb7am8Ug3FCeZjxsqnYZsmy+ua53DQOaQauE7JMwRbQfMB9YgzJggwZ9x1jKI3bb0FF5ezhIMEpzR5RN2tMYZAnhFwISfhTzZCWi3+GmpCH0HzDG0looMJ9nZYxWmaEmmJJkdRweKmdGNWH/Co0BQdxg5PUqirMA1vcbNMqc3sgFBDx+ylLUNcSFmWATtRR03WjDfzVj2GaTpoQ07qrk1UlPUOifAPAqFce3B3+vdTAz0j69IwChDZDV2xN39PTHZqy+bwNZx/c3DwFhEoQeyp3WAqnt3p8OBY235axrxkZDuggCdmnJjRlfjzd3SgDWQLHZuClNSi0ChEPDKxVwMauaau8JdxTNWuLAVHw4xILeMf5SbScH5hh6We1Y7O/B3BhVdycfjYQ4Fo0cmHRVdvUsH55zzl1ZBl8i6Dm4Wu0kCUYxtLXU61NOyhbIc1hqWmhxioi0TGatAPcygYi2tTeMfEOsbq5ZmChTKNSqV0UmzqXXZN3o2JT0GlWLCq2xQJXWWbcsMeydwWSVtQ49GFSXe2jhzaHLixm7B5Uxr4pMem10bLl0h6XcYKdWWI3XgHTmLYbsrbJidzXkr1GHJ3s/AA5yAWMZzY7zlIcxpEEqW1DbAhBFaqwSetItP+VhnGxoAuTLoroSVUW1ml8qCfUrA6IP+XDaIxraKJwlmODkFYrgOjeU6yCBzGpkYIskYnPvPI/wEEG/bMiDsm4CXUQsMaVLeQWl1EoGorATNBy17ha6OZkyBln2tVZAu9WUpjBf2IrP8uYTnccY7I0LgiBQbS8PqJwEwP7iTi3ljVGHrmvSizBRNwwv8v54lPus06akNH8vxBzOJ5obzph04UZRQlbH1MECYrkIX1O1WcHy5SKME13zUg5p0c9YtnDuFMRRx6m+XAnEOLcNPLbU6zDcAEDSrbBLN84VWCQtShN+/nKI6y3B1hwgTBU07De5zfODN3+t0ZjMMzOLRQzDC2gQxmCIigcryn+HTcpYRxgNwpqSGsS3hSwQHs3Mtc4ICmc5EWnx69ubDWGeWiNVOgb6CJAs7cDQliuMbQWo8zyCsex8AZnCJTerVZw7MaGP+QaXgGs0d2hUNprG6t8EgESdnB50L8ZcBl/At+B7F2+BxL7LmbgjNYNhaSoj2eSgopT7qhc21DOI8pNFgEhEfqcqkrGd0j+5oLfVJL9BoL6c/obbA9GjOj7Ph4qfNRCoTjblL8s/UMZo/L6IBjkjdigKpFprY1j5iKZWshxyA7txGuDtrYYiH9ZcAZuZahDTgfxtK4DI8C3nQ5gHdoSnbMgIhHWm1saKPNIpyNZZ3OCARhKMAhCwGvh5gGnOAa8khiokCHgGPxKDYHb9ONyeFwkemu0KAvhIS6747NildFhJrWAsIVcOOM1wovsHGD7zwGRW0DfTVE77QswnEGaOci9QiAiTetFU7SBzhjIA6ZjgzvsBcC53PZJYkTR9+6iMo7KQsmkTgHNPBCHZ/UkXUR1MgJMEZsWoim6TDsYEX1ZOz8FRvgGWA8YmYeeQVk2n7TaDw73eIfY6zOkMRZhg+O55EyjEWB8kkxTXab7WX8sxFqOKExSdZ7XCLbEDH6Qpo0KXFgw6UBucQHmf4zQUqb2G+HHXhkr8AIwpQcne+WZRbSNxZmFwSPGHNnx4X4XAjzFAiBh9CnaCdRvjE/ZBm8JZN3EcpFfJLis5VGUMikHjGPH1MULPP0DykIHya1a5ogtZgab3Tey0psk50zzPADs4HcDNvQsK3NQLRkCNOIZauXtCuh0x6y9jIa/I3UhseAga5pNqbbkyA0AFGrvdcWNhEmkxdswjkTPmxVPOZP9udO7Lxq4XaKN8bDkGkGuwRDnRUB5RFtH974wBkHOHOJasAhrUfzUoouHokOxSHrzi1g2rP4FohdcSj7yFmAhug11qh+ggFoiEuD4ZvO1tQpLGQQcLmsjY/2smsIAiHjxfAy/PXDGY/GrNWDPfJafil/IZF4LjCUHhwXct68EH8ZcFnAUB0BESyj8ScRIvAEz0JSOEGKNlz07NFwboAO0VyAtAcIjXVoGymmJGZT8FeeupB4wKF8RFyA7ulh4ShTWFTRxwwEWa/XcAuR8bkQzq/Mwr01WIe3sAhxAN2lVJW1sUQgOArL6Cwk/h8AE3yoYlAgI1XQrdhxt+rgmcmSfaCNBm7TPCtwHkOKcQ0CMpAwN5w4k7DZfntAxjJK8HoUQVyCBgbBmcbknwMYgBvRa4xoF6joevnko5R+hyN3GObliIMPBw0+O+kzfo8qBd7j7tcNFn9fB3hLjxoOcKwA8S0jAxuOvsiBLLnQDrZcFGRG331A8EpMgihNeoHvmBbQ4avTIPtMFrWIUQGVqWV4fE6PZ2gYzgMoIqujo8tjc8GR4xBZpmhoWat79nOnRGMPkcv6QBVMEkvuUmETzdPHBkcxOwQZHAIP7nEeeQUkceYROBDlMD0e9DKWihJvbDSPDIINqjOK1XIs+jQEvCmKq1xNGxAmexmrbawaGxxwIf3BJ4KD5gDOD4HD4o7h8Mz65kUfeznbPP5qCFLc0hVaDEgWVmYQWlqmltVk9SK1TZxpBOKQumvA46cIwqqYp0/6F4bL6KMgBASU/EIQojH3cH6uKPD1upvFpO4WaWWId21e08IsZS+z10F/PQET8DDhLZ0pVRaIyhEVF+i6vK9C2kzMT5WQ/cDGy1dd2i7vWcWqzxD9fMh3ipTuvRFbuvbdd19OBtmZhWVN8CNiO2qUtCfRyAKqCY+cACc+yAnZzwcMB+HZhJfCIDQ7ZETct67/QANDh2zRcOstUzJKdvEITsP8T4MVaL67j69UkSyCSNaX/SPCkTQ8qgWCcPSA7sNVxEC9sYGsR/Td4cB0hdCdkzQWfsQd94BYh0KIZ36CYXHipzqWPR4VPJyYxI9Hcxm+5T9pprvP5KQJYU4z07qaxhntSUbkGdmJxj0ykt2pNxoKAY+RYACe5OWIbAQ5SyueJT/7cL2NZQ91h+2D1KPAHtP46lkOchRnLhui/AadfIX5nYM6webEccIDvFrvg184pvPJo3rBLCGgzIcYXu/Ca0y91VimAYYrbqk0K8P0qZ7SxmeU06OYo0eG9o2sImX8WJ6T0b/eYRevRZ2R+TjVt+e+jMgxIHgT34cS2vlPNN0L4DIUgkHMhavyVxCeqWFts6pZQkp5Zh/UjHXtvffenE2VGkuIJCZOfGvb+oQOOGSNrYsGUoWYzdZWBcDhFfMqmiQOl9BtpEMsj4KWmZkk1Y/EbJPirUr2Yy2W8zJZjmisrYSx2uZmdW1GigKf8K4EJuC46sKrtLLrrrvGq7laRlBLhu4+p3X+Ymwrhkb+qnfhNWbZamxTA2k+c/g2R9VqCOMypWCj5+zLLnmCT54dXcER1cO39DKEqN55550d4DnRYPFIiVvUvBq3G+U8TYTUGKsRZY3Sx6gLzAIfhyGUhnzbrtrNVyHkCR4ND6HNL1JYwryxeNhvv/2U69KlIa6Rknrc5PeRfKf1kM6nIaM9OUoscxtZRqBiO7ryfalaLaCA8c7cLkY6N5h5Sg3MYPPiA8csHb4dFJxmDc5INsbOTeKPgfMejy6bGnmKc5QCjGXyEJBCx68z+nSvnIJmxOEPSbYaG9IABTJKIde2Ip2n9jKFinLsH7NsvRYAR1qsEJp5a6Dpjb5kYR8BaHnX9ouMfEDb5/YxyeVKEIYU6oMUmypI867sa2rIITjwMkS90yLEM7GUFEN8bNuoW/xAhiNp+0i0RGb2xGmWMXCTNxgiPdMwzaSiZTqZ/FC3V6EM0wmQSJZBnFasnT9O/sqO0tQZpyMPHxo6rRThzk4gsJmjF3+qjOfJBazSbqLDc9MDSisIImLB8UWWBjQX4phzpoWIV7YoOwTGt/yi16nHGtbkXxaShyvsv//+IHDcjeKLGsPb5sVr+NZ9mQaozhmzTzn8rRCFpDLBL4zoX7T7fsd6YKB8rWrwDttG0p/VkdzZFA6zMrQfd7K+z20YSOgqMeyQvdFXPKoirf88DxEG9WcKpA9tn/b59gc+OzKxhQSyWtJP3R2fIc4Z9tprL58VOCnrD6ZYKrBhIquL3/j5XMgszK0gxYA3/fDVEXIN15IRzGKTYqvl53C+j8Q/TvxGQ87yDahev3jm8BwYe3wYZOtKA44dGEVxwDdohlbpealyCrlSrwF8ovWBGepiTpaGwDacJkxd1bcVfuwNYuyIZKuZfAEYNXeLQ0OigKzekdWMDQJoljCj5t6Q5mpIM0LG58JL19a1QgMUKMz80sknvCwlhrmI+PcjfZFJ4Yzup73aXsZLBHYHorfvnZ2iQVZ7imoe5vesTaQ8qSTscZdddoEm6atVDfeGxS9cWLYCwe93LR5CWgqA5iekRnmj5/MkvPEBb/H8Ap25rT0VPg5ffKzMT5yjST12uApSY/fcc09jcxKy7LPPPnqxzWNVRpYrM/pxsxcu3vr5CzeQc0syam9dNEDnLroViUMhK/QzqTiongndjbSSsBON0zWIiz2kIv6BnIQ0kjSgXs6UwbQVAibWMJ/VzCMvQY0TuCtbmJNdUeCyPHJ6CP8AgYkfs8SP4UhJgYZwHXMZ0islCGzv0YK28NK1da3QAG3TJJX6naUDUTr3jT9NOtd0Ls5MDCHqvMmyKRCxwlgKENXUrssXE47JjYKpPgUxl8hkLH7CmkoDa74fMVjeEfRBhJLB+m8dc6kCvGjjbCD8pF/NGyUxOcnieyj7KFlaQZxbehnnNb/dh1MSnJsCA7KegjRPkNo4CVdEDWUNeY2/efujTuGWVh1ZRhLx9xCwajVy5cMrtLR5uqjRRbeMQjMWAEpbpR8mL8GwlgFZPYh7vXyl7MC0rAhewq636mAMqas7oOkHnenjqOg0ozwFZ6Q6vjioRaEujhvaDPFp5K32OjWQkn3mZ7NQeIhJ9qVk8ZalhLHdK4KAtiTSSnCbiN133x0Fj7KANpwOtjRkf5saNO1AG+tu5XCcqcF2mb7NC68D7O4MArWcgWM4yJC2eLCCQj6SEaQJpyeYlDJsnOHIF4Z4w4JIxY6Vxv5FsjMRlgys14+tsZQj5cyGzHgayKa9RqQXkulhhX4mq3V+wwC0rN2SHrBeVq/Q0CUt6QJxr5efhdy9ru4gctjAVIaE4x6dZrQpBZHq6uUiA02jLKjhJZx7NVEIEa+9dd+QBihZpIl8P0jnNMr7/twZJTNTlaOsoSSRCAAVDlxKJEP2JY4IZDtewQSjBkQQD2oNfzzGH1Lwxs2vuRUyvqqoalALyDLxab3RaCKkHFXYrfBUb3PB0e8zUMdn/aEGrNrs2J6YzrwWQ6OkEkP6zMwQA8Edh1Xw+rNDxHTS4bcLkiA6nMd5jSGxmvvFzya/j0if1slMJE6r6KCsMQ3aam8GDVi35QIx5ixAyAlFwSY1iExd/pqB5dpeww+9/LjZwu4Psoo6cEcSvvTTZffhtasgdPdX0VBzeb/me2KrvS8AuaCDc+9ZfL5BpaZQtjiCLcL9GgBQlYGmD3bsmHQ5qZVZfLslsM2idvDdoFD37Y/hPi+Sy6QAJzK+adZwcMa5HbiqU6Qz/DvKRVZNJKPJNT669UJQgxROTEjnEBcaVi2qkuBmsPWhIeNkR3po0N2ieRjXgBJAeKsF/D0ebzGUEr5f9pcHnXdIEA6kxJ62ytGjX/34CKJF2/IuOBWJ/gEKiJwidxjox5CiXSby11tUKH454s67/F7R+YIyRGUqXJ3F0ozc5BTDRsl2xkB0bCUg2EQ4kRXPKhFtH5VgoD/pZKwc4XAU5/6hDBxv4pyA+IwV8z42cwpTuSEHtbvBp4SCrHf5+FHvyD7ORxF3yqaYwrlC+zBuqcMme1uJ47Bpl0OdK6uu6tRdBBY8tiR2ASASigATt0JOlApdXZ2TQZ7eHhZ41vM2m9HEujMLW9EBB9HlUSqxQxHnHWR41FUS0dBlXlHdNrapO3qTvMbUUYDvagpDRlEdq4NhCaLiImFhqoOSl5jIRmfrvlENbG1VNqqxwwm+OCSJ4BRF3nFYuqUG0SUCyxQja6gaVAfCTLS3E9YW7YYj4jCyrCGe9YJ0JGk/goJ80cZEGhpZw0A7DknKWG2ZyCiYEkoMQJYvsFESEeowtZuxzBUDpoZZ1kBh5CCyeIRv/wVITG1ZRkqqDTidAfVuXRvSwFbFsSF1HX6Qx3re8p5gMoLQFaIyBYhwlVYEsMAWZi3R9iPWcL2VFas1Ygj6MGUfmaIgR1YbZWTlCG1EzOLQxDmFxqgpcOJIxctgCM1epsOkYkdbhRIyUnKBVBUmIvAlFEmntIJUDQhyCnwMjIkAt64NaWArcWxIXYc3ZOEnwITZSBYjwESX+ExgaOBFuOLfMi5oxXxf1ox1vtg2xKGGGBaoI1YBfYkjL5SDPCpM1CBj2R/w+BHwIzGpWVyKFKNCG8gg6qC6tAfzpUWQGlKVVEgc75XjOeIDDebWtSENbCWODanr8IMs9gSnQmCEruwgWUgihJQLLMguoeWyidA1kEFCE5BSg5MCvUZVrUAzcFpT4lmdIk3At4mQcRDUVi9A01CVGIKfEdilJ0xCiENTlMhQA8fAYNiMEkEswYepy2MnHaWzhuMcNTyjoF1hNc3qVnudGvgXhY0boLU5PLsAAAAASUVORK5CYII=\n", - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAAoAWgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iioI7iGaSZI5UdoW2SKrAlGwGwfQ4IP0IoAnoqpe3lvp9q9zdSpFCmMuxwOTgD3JJAA7k1HqGr6bpUayajqFrZo5wrXEyxhvpkjPWgC/RWXDrlhPqUVhFOskssTSxshDIwUqGAYcZG9Tj0INTaZqNvqtil5aFmt3ZgjMuN4DFdw9QcZB7gg0AXqKgnnS2gkmkO1I1LscE4AGTwKWCaK5gSaCRJYpFDI6MCrA8ggjqKAJqKKQ9OKAM+XVrCDVrXSpbhRe3KPJFDglmVfvH2HPfrVu4njtbaW4mbbFEhd2x0AGSa8ntf7WT4raLc6npixXsy3nnSLdrIqRtsEScAYCqpwDyxLGpo7+9fx/crPq0z2a3lyrrb3sqSW8awPgSQEbPLBGVkXndtByeKAPTdPvrfU9Otr61k8y3uYlmifaRuRhkHB5HB71CurWp1p9JDP9qWAXG0xkLsLbchuh57CvNnvrm6sfDkkutalFK3h2aW5SOaRPMnVY9m7A4fd5h7E7SOmQaV3qN5e6fDfvqF4mqxeD/OJh3Rs93kEAlQPmDj7nfPIIoA9X1DVbPS40a6kYGQlY4442kkkIBJCooLNwCeBUVvr2mXehNrdveJLpyxvK06ZICpndxjORg5GM5GK5fxFrmnWHhjRddv7J9Q1KMI9lsjc7ZmQBmbYDtUZO7g+gBOBXPpDJp3wrhbRdRv45prtkjlMRt3u7qaYIrhSQyoHYkIcEhRkEZyAenxapZTT29ulypnuIDcRRnIdoxty2DyB869fWo9N1WDVDcyWyymCCZofNZcLIy8Ns7kA5XPQkHGetcQXZ/ipqzx/aTfwaelrZIWYrl1eV5GBPEW5Ykz03cdc1UhvHtfBfgFGupbPRZ4UTU7iCQxbD9nJAaReUBl6nI54JFAHqlQTyiCCSVg5VFLEIpYkD0A5J9hXj8+qXsFlrKXWvauZbXTlbw/NI5ia/lxJ84Vf9axcKoVgfl2n+LNXdL1TUj43R7/UnkiW4lNxDHdyq1uq27ErLbkbDEGBxIv8WAcmgD07Tr631TTbXULVi1vdRLNExUglWGQcHpwayx4u0v7AL5nn+zu7rBsgeR51Q4aREQFimf4sYxg9CCfNdHutStNItrCy1C8mM3hGZwkxbat2oUIoUjCFV3DAxkLk5PNb+r6vpWgeFPDGpR2Zn1NbNYdLkSKR0t1eNFd28sH5ANpxgk8AeoAPQbG/tdTsYbyynSe2nQPHLGchge4q1XittOfBulaBJpupXi6XFp149vb3EbRG6lQHC7OcvLJJvUHBCxgY+9nd03WNWt/DOq65a6j9uaz0W2Jkud0kMlzGkjz7QCOuUBIPBBB+7igD0Oe9trWe2gmnRJblzHCjHmRgpYgfgpP4VW0rVYNWtpJIQ6vDK8E8Ugw8UinDK3b0ORwQQRkGuP1+SOT4paAs/wBr229q08McbN+9nkdYhtGcYRPMZ8dFPPUVo2Us0fiDxobAF5kMDKo5Bn+zjt0zgR59sUAdlRXjcWraj/wi6Xuna3q9zqUtlbf2vCAZTYv5iieTaw+STaXAjGBhSwHGabqeq3Sz3kGla6DoSXtqLa5vL6fyJWMUpmjN0hLgAiNs5IDDBxnFAHq0OqWs+rXemqX+0WqRySBoyo2vu2kE8N9xunTFR3er29nqNrYNve4uN7gIOI40+9I5PCqMge5Ix3x5BcX2ox6LqF/BqGrQ6pb6FatEjuzSST+fMfmYD94QrjAPBVwSPTv7Rorjx14ge/8AJktZNItDAepaAmfzPfGev4e1AG1p/ifSdUv2sbS6L3IiE6xvE6eZETjzE3Ab0yQNy5FbVeGC9s9WuL280OHUbEaPpU8NhapbSoRbp8zM0jAENIdqKF3Mq5PBPy7Wma9fatqR06DXZLySF9Litnt3IFyI8SXUxIHKMCVJ6ZAHfBAPWelYsfiTTpJ9PWKTzINRLra3KcxSOoJKZ7MQrEdjtPOa4y48V6+2keIlu4UeSw0wys+nq48q8BbMKuGPmBfkLFfu5w3XFLBFp9l8O/D9pavIy22pafDbzOxImcTRh3iOeUIMmCOCM44xQB6ZRWbqv9seUn9j/YfM3Hf9r34x2xtqtpn/AAkn2o/2p/ZX2facfZfN37u33uMUAbdFeWXuo6j/AG3rRbU9Qi1u01AjTNMiYhLu38ldi+X90oXLFpMErt6jpWTNrN9/ZVodN1++aebSZZNYlmeSQ2tzmIIWQZMLbjINiYOM4BwDQB6H4t8R3PhmyN6mnrPbRW80800s/lIhQLtTO0/M5OF46jHer763FG2mxvBOt3qGPLtwvzoNoZy3YBQeSe+AMkgVxXhzQR4o0531HUL/ADZai0ltJaao9xAT5UeGikcZdR82M5KsX5rVlLad8QZN0m2C38Pf6PI6NKwKy/vDgctwIsgcnj2oA7fNYtz4k06AJIZd9v8AbPsUs0fzJDMTtCv6ZYhc9iRnFedeHL9NV12SSHxNrd7bRPG0KwSOTcoLctLK8ZwURnYKMDAZQq4ycJpElqfgprk0zSvPNazXdxNIzMhuZd0gVT/fVigOOjDB5BoA9Ni1a3fWptJffHdxxidVccSxk43Ke+G4I6jjsQTp1ymquB478MAFhM0F4GxnJj2Rk59t2z8cV1dABRRRQByXjPV9X0ldM/spID9ovI4GMvO5ndVCY7Aguxbtsx3rM8P66YL+W6muIU026in1C5aQHejPMq2wzkjDRDAUZJIGOCBXWa7pEOt6NdafMsREqEI0ke8Rvj5XAyDlTgjBByOCKyL/AMOSad4TOieGbayh3IY91wzLs+QhZMgEs6sEPPYdRgUAUbrUW1rX/BYkt1+yXQnvyFcSR70jXy/mAwf9YWHuAeo4h8ELFdprXirV3ha8mvriItMR/oUELmMRc/c4Usemcgmtq78NGPStGh02VIrrRjH9keRcqVCeWyNjnDISOOh2nnFWbjwpoVzqn9pT6VbPeEhmk2ffYdGYdGI7EgngelAGLb+DtPvPCsEGnTzWHm3D38E6RCOSMTFiy7ONuY3ZMduD1FdVF9ksEtrCNooQE8uCHcB8qjoo74GKwp/CNreeNpdevIIJkFpDHArAlllSQuX9sYjxj/a9edDUNFjv9d0rUpDEDp5ldB5QLlnXbw/VVwTkDqdvpyAc3DdS3PxbuWkvo1t7CySyjiZceZNPmYovOCwSFWJ4OD0xg1qeCVFtp2p2MeBb2ep3MMCgfcj37gv0G4gegAHatSTR7SPUZ9WtrK3GqPF5YndcbsDjcR+Az1wMU3w/o0eh6SlospnlZ3muLhlCtNK7FncgdMsTx2GB2oA4xvH9/vbbqWgBc8AwXecf9813GmXz3mi2978kzvFv/cZCuf8AZ34PPvitHH1/OloA53/hItU/6FDWv+/tp/8AHqP+Eh1Pr/wh+s/9/bT/AOPV0VFAHO/8JDqf/Qn61/39tf8A49R/wkOp/wDQn61/39tf/j1dFRQBz3/CRan/ANChrP8A39tf/j1YV1bNe67Bq1x4R8RSywMjpC15bGEOgYK+zz8bhvb8eetd9RQBzv8AwkOqf9CfrP8A39tP/j1Zul3F5o8dxFaeFNeEEszTJA0tnshLHLKmJchSxLYOcEnHHFdpRQBzv/CQ6p/0J+s/9/bT/wCPUf8ACQ6p/wBCfrP/AH9tP/j1dFRQBzv/AAkOp/8AQn61/wB/bX/49WfpF1eaLY/YrbwrrzW6uzQxvNZ4hUnIjXEw+Udgc4HGcAV2VcVqnjoaf4xi8PpZwNK7wKPOuvKeQSMAWjUqQ4QZJG4H0FAGn/wkOqf9CfrX/f20/wDj1Vb/AFC51Ozlsr3wXrMttKCskZmtQGB6g4n5B9KztO8Q3mmaTpMFvp91fy3mp3dkxu75XeN0eY5L7eUHlt0HyqB1PWqfEtzrV94V1TT7SUS3L30DWj3JWLdGCpLkAjaGQ4baTyOOaAOgh1rULeFIo/B+thEGBme1Y4+pnzVTSru80i3kig8Ja4zTTPPNJJNaF5ZGOWZsTY9BgcAAAYAqUand+LvBmn6no0wsFuzFNL57EERBv3i7l5UkAgMP0rjY9b8Q2/h+5j0+eaW21HXY7TRbq4nLSGEspJDMCWjISXax5xzyMUAd7/wkOqf9CfrP/f20/wDj1J/wkGpgY/4Q/Wcenm2n/wAeqLWvE91p2oppen6UdQ1FrKS+aHzvLHloVUhW2nc5LAAYA9SKz73x+9tBqN6ujyHT9JEQ1GR5wskbuqsyRqAQ7IHG4Fl54GaANb/hIdT/AOhP1r/v7a//AB6s24uby41i01QeFdehurYNHujls/3kbYyj5mOVyA3GCCOvXOVd+Ov7Zudb0KC3SFoIbxXkjvWS4g8pSFdk2qQGOCrKzcYzjOK1vCPiaa+a10i8spILkaXb3yOZQ5aN8r8/HyvlTxzwRznigDR/4SHU/wDoUNa/7+2v/wAepP8AhINT/wChO1n/AL+2n/x6uZsvEdzZ+ONYm+zyTafd6nBpVsz3RAEqxMzlEIP8RIYggYUYBIIrb8EarqWtwaxqF4V+zSalKlltfcBFHiMgcDjejnPfd2oAp6Pbw6BK8ml+AdVtWdSpKTWx4zkjmfjJ5qxc3V3ealZ3s/hLXHNkzPBF51psVyNu/HncsFLAdhuPfmuyooA53/hItU/6E/Wf+/tp/wDHqP8AhItU/wChP1n/AL+2n/x6uiooA53/AISHVP8AoT9Z/wC/tp/8eo/4SHVP+hP1n/v7af8Ax6uiooA50eINTAwPB+s4/wCutp/8erOvrq9vdQsL4+FdehuLJ2aN4prPLKww8bZmOVbAyPVVIIIrs6KAOdHiHUx/zJ+s/wDf20/+PVn6ld3eqrbJdeEtcMUE6z+Ss1oFkdTld377kBsNj1AzmuyooA5GznuH8RNqMvhfWUuZ0S286aW1KW8QOSAFlJxk7jwSePQAdRHcQzPIkcqO0Z2uqsCVPofSpqqQWFnaTXE1taQQy3L+ZO8cYVpWxjLEdTjuaALdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVhXfhq0vNQe6nmumV5oJ2gMv7vzISGRgMcHIGcEZwM5oooAgi8IWkK2SrfX/8Aod3LeRkzDJlk3bi3HOd78f7R9sQ2XgnT9O+wfZ7vUEFi07wDzgQDMSXJ+Xnkk89M0UUAOfwPpb+Dl8MedeLpqrswk5Vymc7CwGSvt3qvF8PdIt7aKM3GoyyJM0y3E12zy5MRixuPOAhIH93JIxRRQBpXXhmxuL61vInuLS4tLZrWKS2k2ERNjKHOQRlQR3BFUpfAeiSx3duq3MVreLEl3bJOdk4jAC7s5OSoAJBBIHNFFAEkvgvT7lpGnuL58/aBGGm/1An/ANYEOMgY4AyQO1WNN8LWWmanHfwz3bzx2cdiPNlDAxISVB45IJJz15oooArS+BdFlitY3W4zb3M90HExDPJMSZCxHJzuI+hxVzQfDOneHIWjsBNtwEHmylyqAswUZ93Y56ksck0UUAblFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//Z\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAABkCAIAAAD/pVUqAAAziUlEQVR4Ae3dZZglx60G4GvHYWZmZk7sZNYOMzMzMzvgtcPMzMzM4MTrMDMzc+IkDnPuO/utddtn5pzps8nz3Eyv+kdvdZWkkj6pVNB9Znf717/+9T9LXn//+9/32GOPMP3lL3858pGP/Le//e2IRzziL37xixOe8ITq//CHPxz96EdX+Mc//nGEIxxhXfFh1ESB3XbbLTR/+tOfjnrUo65L35VjEPjjH/+4++67H+UoR/nnP/+pEJbf/va3xzrWsYY1Y0Q1zWZHoEbfn//8Z8FwpCMdKTFw6KGHHvvYxy7raiRWTRemgcCO8b+UMTK7LPy73/0Ol8zuLrP/9Kc/TWb3mMyuUPlFeebCKK2bFWR24aVVYurMPoPS+Mdf/epXiI92tKPJ7AYzYD0C9pBDDlGpbKinUtkgd+9r2ghkXSUwhISRKBiykstwq2AwEgXJtKHYNa3bbdmV+1//+ldLgAJLHlFjYahGxncd5zjHET3S9HBJXvTDAl5hJ6cn+8g42GtiGFJ2eQwCWaEDPxOn/dMxjnGMMAKW14x2uy7j3DVGYNNsXgQMK2HA4xll/C6bG5W/+c1vjFB2WZwd85jHtIo3BlFuXktb83kILD3IhYtsLlnIHYRaxSeDWBh+73vfEyUShxgSTKJqXq/qa+GQzC7UsHRmX4DYvCaTqOv3v/99zl5CxkE88t3vfle9GhNn1nEpzxPV9ZNBwLDKaafcXUNVnDiQsU7/8pe/LLOLEI/GbLZ9k7G9DQkCS6/cZ4DLOlEqucENbnDKU57y17/+9Rvf+MYXvvCF17zmNVEKpjpPn2HMozg7/vGPP3MIuC5lV66LAIRTD+esxcyarre+9a0vfelLL3nJS/7gBz+48Y1vfO5znxtZ7bqqsK7MrpwAAjX0FCRxlyRuoN32trc99alPrXDRi170Rje6kXqLKhPABExuE2YQWHrlLi/88pe//Pa3v/2Wt7xFZEScpcHb3vY2GeQlL3mJGPrEJz6h3ppxwdlulvZ5seNu7WCeyDJzRsV+XIyA0euybZLTbcbtu4F5j3vc4ypXucpd73rXz3/+8wcffDC0Oasm2nofvlhyt25eBHic8j//+c8NVe42Qr///e8/6EEP+tCHPvSoRz3q/ve//73vfW8pXpPg2bxmtuYLEFg6uTu6/eY3vyk4rne96/3oRz+Sykl3IHDPe97zTGc6k+QixWQhILwWnO2KKpNEsszLX/5yE8OJTnSixzzmMQt07aYFCNgw8cjZz372W9/61p/85Cedld385jc3uZ7lLGf51re+JeOblb33zphf4JcFXXTTJkIgC68f//jHr3rVq0zqxuYHP/hBb2Ws3I1QNS5BkqP5TWRXqzoegaWTO9HnP//5z3GOcwiOk5zkJB7N/zL+Ix7xiC1btlzsYheTRKR+y3DvbdDMU0XwneIUp9DqJOcFL3jB1a52NeU6F57H1fXzELBIdwjjkF2Wv+xlL2tU+zLVMEYvxZ/gBCcItvEI78yT0/XTQCALrNOe9rQGo/I1rnENB6dm9x/+8Ie87+WWBbvM7mjeTN+L92k4fcaKJZK7CJAmsvR7/etff5e73EVOT/og1OvTy13ucmc+85nllC9+8YtW9NL3gneqQiqHMM5wnBs84QlPkJj23XffoX561F3WIMqVkswfyBKRac0jYj3mLCj3fK8ZRi8GhsLXlqMtIaG3sZihITNiUx8yygxPk6IbAl2nbPLzGKDobER5zH3IGJkb3ksBolx0hqRNt17e9a53eZVNgnW6bZBdES9ota9CyVmawJXyUKtgGM9CKap6jJK4sNQ9QiJHedkrILMCOOnR7B4hKtOax/LsvC4CRZSMsyIw9LAN/uRUlM4TNb4+XVRHFZNViCg9ooFbdR1z6Jw4nIf/eE2KsgI7WlWPzHfg+c53vpNusjx6NaZ5C3ZqKFApgM8ojzIej0A01UUJR0MI8AuKvLYtrVIgJ9dM/fAxblIT4Qv8PgyPoYQur4vAEsk9/FKG+f8zn/nM5z73OecAWS1yj/czH/nIR7yC37p16/Oe9zyxy/cLXtRYQmrlyNe97nXyjsiQg3LIU4qi0V0tOas1eYp8/WoVmgk+ZTJValIpVuhjkIdR4lscHHipkZwoP4p+mgjNoT5VViAWPWWMloR4HvWua4uj6Jl7GFlkrRS11WAcChxTlqzJRwk60hglrzGTqC996UuOYow3eyZHMe9973vZ++53v5uezl6V2UIZXC7DPnJABzeaZ4QTWAOYquzCpUkBl07hid7lcYzCMzRAJhACNCFEa7yjC6YlJMLiUQFxLtoOL2YGCkoii7P4Tj16lAAJ8gwXsZH5799jNc11QRrldQecBIOafDOux0BEyQRnkPQIYcbOw38nNCQQFzWSFgOLMijUm/LpfKtb3Yoa9sqveMUrePDAAw8ULVgA/pOf/MQdSogrvWLBDk8nOdWqhl3kDCPESE/XccRO6B83lUxAeWnkDmFWCBVNuiCZJjshf9dlgdrIK1hz7bZt2/j4Ahe4gJRxnetc52Y3uxkJFt2O3V13uMMd3vOe90SmQ/kFwsWNVoPwPve5T1KPVb+adDRk5GOXGixCc9j0s5/9LI8ZPEJBZKTGMDOKlBXsRodca8tiNDoUu1eUM5oMH5UJcaePTqkXdgt29SkrSJrupgp3MepKjUc9YlRY6goOYUyZDh6lckHsjRlprDZlXulKV1Jz5Stf2Zu0dBHdlJMBMyw9FobK/OtelLqAXtUrxGsMLBtVjr/SdehBDRDluCl3YilmOb+uzLggvkYfZ2EhtljMdsUbtAvzqt/pQvyOvWRSJlYMZcZBtCoXx/DAGyHr4j8UstPlIIldp96rG63KlOQ7Y+24xz3uqU51qle/+tUq6RBlypuWBepTGTkZcQwJwmkamoM+18zYTCX6sBxGdbh/A10iWQNU1xJDWO9r6w8nqB/WIPB/K6M1TbMVwI0P9ttvP2tDzWLlCle4wp3vfGflioAMvEoos1IOe05CQWaBc7/73c8orYQSEnJcOnUpHMa3498K3zxTLEMlqYeojD0xUWKVa0DOSBs+6m6YHaJDCDTpyH1IT6wAHWpYGWc45nUd3fBGjSHLUODiMi62uxLulFHG4uMHSEZmOtLkMdnEUIzvcGVYxl8sDYtKTdW1R1c9agqZmhSYMCQoyg0LQy5CklMic6hA5KiZQVu9mlTG8OpRJRtjZggqDIrmP1IoxIbS9AvqmMAoukWTUjJxiDcpcjH+Q8mLy7E0KqGsGIvf9WKCf+ADH6gpuuVurRP1IjyLKk2J2ERFViQkM0cvCdrcw6XJpRxR2IcyQzPyHjQQJyRiVO6RoCPyhzUjJe/KZEsfywga798duItaG7G3v/3tJz/5yQWuvZXAskZQL55UCmKxorzu5VBY/Rve8AYBcZnLXMZqghs4zxV6jzzq0Q5R2qqoSquONCHwKJnaijrVQWMfQA1vd5/1rGeZdRwf5ZxBgGJZsHNkV7q2HXnRi16EnY1eBqhMffrNrjxldwbSze41llrkKrBFk326eshg98bYx8Veat3xjne0tcSiO/eSM76AC9Qukxll0q9e/CxFJfCNTKc0d7/73R/3uMch0F2yibGhFyDkGMSp0UMf+tALXvCCztNud7vbneEMZ2B41DDSgOZSwzsq1URnCCtwDSRJTu/jlUdJLPYkHUJIo7O7juhG+cQPSgaqUe/a7oQdc2q6AyCnMw22TgIRMBZvJAsMr5QFgy7ovJSGGxLHamijpJu77gJ1jkToFgdpUmAvWyjjkaU5W1iAP7LxV+Ailla58AoGnSr4lQN3O3ihp1ZR8ZznPEfhZCc7GVVpFXByqCVCWPGkJz3JN1eGpFf0yIQWCeo5jkB42tEqEKJTsFOAKJHPWQqalr2oShQu3iRfd+YVkOrCFWkIjCZqLCt8V6Zf2hl8LGI40uCRPoC+11572eJxs5wCSu4RJdwsxyGbB64BYBwKFD7zjY0QwY4rowWXsqZ43aPBkDgmXKbm5hBoso1wtyQkUP2DH/zg/H7HW4ELX/jCyASKO5oF45xdVCLk8Y9//BOf+ERfBHnTe4lLXELk5cI+E1v0YaAU6fWyAgRoEoVpiD4suvaHdz784Q/7KpGod7zjHWwUwQIXS8iWupvMDEvwOgoDGkDc/c7AR5AszYuyN7/5zU7bY7VWTklOSUfUo7y84/O4C13oQuxyjGM+zohKGkJjAmYOWDJdgYgXKA9nyuMq74zXP25KF7hoGCHu0KA8ZCQUl1NpBIkBfbk8puAOcLxf/epXvYc3l4tG2NIwc7xWiQkyWFSWOzz++5eOCInayT7eNtl9qpSeaCUM1AMtEQvA2CIDUokj3Ofhv6x6gQUXmaw+3vGOZ4K8/vWv74BOF9bsUH36059OW+4WqAIDWbhoxaG8mThUJoeSH/vYx8z6fOFnK2i4TD0WksWeZYrHgKBT/hISfopoLy5+1KcJzZiLBN5JcJpXDjroIPqAjt8pTFW6EUtUWTpGbNOsIhBnjLlDmRedp+PKYfptbnObi1/84s7cHeRFguBGpqxQ9zStvVtic6FxLsVrTWYxKkKprxTU56DDpJKaCA+BUEhlMTr0P81pTqNS5qJqiD3KF6Fc9y6C1ZMpuRshAu4rX/mK2FIgOUYhUMilErGRYNg85CEP0ZQdsbRrzjOuIlC9GcXdhTFKGiSpKd3yOOYeKGK7hHKe85yH2L333lvo22eQQGELH1+pmuGYTA3E1m7ItFIsiEW9WKee8jRXcKXygAMOCEsq0yPJfpTghw5RY0gQsg3v9lLe6emCQEIiIcJVYs+BXuoLQwSgkwjcxUPoEWMRij7iVghxEI4aEhziErKhbiMJ0gXJ6Knkfstb3lKocOsHPvABsywwc+pYIcfRPlG1oLYZQs+6BfiPVGNIxq1luHlO2PuNofWEgt8n64u2VDXN25JijBpxokdNJGSCjBw11Vr0QH74wx/uMXFbr2oi7ZGPfCS/MC0XspFX/P6FL3xBNnjYwx4mv9vQ56QoEuhGpnL5faTkXZxs6ZW7L6ss1XOo4mXdN77xDWnF7yGhLztYs4gkIaUgqbkrr3uJNuNBZpeeIk2WJIqD0ccrYZSMhJFDksc+9rGSqUrOdhd/7takiBU+9alPobnuda/76Ec/WlmrlawvvokVPQho6D7vsr7D6P3wSU960gyPq171quc973mHmgx5ybdGe+pTn0pnxxoejRzD++pXv7qOLDoIVAkTGlqSODoQuKYBs6NlDpS0LsBn2NewbFGDEXoq/drAnc4GpLSyZcsWmFtJaWWykaAJwsaJXE9P6FHMAs1aknq2ODbp7nYA8nXWvNDOWux0pzudOcMIJzzQKdgN8IKclaW3LDbUbUzZGu0pT3nKa17zGuixhVaEu/Mp3aRj8UB5NbqmpFb9qmEa3XTt7pJQVFJVwDBHjQJnuTOfI0Spj0NgRUhicox6G9LQRxfI4gIxTHMJ3YkHb+rxAQ94gA9UhDStoERJxJxuEY2RyR5ZNw//DRVYS8Bq0BHO40ATwFe84hVtpg1PCffZz362Vly8f+ITn5iSKysrdmkQizI0ZIVhgpEtz3jGM/bff3+B+uQnP9nyiHCY+4Ov5nVdWM7b1App1rFRAMBW6/nOdz5LIp5aq96GNSIBqnY/ILVMPNe5ziUMPvvZz5q2ixdiVe7CWASSvICrwN/uynxsVKQp9SFQyakZ7SJJWHhUmVa+qamVBI+RVnLyiEaTmPCBhyjJspcEokI5XOqqEUBCVvBZg3ikpHf9DjqU0x19FCxO2Sy/k6zJiYrPNLOYxYImonTkkc5RTyUraCsL+45Q+EaybwyMgfe///2aog8JWBCHxZ1WAj1HN+nUpuEiF7kIUUFPZZD5zne+YwIQxEYac/AW1AiiWySHEYFLfdjz6E6ZKitgMQ9ljRNzIsREwhDZzXn00572NKMacbAKmbvLhsnvFYFGK4/xC8rYS0Nzm/cWmvSrVcY0tuV3SobGsayJIUq6oxyqp0xIKmMjF7syvZEmX4SeQOz0NMFwtLFdaijwrFNg85PU6XttiUk2OdvZzgZ/WuGSZXRUGzuV0pOfXOCNXWqUg3kVSluFAhZl1aN01WPRRG0Kx5VvetOboA2W0As5kNI5vGKAyRIfqyOBQGi4KAx/aev5z38+mVnmUyB4IlYIC2Jll9a6UqMp/XpU8EgrNBQgMCyJCodXFJOFvVJyUCNK48TyQti//vWvm6hQCp6ISu9aAUgfR523v/3tPWrVxBzx5nBPTUwgQS/EDoO5YOR3lEWcgUOUr+9IxkKIcQfS7OHC6M6oMPZ9JAKrPz6CGkyF4FoeQCcyNPFrAqvIhE75rCqHBfSJuapMtIXLmlEMiTMOToy6x4UVFklMuAz7+973vuQ4i7DqoW0US4Cix2thIpf5EsAa1skMhZ2QSGHrmoaF2BgV9US/NbV67wDMOqJQ1sveMxLSo0BEjxElrSzTMjz8EQ/HkdmxMjDEtKKhjvxQ0NI+HSUdhzL2qiet9KxC6OFTOEdyOQUB4UlbuCKNITSx9KY/AqpGjh5TplV6l0atLrVS0hWysOhCPrLQ9pjefSvtQqbHUHKfVw7KGdUKGbog0lG42BUJRUNPmZcf1aMMesTKKZLdWc96VmJxJT+Gy/d5KNFYsLskpgSGGib7i3UxHA4YNZkhYmnYVcZrjIpWXJBCGGkycw3rlSGGoEwoYhOMDSKdSUYGGZJN+XZpaOIXE6RdYEArXxBIK2eAjEWZ7mJy+Si9ICuu6nfdArIYpbVCQhlK7iY8epogrc3jfZWhzx1LCmLV9k5rruRfQpjAdzKvuSohymoeN9caJjmqRZZxHVFRPtZBryYSHjxM/Oq/5JjkrPaUA9TKyoojoKHtBMYLQ8YuL0Bg9bAizfE3NPlAZXDkQjUIxE0IuEETb8FapUcEHnGpUQh9ZEbUsHuSw6vJrl8OjdiMPZTYyUyP7tbR9rmvfOUrrc4cWcrUt7jFLYwHwZEe0VgpOFF57nOfKxMJRGcgsr895ulPf3qrPPEUG+V9axaPDhYcC2BMgGq1e3jxi1/sixFLbwsx8p14WLd6m1TrQS/ukBl+1HMeLZpdFvsJYtLEolFNsdhS40cToGyBLerxMl/NMEwNKqJUuugfxgCVSuzhUkiNOwKMrtTADSDYja6szuwVHFKxyA4XeyEceHEhthI3B2ilD+EkJBFo9agLk4Q/MAkoXHYeTnI1yV9+hCzJGpB+1A6TEEcT98LExmK//fazBGOUlEGHhIfcB+H0oneVpNmQUcMUrqMs3hFQyT1coXfPJbE6f+MUvnbo4S/qxLQ4AgsDUSbpEIveBGy3oSkasivyI1A9ZTSpZLtJImTupYCDOC8zmGPiFJa6cIrtPQQJ1aOU7WwhvtaFaBRUCBDHC/EaISahffbZRxPYo7x+ywXqXXE6HYDj0osr5SiWtQLK1CtUVCijiVGmQJoD1ufLN73pTQ0lyAR8ZAruVJKsHePYj+aDdzJJ0JTwUOBNL6v9AbLYAk+JuKA2YI0Ohz/OCRGvvXSkXz+IYa+R60SXLU4FzesRCDF9mSG8StE7QIJJ1FgrsGvmIbD6AUm1ARHiAFUTbymAPsGhSbmI5xUI4ZvyhMchpcdI04uVrDQq2yJOBA/lG4pW0H4E6/NBZFYH3vX7KwWSkZFj/NAc17WudS0f893tbneziEZGgktO0ZE4U0jUWstf/vKXN50IO8EtKxntaHwPQA1/sMwhBgkmBv2STIjIU47y1rDmIekSsaWuvG+yMTy0Ig4yVmf55F9NmS9e9SJZ0C1rVW8pSrKmGD6ESDnsotxVHlEPNOaQNlz4UBVZSTBPUM/w9pWqjy/prBetyEKTcydlo9TmV7YqaSgDl1b9urCbTfH665I2zpVHIObkilEKH//4x1HipZ5CSTvooIOgZAsvhZll7dx1J2OSBjoHLE6ropI76FCSoAu7Lr6gXuwiE0GA0gtwxEzFp6mLQPnC7IuMfO/5pYbY625Csg51pkemv09nypdtS8kokAgMUKkJDqAubE0/Up54Ez9iwB/bYL4zYu7GksQUVdnlECkTNiuscyOz5Ec3OpvGTEt6QSCx+vinaNQw2SPiCqfImbkXS1mBhf7ARAkoj+z1MkNUbNu2zUCgdgVeAZtdl5hnlw/G8BISizCmFyCot4HzQY4C2+90pzvJ1MoIePxe97qXFYMDFpMf3sAYiLgGma/FRIUBKxjOeMYzWg9lTUaNXGgYYv9tqFI7ElS6glvKfd8QgdUtIcgy1QtKoSDIICumjRb+Bm5h6pF3DT8Fd+V6FNy4sHAhIdzpjrciL6p4VMl55mpj3ggXTKFx11EGCWL7faHvEz1l7jdiFbSKPCle2WVV6NFrHwKNWIs4hiSmhUWpbZ1oVY7ehlSnzPTo6wXBhF3OEoWalJPNo8/2HlZzHFuEoD9SrywizQemlnzXiIYQWLlseO18FVTqGkSgcHl0KMkWk5Oyb0Uc/tjbwoGS+gKUer0ogwX+ygY8Y7cLXl1dxij3FNBThrYkhFjKdlFGTrHFwagcBBAQmy7QK6TeCpdW5gCPDpdkeYlGxgkBSBVucpOb+BREwes1+JgsSeZ0NYxVI88quyiPJdC5I5NGLWnpyV5zgJ2T3IqG4UwzW9OfkohFji0C3YBGlB9kkexloDJ7gyEuj9FcIWWasC6YFDIWnjkUpoN4kNRsy/TC9QzkRyf4+iUBC7EVrjoSwJShnrtlfmhC/MxnPlO4stcLYeqJf7nJ4p2BLmqs6rT90qlgyGQDVcQsJZPyROmUYghN9g4S3/e+9ynzGj3NHHyNxp1icYFWe6PVSDrkkIy7DMDUoESAJQqQLAwwenRl+kQPW+ZwLhxoi0BNogI73dxdJl0vACiccQcEWZ69JsjtVq7OsoitzWVnoijpZaw9mb6CEgLsdtKr4g6TjCx6qjHNv/a1r/WIjF/ElbWI+hib+AyjrUYeOQh0utOLpr5GIrD65UlIjVvzrRWHUZcDDWtknpBYr33ta/OoNYhRoWbdywkGZ3jNZdllkYuXg0U5lwxVSUBwpO80pGPHrNUaz2niSANA3vHliVYBLQ5kImUrDuVkQ8NMp04e1AsC9XIuPUVSgpWcFMTQpz/9aSOE/hbsiF24/GFryTonfSTrUaXLsMnwq2CSyHQqLzsBEPFoYheZ2zl2KCCJe0ynqU/u878i+K6DNLpJLlTVmmhWSBZQMCz9eEQXvGB14ySHgS77U0BZoqKJ5saG3OcI1epGgkBvuuI4KdJlZwNb9Xm0YrXkTNYmwQVSrnHeFU187EE9f2xE/pXK6UxPZGLDyt2amjuyf9rOvXpDQz0SUsPkmJO7nEtPKUCrKY3wgBZi97DLFwk/uTiTtya6UdVq15QQeCOTwlxQ2MI/LsACWKIiHIZwyMSgXkfeQGiyYuVrEtgSSncRQqxAFa6CVugKYGEczCXoj370o3p3EWUp6hGXQwmvkfGq1KQmAVn5y0hxxAQEMDoWA3KpjTihJcb0q4mcSOBBx/fKZQsDVyP10EPNkQRSzEUrV8oqfe8YCRj1Yutp8LLFIIWDLYtHQSKcHNZBVZOVip2H2PAxe8UeW2hLFAm0ig4rKys3vOENfb3qRNFypAx0qkNV9LgQJ+yzMBItdrfq6ZNFAEuVcznkNFvA/MADDxSiHtMRzZmJhkyQwtO0REPTkkouqzS1Q1D/MwKB1SwD3wTf1772Nf7jDEORq8Soeq3GW4IY1updaFwp51HIajVDuGtyj4NrBEYZj/Ff3roYeHqJcB2FmC+xCxGJmD6Sr0h1yCsgcCUF+zjB4Yb4cGYnFBybyDWi0BEB+fqqQKSex1TilcQ9GurqSZNBpAM9OrGxYDz44IMtnBG4WOEuEOtuM5G412S7gFFTkgXz7UYJz9BV71s0KxrJhSayBvkBxGiXfI0ih4wOLlGGJVFuMWURB0aMuhbT+nKSwyMBp+xCgIyDkGVlRx+4sQuk5Lvka2MGPjk/1ZeNM1QzVORcP1NQaQB7eaDgsrzFrsApoJCgHcuQII9bEauXeZlMLCiAzyinq6WVphqHuJSt2VGykWl+HUMsxagtQ2Xws84SeCb7m3dxWdYRghfLMJBUulJDFK1CE4Qx+mhKpSs11LNMltH0iF6QQJWEII+mgjYBrF7e0WlN3hUGCvKjyZ5wm79KTx7BhUVBYuLxZCuLEpNK1EAgbOwjI42cLVu28CMWGloCU8w3KlRNpfpcesHLsy6au1JWGQwFT2wBOBM86jGBzTRkrPYhOWkesWC3SKdtuByV2NPgVePEklYoKWmSI03ZHJ+VFtCQyeBOY9TLDMI+078h5rKZtpgg3I4kVpPp4iyMWDJe2KgjlTQBo3oXxFCmTJRVjrknXo6oNPV9JAI7XqgmvQb9AjeVHhXikjSBe7sfV3OoK49FnBqP8Uru2wkPR5w/4J4PaTUMu4hwQzRfYlifWpkKJusF49PrUJ7meGGKJhtAa1uLLxkqZwgZ8MQS5e4gxSzixaAJwyPG5CnngySo0RRRFkSJZowVZ2qErO9wvQPAgt52wVKazhlFapS9HpDN2QtGY1Xikyg1mYdKT4PBiafBY6hYqSUHBfYMs8KZAmRid8UKBUPLHX2I01RkKRjJQ5qwZOZgERhjMq2ol/2Qocsu7LJS3mpSI/nal/JmIwJlfAiDTtnF0sgxReUVpXynUlPANyzNItaVe+65p5d4pFn7+71bUCVNcjeNoecy84eB7dHMgV0uk/GtN7nJ4EdD/wRShWjkZMynMiixgkpyBy7pSSKjhh8bW3vyiEq+yze1yrlIxjUM1CAZkAlJX2ZrsSdUrNzpQzFrDq2w0nWICdEk+cJK2JAjzQmqtGqiQ3DzexHJ3ddcdOAjPxy1UDXLXupSlyJfnKhHHy8ok6wXF5mulIc6xxZN0dajsruu0zuUNGEMpXtw04tgjlaOX0z5NnAqzQ18lIlB2PAyFuzstdPyGN2AmSY6M4ScDEkpHjjCzLIgixjs0DCURIXPpQxJBDa12Dm91Eamd5M9fFImxNxjQTak0dTXYgRWU9u8S+isxtEg7hO76Pm1tvkI1FgbOr3l4IRdBWWE12PC0cAwb1vR8O6w98h350VfqfugQugIFxnHZdXpDaFtpv+gNefXRoJjXDnXQgmZU0tjhsBEbeU161OtjibcxSV6R6XI/BBOjVwg6ecwxPQQriTZ3K1MkRl70g1RwtEgTAqL/qxD6cRfay0xLGckFOMErxSZdZwVmZBVk4wZ+UMExpST71BiB1RSZAZwNWnNOJypkfUsk52rWifSlr+gTZkcUhtRMguxfBocpNd81Seta3KAEw0VWGFv7msZIAiG2IUr4Fu4cbFlHWC9rHbq4nCP+bqjmCyJPV0A39zMvzlz0EtOpZwqYHfgm+kqd73H0qix7p2N++yzT8JSTOqIQL048mKpEOK7KLkueypn8ojwZixR4s0Kw0R16UtfGoyI40R2KWft6XgQpUeBARxhY2eZUJHpRDVGm0hvpLOSoIzgwWJLhxJjGTsUrn6piwmyJLRzxxtpGYwUNgmlZuvWrezyl7q52+DiJvV0EPPZUUnu9rViO+AbuZnIybRbFUhMiKiVlRVhL+A5TqukzC4JPZo71/LI3dzhmMjBvSWRWSTooVGgNqxs+MRP9iW6wGUhUmSR1vfFCGyQ3JOpIwKyGTAOHGVYWzYr6ywxjBY7bqHpjROWRIDQCT32eIXb0iTaBLfZOzTINLnwIo5MBTHnLZaCt50mf8RSjDM7jyVHzNlUOlByeiPjOKtJX0JNIaFJslhx8i6boHfcT2aacJk/SPO6ycmmOEuMIsDlngTkRMj6gp7eBVnkaspYRVCX1agQNHISkcLdAMiOIaOLPgazeYgCzkAdIuUYvSSMKeiX5JhfqkaZ7OVlc/VBPiYQy4rQyMJ+WOA8StZTn5W4jx/8mtHQ5Uc5mpK60CpBmwNIC5kPJAzFzGRa7brsPFBWL94Hsl2Cox4y62VjG87e1mbVDIFMfg6pcj5mZiLBMp9zc/G+S4+5rOL15QqjAlvi4u3VszdkHGFicNdGjXz+qAsTfxaJ4XHQN8u85pluCQAtPmWR/l72spfpXbKzkFcZnOGmnPlbweiwXQBCHGSv4Esq9VyDl+HwtwMIbmIeGXqXD4p8eQKu+JfwFPAuewk58jOgMuWQpiMgEyVxR7eIFRXWIsaab4WrR7Y79gzatlz5PIZMkSNIyFFmjqHnbDNoI9YLcMghOQaayWSM9Asop0P6Eo3WaubawFsg11rEgkDwlNWJ7XrswhgEFiV3/JxXUhIc5lsJzlDxPt3rmuzIDCGOlAtkNzkrIRXGSKiIQaZVrgyvECz5KRClEGcjNs5TT0JiRSFcoSnJ1Btqm1yGN0GMuCgrsjWJ4GKUF3SRXiraSDBhuMs15LsyhhUwhlgrme5+9p0VDVG6Ix+Z+hpIBrbkDgEv7ry+zjdkCMZfQ4HBgQ5UilZDtTOcGBhIdUFhd4oZQgFWk1TuTYOFM93Oec5zWl+XUdb4lqjRDcu2bdusubDoN7gl4WbrYGr0vq4sxYUlkaBHykRD9b62FifwrI7SxYI7sSW5CvPo6Wad4XBARtA1xNJRoMOFYMOui3hIWYEdw0FXNUEeMrK/EwlZLCFBB68indLEfJhEsnsMgQNegEh2Zn1HPT61dHyhlZ6xcajDPKtn6iOc5HhHa7xfZPpVQ0+FVCrHnASM9w12OVbi0rpsLqdTA40ZKIeTeSGBxTGjsNc67EI9Y40dW3B/R1YX4EpHWf0op4AxEaUm4Jg4rSry34kUcaERIX3fEIENkvuQPz4wmVt2qec5+836pEGrSjXORgRWQirxralSLecZb9mEOgpXz2eGChYhldhKViItAYqgfF+eJgRB5nNkghgZ4S5C3LWGxmOFbwZSGENDN4woRa36mkuiScawemS6SNDnsSoVKBAlqWe/6es3lS70uBQEPYGE+/GUl2ZqcooVDVdJR18ZP1EPE8WAE25o0IRMF801qS/KFNxTrynoKYCFI+RxQ1QOitVOTvIDJY+sQ8YWh+Nmd26NQykTwBVkNGepyCDpMYYLgzgxaGsy2h1o+MUZShflQ68LlC7qYacnllxEqQ+9gsqU173Hj1icMFgzxmUAwRV7daSsC+zq1xWisnpURh//hj7xiSBKBop4wUsLn6A47guGCFLv6M+kHvaKRpKjBszzXTnbhUf9/CeSZ5TxOOaqqdQ4TS+kqaRSja/ISTwUyABMDUoEfn4lMKzblAFoSZcASGt68apc2ENbRy5YsTTK+/ZG6vdYUcoj5LviKbEUh7rnsjo0H0gOQzNJwDKs6fKGCCyd3B1zO8cQ2Vxo9e14gctdnG0Hbb9pDcLBOh4OD488x8GpdN5i7BkJa/VLTCR0tHqccSohukZAIAJeT0FZJeJ6TBhVF5EjHDPg1asZKlmdhnI4kZTMTFoIilghgetIh0yn+baTAFGuYRziiu9MIaEp9cYXkjeH9DKCQ3PHpg439ULb9FiUagAVFt5hmhqXHJT6wB56+KBxoFQIIMtQJMEZjt+FZtqGXqxAH1TBG/RQRqZC8XKczJXMPtQziq17JxlXmpRdyrmvS1+U3so4i2NRjFJPsagdGmKH3l8rLRCpV9Cju3IBm6/g1ZAfk9nrsMXhTylMPi6WarKg8boy2RBoyf4o8VYkBLGw8EuI1yo2ssaBidMwR/xeQkjx4Qp0Ft0MSXfu0X8YIYg9qkdPf9qyRXn//fcvrWJmIPVCOMt5yicSYmCGgJryAsmRgL2mmWhFJX35pbEf/ZYyKtM1xqH7Yk7fFyCwQXJPQIefA2owqOcDefyAAw4oNyDzXlul0ctzFbLFTgJX4fVu09uzuFZlgkxBBCQmpIP0VTGR8CpLEFeQqfQoLIatiTw1iVEFokpVURL1EojYEVCDeqnBHtuLPby0SgFldVcoRU6aSEt9rIt6rKikoKaULFEjC+kisW7c+vDGZtlZmXdQhh8hKp0RRxrDo1ghUBoiUE7yjYY1fjyyVGs5PQRYQp8pKjZyZTkxMvWoKa0kxK2a1EcmaeVcAkNcdzS5sOTSFCs8jsFNp1wcFoZEZ7yJunh5h+g5/+hRdqPGTHskqKx9XghAR7FITlOSplb1LoXCkGLRLbzog3NgLEatahJyoRx5l7790ME7ZCc8hqS34rrjBa9A/D8HEZJeqi/uYEK5G01YqkcmRGeYBAQCyyJk5eUSUlhpNWCLuNwRWOoxZO46ShP1dFcCNfU1EoFFyV1wDwdYRheseUjZqbEcnW4ySgWor02c2+y1114ZElnMYuGbhAV6k7loswBcoCLiigOi4mb0hmvqK9xFT0lGgDgaKheXckkTYQnBaKhpGFhVmcFZ2SehNpMRPBZ9LXIJNELSBZQYHrjUIw69mhTKCq0jLwKJjWI0Vza/OjEPO2D9fNfx6J577ulDHWemNNFLUgaa9MicKAArlRk5qfFYeKagr6CHGLtpA30Roy/hcTfzVQZ8lDXHp15TAE+nJVz9vEtfpIV+Hk3Vp98yQX3UAxT9s4Atu4prTIECwIy02BL08AaZCKGAGKsmlUFARGU5giA7J02JqAKQkokc9cgYXhEY4ePvXuf4ETUJRPnoyNtavHK9b0689/ZzPCDoLgKZNhwFKnk8NqpH6XFoUbwPzGiLPufp6sutCljSBSti6bDThGJCiwS8ISYzBewY49DURHh07vuGCGyQ3Dlj6I9ALBaldeczpOdjBh7S5I+niydntY5c6pfNiYPogYarhIu3JQ7jOC/hrlW9jhDHlxVJFfcVRtVUkYRdJceTkI7cMyrQRLdojqDiIz2G1x1BNWW5UY+EV+hnoFYTrsRoJFCyglVTAlpTlNd7lI+NJRPBTlwBlmQJ3YfkhPOFT5h82ODzZMe+ZPqszcY83ZUyQSl3yqdQOMccLOFKLzGqEg3TUqP3siI2xhAECoVSRKkkreBCkBlUASyaXGGMkNxVDh+xDyUMm6oc3fTO5KFWAR9ZyYxixTgsDIkD0bC1yrExasOwIEqh5FePCiWtVrWUJKdohsgPy9XpmILP1Z3RUYkhIsRM75DK92l60a+vOTXpdwhmFKiasqUwVAi2tKo5m+YVPGEZDurUlMk0D7CpKXoARnLuyAJsyJSDQ+k2BoGmWZTcC50MS0BzjPLKyoq/x6LV90++r8gMn6/IHQVwgNztF4bWcQkXM3x8k9frlpaijReHAU1aeqlOuzAPgRpsCBzFeJflewyw+0UMYH2twTtWUmp8qphftNd4wxJfzBPe9ZsLgSTWmhgMIvp7M+T7lryY3bp1a7488VYmH6SaU739Fga4kkM7JDaX00dqu7t0sNS19957+0DYgbvjXUe9vufzhYxXeb56dhrgUzkTgD/hsu+++zry8zG7Gd4fBrCWN0v7LYm+vP2z6se+VL9NXAgYt/K7R9jC3A9NHaQa5HbiPmT0iYufd6LxR4HMx1ZwKD0a9tK9Ml+UqC5sdgR81GDEGVwxRNmyycemfG2F7gN2v6gy2Tu4Mww1WWlp8ssyZ/GGp+CR4jskNnsYrKv/HuvWzlQmEZsuFLy4yyLdr9TU5Mdpco1PU/2wXjz5ONIe0JG6dbrfkjgoIA2Bry8Q+FsCPmNwAkiUa92OZir7cYiANxb5g1AqTatmWT8c862CH2f5TZkfQDrPtZa3WJPNjXweMeA5C9oG81BUl6eBgCncMQtbJO5M6r6TcbzuN6K8b+tmGy19+1uhVmN+iyAYvBiT6y0IMDpYs5CfBhRtxeEQGLnCz5lJ7f7s41z2dDkiyAeCtffXZC3pTngIHN0II8lIqMkyKGUcQVkCUerCNVKfXZkMpIalA2WXfJ0/DyCn5wTTeLYu8ycMDVpTqb+PqD677wIN+FXuwqZGwJDJQDOaYojwMMLzBjWfZuXdhs+U/ZZK3vd3SeV36/eKipyXbmocWvm1CIxdyq0us7dfkojQIcjd8tBKQe7wtbt0YzmQeUONH9pZLEgiCDRJ676PlImcBTsgtlJQjsCwuHuschcWI2BJ7jKefbPk+MvwtpyHf9ZufiXvL+2p98MZv31XbxLNxKlAsrG9WH63biIEcqjiyIXOBqbh5rsGvxTzaHnu7oBOhPjzcE7tXP6ii58mqTR+tcrsOS9V7mtKCOyWNL2USVkwSi7iSUZ2bFfJwhJeHnfOa9noLrlnw6gXlBix+DDLkmF4zNdpfTz+RmmO0RVgCE+5G7zWa9A2a3IHaWqAHEqPBnwcIcWbVnMf32lT/tciYILP6ON9ydqe2EGofC2tS9/UNugc00V/UYFAAIiT1Bf7f62BrdhOI7Azyb0ConK0FCNikq9t95JuKmV775dDPTQURZywi9ICTqGId9qSXYQx8GYkW4a77JOyE4KAR1neZQbNUDcHqwTyEPMZF+wi0E3VTDM3X9dEztcmb4M0NVqNR1O+tzWyvDErWhAIoWLpyX6SsbF0cq/MnjWCxCEysr+rFF/rRDUCqBK3xKQsyyRDBdAkd+UimyTQ/0GjDEuLtSzMlU2ZWa17sZFtePqqNX4eM54RcxavheU/qFWL+v9CIDO93k3q5vJ65HED0LmophqSys7uvFaNtvkCogZ1Kvs+DQSWTu7TMLutaAQagUZg2giMfaE6bRTaukagEWgEJoZAJ/eJObTNaQQagUZgFYFO7h0HjUAj0AhMEIFO7hN0apvUCDQCjUAn946BRqARaAQmiEAn9wk6tU1qBBqBRqCTe8dAI9AINAITRKCT+wSd2iY1Ao1AI9DJvWOgEWgEGoEJItDJfYJObZMagUagEejk3jHQCDQCjcAEEejkPkGntkmNQCPQCHRy7xhoBBqBRmCCCHRyn6BT26RGoBFoBDq5dww0Ao1AIzBBBDq5T9CpbVIj0Ag0Ap3cOwYagUagEZggAp3cJ+jUNqkRaAQagU7uHQONQCPQCEwQgU7uE3Rqm9QINAKNQCf3joFGoBFoBCaIQCf3CTq1TWoEGoFGoJN7x0Aj0Ag0AhNEoJP7BJ3aJjUCjUAj0Mm9Y6ARaAQagQki0Ml9gk5tkxqBRqAR6OTeMdAINAKNwAQR6OQ+Qae2SY1AI9AIdHLvGGgEGoFGYIIIdHKfoFPbpEagEWgEOrl3DDQCjUAjMEEEOrlP0KltUiPQCDQCndw7BhqBRqARmCACndwn6NQ2qRFoBBqBTu4dA41AI9AITBCBTu4TdGqb1Ag0Ao1AJ/eOgUagEWgEJohAJ/cJOrVNagQagUagk3vHQCPQCDQCE0Sgk/sEndomNQKNQCPQyb1joBFoBBqBCSLQyX2CTm2TGoFGoBHo5N4x0Ag0Ao3ABBHo5D5Bp7ZJjUAj0Ah0cu8YaAQagUZgggh0cp+gU9ukRqARaAQ6uXcMNAKNQCMwQQQ6uU/QqW1SI9AINAKd3DsGGoFGoBGYIAKd3Cfo1DapEWgEGoFO7h0DjUAj0AhMEIFO7hN0apvUCDQCjUAn946BRqARaAQmiEAn9wk6tU1qBBqBRqCTe8dAI9AINAITRKCT+wSd2iY1Ao1AI9DJvWOgEWgEGoEJItDJfYJObZMagUagEejk3jHQCDQCjcAEEfhfA2jI3MdBytIAAAAASUVORK5CYII=\n", + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCABkAfQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iig9KAM221mzu9WvtMhaQ3dksbzo0ZUAPu24J4Odp6VjeHPFV1q2sT6Xd6T9jmhs4rqRRN5jQmRmAikG0bXwu7qcg5rhxqU1rryeIVnvh/bHiB4lWJj5T21ujRABB95nKDGR3yMYJPoOg+FLTw9JNJa3l/MZizOLmcyAsxyzdOWJA5OemKAOirG1vxNpPh4W39q3fkfaZPLiAjZyxyB0UHAyQMnjketbNcRp0x1T4tay+47dI06C0AION8zGVyO3RY/XoPegDt6KazBVLMQFAySe1Q211b3cSzW08c0T52vGwZTg4OCPegCxRWRrmtR6LYSS+W91dCMvDZwkGacjsq9T6nA4ANRaBrn9trqANu1vLY3j2cq+YsisyhTlWHUfMB2IIIPSgDcoorkfEfjaHQjctHZSX0NnCZrqWKVAsZDqvl5PHmHdkIcE445oA66ikByAazU1m0l1250iNna6t7dLiXA+VFcsFBbsTtJx6c0AadFUF1G3n0t7+0kjuIgjMjq4VX256MeMZHXp36VQ0DWLzVhcG7s7OBYiFVrW+W5DnnPRRgYxjPJyeBjkA3qKKKAA1yr+MrWe5is9Lhlubt737C4mR4EikEbSMGZl5IRc4GTyPXNXtd8T6f4fls11LzI4royAT4GyPYhc7uc8gYAAJJOMVwenwjT/CWjX2rJd2Gpatrct8Zo5Eie0eVZTvYOpXCwjBVgf0FAHoug6qmt6LbaikTQiZSTGxztIJBGe/IPNadZWgWljYaFZ2+mz+fZLEDDN5nmeap537uhznORxzVG212+n8RNp/2KyFsrNmZNRVpAq5HMQXIOQOM4APJyMUAdHRVX7Xb/AG37EJkFz5fmiMnDFM4yPUZ646ZHqKFvrZ76SzSdGuYkV5IwclVOcE+mcH8qALVFFFABRVW0vLa/iMtrMsqK7RsV7MpwQfQgjpSpeW8l3Nax3ETTwhWliVwWQNnaWHUZwceuKALNFNLqDgsAfrWW2rFPEkGkNavia1kuY7jepU7GRSuOv/LQc/WgDWoqp9st/t32LzkNz5fmmMHLBM4yfQZ6Z64Poat0AFFFFABRVa9vIdPsbi9uX2QW8TSyN/dVQST+Qqrp2tWWqJEbeQiSS3jufJkUrIsbjKkqencfUYoA06Kqre28l9JZJMrXEaK7xg5Kqc4J9M4OPpWNba7fT+Im0/7FZC2VmzMmoq0gVcjmILkHIHGcAHk5GKAOjooooAKwtY8U6Zol5HaXbXH2mWGSaKNLd28xY13PhgNowCM5I6ir+q6gmk6Td6jLG7x2sDzOkYyzBVLEKO54rz+bUbXWvEOueJ2tnudG0jQnt1BOBLK+ZJlRhkEhVVCQeCSOewB1vh/X5tYlkt57QW0otLe8AWXzBsm34BOB8wKNnHHTBroa5PwbYafHayXlnqM97M8UNtKs1wkrWojXKwHYAMr5hzn5jnkmrWua9faZexW9nZ2Vx5iji41BbdskkDClSSOOT7jAPNAHRUVTuLy3szD9omWPzZREpY4Bc9Bn1OMD1PHU0txe21p5XnyqhmlWKMMeXc9AB3PU/QE9BQBbooooAKKx9R8Q6fpmoxWN1IySyW8t0SFJWOKMqGZyPujLDmtVHWRFdGDKwyCDkEUAPooooAKKKKACiiigAooooAKKKKACiiigAooooAzNT1G6sDH9m0e91Dfnd9maIbMY6+Y69c9s9KgtdXvrlZzL4d1O2McZdBK9ufNI/gXbKcE++B71tUh6HHWgDnf+Eh1Pj/ij9Z4/6a2n/wAeqe01vULi6jhl8M6rbI5wZpZLYqnudspP5A1yOkx+ILTxtpVm+qNe3C2sz+ICkztbqT/qNitxG55O1QOATjGKveGdXjg8e+I/DyXjXNuGW8tsu0nlNgLPEGJ/hbY20dPMIoA7s9K4H4YO1/D4j1t/m/tDWZ2ibnmJMRoPTjaeldbr9+NJ8PanqJOBa2ss+dufuoT079KyPh1pP9h/D3Q7ErtdbVZJF9Hf52HX1Y0AZHjjxdqOk3WoWWnvbWwsdIbUpZ7hN+9y5SKJRkD5mUgk+oxzXL+Hb+Hw9dG6F9FNp/hzQRbiKMcT3Dq08qIdxG4CDJPoemMGvT9U8M6LrcyTappdtdyohjDTRhvlPOPfB5HoeRikg8MaHbztNDpVojtALZiIhgxYxtI6EY4+nFAHA2E174m8bQw6tqsFvcx6JuiFgBHLazXOGZUZiSSscQOSP488cVs39rceAvCjQaXqC+RCktw816I2dI44s7I41CB2YqMk88sTkkV0ul+FNA0a5F1p2k2ttcCPy/Njjw5X0J6n8al1Xw/pOuCEapp1teiBi8YnjD7SRg9exHUdDQBxcXibxPALDTry50ptS1K8WItHEyixQW4mmDqTy6g/KD2ILelZ3hHw1D4u0Iarca1dR3Umo3F5IlmIhH5j4WN2RlYbvKCMv93fnrzXet4T0GbToNPm0m2ktYZPNjjdNwDHOTzyc5IOeoODkVe03SrDRrX7LptnBawFy/lwoFXJ6nA/z0FAHIeJNd1+11+DT9OvtMtopneJTPGZTGiQGWSaQhhswdqgEY5JOcgVH4ht30/wFq2qoUfUtXS1W9ntSdp3+XCxjzyECliM88k966O58H+HrvU5dQuNItJbyVlaSZ4xuYr0ye/GAR3AGc4q/q+mW+saRdaZcg+RcxNE5XhlBGMg9iOoPqBQBQ1PXNL8O2VxAWgQ2enyXa2o+XEMYxwAMAZ2r+I4rj/B+uWvhLSdA0XVDb273OnHUbm4kfYRNLKMJtA5JMh+gQ9q65fDdtqVtZSeI7Syv9Qt49jzCM7HwwIO09sgNg5APSq2o+DYL/xKNe+3XNvfxiOOGWEIDHEocNGMg5DeYSc9wuOlAG1qN7PY24lg066v3L7TFbNGGA55+dlGOPXPNVrHWb67ulhn8O6nZIQf30725QfXZKx/StmigDJ1PUrqzkjWDRL7UARuLWzQgIfQ+ZIpz9K43xXYXviqWyefw5rcH2LfJDtNoxWYldr/AOvGQArDb33e1drrmrWug6Lc6ldhzFAudqDLOxICqv8AtMxAHuawLHx5afar+x1a3bT7+zYebAjG4+TyllLZQdFVgGOMA8AnigDS0/VRZaRaf2rFNp7mWOzjF0IlM0jYC7ViZlG4nAGeK5HQ9XUeMvEGp29mbm41G/bT7QBlRRHaRZdi5HQuzDvk47DNd7eWGn65YJFcRR3VsxWWM54yOVZSOnsRWXfeErd7ewj0if8AsmTT94tTbxIUQOu1gUIwcjn68+oIBQ1m+g1CLwfr9mpVpr2ExM64byp42DKR7gg49VB7Vzd3e3n/AAq3Wb+DMGq6zf3NqVkUtIzyTtbRoMYIKqFxjJAXoa7OPwtHHPoUXnE6dokI+zQt8zPKEMau5/2UJxjuxPYUkPhaDfqlleRwXWkXs/2tIJFO6KYnL4PTG4BwRgglvagDQ0WezXTLSzt9Qhu2igCq0bDLqvybgAemRjPTNcbq/iTxMuvzWllqOi2sQhmuCbiNpI4UjlWOMPIrfekJbIxwBgcgmusi0C3i8SxavGsMYhsfsUUcUCqQpcMcuOSo2qFXgD5jznhkPg/w9b6ib+HR7OO7MxnMqxAEue59eefY89eaAMz7XbeHvE/ii6ldltBZWt/Ki95T5sZ2j1YRRjHc4rmb62ufBmr6T40u3Ae9f7Nr+HyqLKwMbdekTbUz/dA9TXa2nhi2d9Wm1iK3v5tUlVpkkjDRiOPiKMA9Qv3sn+JifSn/APCDeEz18M6Of+3KP/CgCa78LeH9SuXur3Q9OuriTG+aa1R2bAwMkjJ4Ao/sGFNXsr2CZ4Es7draG2iRBGsbFCRjbkf6tMYPGPetWOJIY1jjVURQFVVGAAOgFS0AcHo13emz8S6lbpbx6nNrMlqsl4cIqRssSZ6EqFywUHkscHLZp3grW9b1i6E1/qOnTWUkUxghjhaO4ZY5jGkxGSNrgEntnbjvWpJ4Utp77VIbuK2u9H1MrPLaTJkrcABSy+xCqfUMCc88aemaHpmjLKum2ENosjAsIV2jjoPYD0HHJ9TQBWu9b1C3upIYvDOq3KIcCaKS2Cv7jdKD+YFOudTv/wDhHZ7yKxFpehT5cF/KiqrZwC7IxG3vwc9utbVVdQ0+01Sxlsr63juLaVdskUi7lYfSgDz/AE59Y8XPd6XrGoWUujzSXdqY44WhnuEhdFMikEjaXLKe2NvcnHRa3AkHijwtdwjZKbiazbbwDC0DuV+m6JCPpWlpXh7SdFllfTNOgtPMAVvKTbkDt7evHUkk81DNozXnii11W6kDRWMTraQgdJHGHkY+u0bQOwZvXgAxvB+pW0GhS6rqTfZbrVNXuI284/M0nntDFH07KiKB7Vh2utJp114x8XrBFOX1KDS7ZGcRgrGVjJD46b5HJP8As9cAGuqi8LQrNqVtdJFc6VdXIvoomDB4ZycvgjsWG4YwQWbqDT9W8G6TqujWmi+QlvpcEm/7LAiqrYVgB04wzBsjnKj3oA1bLVbTVNNF/p8q3cDbgjRH75UkEDOO4IrM/wCEh1PP/Ioaz/39tP8A49WlpNi+mabBZvdz3ZiXb50+N7emcADgcfhWhQBRvrue1shPDp9zeSZH7iExh+f99lXj61y3iGe/1/RJ9Jk8KazFBOUWXD2h3Rh1LL/r+NwBXPbOa7euHt/iLZSXcMlxbNb6VdQ3M1rfPICJEgKh3KDkK24beST6DIyAS+D47jQtNlsrvT9QtrO3VpUnvFt1VEAGEPlyOzEAfePp9Kydd1iwvvGulakri407RdIuNbkaNQ29XULFjI6lfMIGffjiu3tLyz1eC4SPLqjmCeGVCrKcAlWVhkZVgfcEHvVJPCWiw6Nf6Xa2S2sF/CYJ2h4dlK7B8xyeF4GelAGXq1/H4h8MeItOvLSS1uLW13SpuD7S0fmIysONwI/Ar9DVbT7yfVvGumm6UZh0BLuJyvyLNM+12A9QFA69GI7nNuXwbPPpupWs2ryzyas6Je3DxqjfZ1XaY0VQACVypP8AtE9gK07vRn/tnS9T05ooHtUa2kjZflktmwSox0KlVKnp1HfNAHP/AA91IS2Wqale6jCzalfPdxo3yFYixhibljw4hyACRwcE1Z8Ya3rWmX1rDpU1hGZZreBI5kMryySyFTlQwKoiBnz3I7AHN6+8GaVPpTadZWtrZwS3SXEoWANna247c/dPGAR93JwKt6n4U0PWLsXmoaXbXF0I/KE0ifOq5yMN1GOcHqMn1NAFTw5p4ugut6hPaX2py232N7m1H7lokkcjaD0JyN3YkccAU3wVLDZ+Gbexe4ULBd3VnbCRwCUinkRFHrhVA49K3J4JY9Le30wQwSrHsgDJ+7jOMD5R2Hp7VQ0rwzpml6Xptn9miuW0/LxTzxqziU5LyA44ZiSSR60AblFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSEZpaKAOLsvhxplhNPNBqOsiebzX3vfM+yWRCjTKDwJME4bGa0LXwdpFjLor2cUlv/Y/miARvwwkXDh8/eycMSedwBrpKKAOQ8V6BrfiC4XTo7yyj0C5jRLyN4z5/yyBm2HoQ6jac9OvNdcBgYpaKACiiigAooooAKKKKACiiigAooooAKKKKAOd8V6FdeILOws4bkQQJfRT3LAkOUTLALwRu3hDyMcGsS98E3Npvm0R4Jrq5gu4ryXUJGDTPP5eZSyKRlfLACAAY4G2u9ooAp6baf2fplrZ7t/2eFIt2MbtqgZx+FXKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKGrw3lxo19Bp8ix3kkEiQO5IVZCpCk45wDjpXH/wDCtoIdBa2hvZZb9LCOytprk7kgRWV9iqoHBZeSctjHPFd/RQBg+HtOv7T+07rUfsyXV/d+eYrd2dIwI0jA3MAWOI8ngdcds1vUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=\n" }, "metadata": {} }, @@ -1209,10 +1534,10 @@ " \n", "
\n", "
\n", - "
\\psi _ { j } ( C _ { r } ^ { \\vee } , t ) = \\frac { 4 \\sinh 2 j t ( \\cosh ( 2 w _ { 1 } t ) \\cosh ( 2 w _ { 2 } t ) - \\cos ^ { 2 } ( x t ) ) } { \\sinh 2 t \\cosh h t } .

\n", + "
- \\frac { h ^ { 2 } } { 2 \\lambda } \\int d t d ^ { 2 } x d ^ { 2 } x ^ { \\prime } ( { \\tilde { J } } _ { k } - \\frac { J _ { k } ^ { 0 } } { \\rho _ { 0 } } { \\tilde { J } } _ { 0 } ) ( t , x ) \\Delta ^ { - 1 } ( x - x ^ { \\prime } ) ( { \\tilde { J } } _ { k } - \\frac { J _ { k } ^ { 0 } } { \\rho _ { 0 } } { \\tilde { J } } _ { 0 } ) ( t , x ^ { \\prime } ) .

\n", "
\n", "
\n", - "
\\psi _ { j } ( C _ { r } , t ) = \\frac { 4 \\sinh 2 j t ( \\cosh ( 2 w \\cdot t ) \\cosh ( 2 w _ { 2 } t ) - \\cosh ^ { 2 } ( x t ) ) } { \\sinh 2 t \\cosh h t } . \\, . \\, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

\n", + "
\\frac { k ^ { 2 } } { 2 k } \\int d x ^ { 0 } d x ^ { 1 } x ^ { 0 } ( J _ { k } - \\frac { \\mu _ { 0 } ^ { 2 } } { \\rho _ { 0 } } \\bar { J } _ { 0 } ) ( 1 - \\Delta ^ { - 1 } ( x - x ^ { \\prime } ) ) J _ { k } ( - \\frac { \\mu _ { 0 } ^ { 2 } } { \\rho _ { 0 } } \\bar { J } _ { 0 } ) ( k , x ^ { \\prime } )

\n", "
\n", "
\n", " \n", @@ -1226,10 +1551,10 @@ "output_type": "display_data", "data": { "text/plain": [ - "" + "" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPAAAAAoCAIAAABPWuCHAAAXMklEQVR4Ae3bZXCkNxIG4NsNMzMzMzNXsFJhZmZm2GzwwlBh5gozMzNfmJmZOXvP+M3p5mzPnMc7lS1PrB/a/qRWs1otebbPgAED/tGK7eeffx5qqKFo9u23344wwgiAX3/9dYghhgD89NNPpvr06RO9f//998EGGyxwb9/TLdC3pytQS34h+8MPP5gVzWIaIJo/++wzwNBDD/3HH38AfvvtN31vayUL9GnVDM1J4lXqlYnlYJ8S83DDDff999/rhbjxYYcdtm/fypaGOfjgg7eSX/+2urRyQHPqjz/+OMwww5SQ9WkDf/PNN2OPPbYk/csvv0jbYrqUH3/bOGgZxVu25KiOZhGcBLz22muPPvro00477UcffSSO1R7J38rrlvHo31yRlg1omVi88q5yYvjhhwdcfvnlzzzzjJieYoopRLOqA44m1nNZ/JuHQmuo37Ilh4oi9XGeOz799NNllllm7rnnPuqoo5566qm55pqr+E9MK0XU02WkF+i5FmjZDC2a88rhuUOSdhEUx2OOOeaQQw5ZolmsuykK/d5o7rkR3E7ySkBLUVwOUErKVRnR8zR/A9KgVX/+Z7hL/1rreQGqcjYLwtG1LE8QBr/77rs6tAhjloQB/q8kMIWpHmtFhcSsrthyyy0tNxJGYl1ZUv0IXcT78ssv4RAyu6LoTuCsjRiBC0HsMhJdLC9oEbiaezVmO7QQzCCaNh7kTz75JEsa6ot5rYrN84hZhwjuGu5aYMgAkoRagsQsaxgPKQpGx0KZ2DFXGY8iEGLVmOvrr78uSwYe6EtJFyMtOuRNQPARItcmXJmAg+GkKm2IKzooWCtHWjjiiCNmeQwhX7bZrRKsKt1o2Cl9wkTUFBKRpA6+8GV9Pdaen6lAkhTTndLnJC3iCcdRRhnliy++sBPsCp+IoAYg8Oeff45CxDDIZwkUg6nFeQgjU1ZRU4NAYMutiswvvfQSfDgweRcOWIMWr0ODTCQ0bTzIjpfCyGcXWyRHjZ2zpI4RgmAJQF+AfLKGzc+MgiS6sAYc+pKZ5JrxyE9UYkOgnYUoCCEjxJA1qo9EfyigflgPfN+HfNhgjytmjEggI0xJegJxmB4n4xgTulGuVlmLGk1GGmkkjMKULYywLwSzOGY71aJvVbhH2lpoGY8WQoSJqTPVVFNNMMEEt99+e3wQV3VKgUjEuO+++1544QU+ENlLLbXU5JNPDllYsIadiSyBiU0SFgN3JGU2XCK2TzhgxGNnnxIHjSxHEPFq7bI8mpoVFhwvdBiwI6/6I0jhGCHDOvL/31UQiqEij00+6qijxrZyBJF4bZ999mGW448/voRK6LM856ZHSlrxxARwnxljjDEAxQ5dkQd+V9qfzkAadvLHe++9B2ZcvmfBRHO2VyzeFboFhwu5ChGZZrTRRsPCFHYs5e2Md41wG/pgipWF7QA44tIgQM++KLfDqf4MspEkgHfeeUdc1pGf3SFzkiRN1KWXXvqhhx7aYosttt122yuuuAI73hITOWcSHAZhlkAhGL0oiw7nlVBIfvJJYPhmARBEs0H7x0jMkqmCn9yGIMrh241oRhOXCAkWf+Gir9+s0goOmBii2QhqPMWwzMVr3CrjCpXiEZYhtmimoz7FkmiOsqKZGHZF0boAhV23gb4xHwYk4A8WJ6hTlXCvvfYaNciUJOeUfOWVVxrlhL5oRpk5kHr11VdphawIwwi7J598UvCZyttwLfqWW5WIQTP2rYVsXPwxq4zCWGeddZYRWhSLd1wYuzMCx1x11VWbb775TjvtxCx4zTnnnPyHWuwOEGrkAYQOoCDQ6Mwzz3z88cdNYQcNBWLjXnYs9/Pugw8+uMYaa4hRpmBwmy1u5mmmSBzb5zRlH6w//vjjOhu+o0YZiWAE8EmYpKdsj1pLMk4preCAKeKTqCeeeKI+U4ssssgpp5xy6aWXLrDAAuKbwBlnhzYCAw477DCwwffff3+dddY5/fTTwUxBmGDSt5pRBrvfEyKM03/11VdnnHEGtdl3tdVWe+6559h9ueWWm3DCCZdffvmTTjqpGrkrcBwPk2XFyqmnnjrOOOMgvuyyy/6rra2wwgq2+HrrrbfnnnsyUy2aXGKK8uiA+d5nBmstMR60HXfcUQzde++9RrK845LIqdIYeeSRve5B2GGHHQhGWjuQ5EYEaKyvr9ZL8BWCDIjXvvvuaxBaJLRdC0J0xIjP7DqUZ511Vku0eJFxRLA4zoijHE2sC4VOAYw6bQnoSBtYzMHslEgGQweyFti41KAnyYcffjjDDDMQW+VAQfXG7LPPPssss2y88cbtaEJm/7HGGiuYZgXbJJNMcu2114KLRjFpu7Xd/qyc3RrR6Zmshj1HLr744lgm3B27bI0xtOA31FtIsRgRF7tzvvnmCwWp7ogjjkCc8l2hGSK33HLLNddcA786ktotj5mogLViAwsIFRe1Oakdsk/4iEOWquVmbrOTk+D79esnIMwahBnXFtaASKUXrBISXgsvvLBtULhgCqZjMMX3HHPM4RxgcJTtHLE7//zz/7Ot7bbbbrvsssuBBx644oorCh1nmrVZKM0Xmu0ACJ22oJkCJKxl09tuu63d8vLZZqHfYZaWkVCAdtlll2244YYMlSXU33nnnffYYw+fbEjHxEwQzjnnnO222y7qv/HGG2jKkgsuuCC/gNHUF9ZNAQZHET8pQWaK18EcM8888wA0kr388stORqJDyJkF6HpzVDkxLUcKF73dUqx/4403jj/++AZVIPQsiaojfe4UbYKAS9jOiUH4nIMdkcnJsmgKrDvvvNMRLxCVgPh2RDYCX7xCQHPJJZf05/ETTjhB7pltttmc9apG8vsFCIe5JpKWGIShF4KRAX1F2iGHHMJ06igS4o6yJdE6NrTwnnvu+eCDDxZddNGcxZaoUpQBwoK0MTunCO+JJ57YfdSgyp5gXSkV2mlHbFwISQXmJerVV1/tEOCCdpjlM4FVPgGOC00yooKDznsLCuQJWXZGHBqVIQAwggBwDyE5K4kouRn+BRdcQAuf4447LoRQoGwoGBnIVrmQJWoRIpBPFZKRGWec0acLoiR61113uR7JrLSCRghTAHI4eiCo+WQdTqKbilCON8tzeg2anllFwJFHHomINwfuZ2vLEXdaiRVxgwVMMhgHoKzXYGqkMi7yBH1cSwzWz2wwfRKvwADRw4vrrrtuLjQVz/TpYwmBzYoVjd3322+/VVdddaaZZuKMhRZaiKieRLbeeuvHHntsgw02sJdIJXfOPPPMDtmDDjrIIbv//vsjBR9TpNBff/31L7zwQjuNyj5ZwGwyRVQjCckdL0pP4Q4NjinllmPn5ptv5v6owBp2lBBH2RKD1ka1GJ9IpjTB8fDDD5Otf//+m2666V577bXJJpvI+ogTj9kD6KkgbqiGtT3JCEa0yI8UYQQfyojAUfLi6FNaVRm+/vrrWL/44ot77723nLL66qtbgqDllE0lY0QxzQ4PPPAAwcSD6uuiiy7abLPNsCMDg0A4+uijYWrRpVnRjGDlBzrihk3FCmb0pwA2u+++u+rHYT3NNNPgx9CZtYZkYgugGPJXN1UmNLlE6cnN3Mnr9KdMkPUaCxoR9DaxnKRwnHrqqUU24phCcPnlAKcBOBtd4NpRbBoEvYaOikiaJA9PZ9Y4qYiNApfEQ2SmmiObHcHIysEQLElgoWCcn+add14BJM5cXFTzbuUuD5750DFIR0GgBrjuuuvUIQcffLCUb4nN6ZaMApqMdsMNN0w33XTuBhxpt5CznGb+SIky9TVieBBkLkACCOB2SKTTTjsNLDKooHRZeeWV5UIyQMPCVFrIEol20r9yXIVD/gMOOACa4GaW4JMBDgtD07MqLtzKAjzOaBgZgcx68W8SsNuNtdj5g5QmuN999133OaseffRRn88+++yVV14ZHBZgMR5Bf80113RAqS4uvvhiblKfQHZe3XrrrXTH0Scr2UWIMxotsP5Tsab8IwiYjIZ6LSKq3mRZT0uyl8jGiJPMVqPBNEtKAglTn/CZ9c0337Q3UmiabaM6gJMCsKAXseeff/6tt94yKDNJYIgnT9gJxxxzjF2hDrE2y/U0l3KkRo8PAJWlbeaqB5aN7CvOqBZPBHNhpIVDflEYAfRU08MhMIB9E7sUsVG32WYbAWS8yIy4nSAE6UtOBZJHDEldToVmFilTagOkZDUVi60YixFeiFNK+pfy4cMkj79ZgrXwAsj6xu+//34w61Hw6aefBjNsfIS1pvhWbZPNPjSroeyElBGlPS9Rjpqon1k9GZhu++23V/s6c5y9mnuR4FPgMjXzQou5HB3EsFFNidTzzz/fhYdPBb3XjJtuukmuhSzRSEnEsJYu/GIQ2vTTT09sUWsbuCS4DNjbphQYYgOgSRkkoYvNpjdC4LaZJnR9bXfkWJ8aiVExRyxFJ4BkTzzxBNhOgsCyek1e12QCI2Qyy69GZBQxwRDWQrOh9dQWtdDefvtte5TXVaieTaySuoQRPaAlwYg/SZG5UYbAVXrUCGmfRGOkiK0XDXgRA1kUElsA+LKFeLXcKzIcjuSwlBnUsRYOIkKHG5ZYYgm625aEd8KghlRKBYCFKiKZj6jHHXccXyqsBZbKBB2znO0tgvorrbQSTEwR98s+kjiLOFhwHHvssaussgqRkm5Z2JZDHC9+RQQOCrvuuqtVejWu+gdM5SiLOzRHh6NMup100kktJLbTn5sUAILGzhGL5KF+Tgl2s4WszXIEyYxm7EZfxPXGCcbCjzzyiEubwGUZEtqf8sXZZ59NI6HsFGIWBDnOjxbBjC/lUQ0Fe16Bd/fdd9tC1LnjjjsoSNTzzjtvo402ikjQSOtYMK4njBEC65vT6GaTsVRi5fDDD2cXYuWThtioqPLJKOKM5vBpy0m0ctZMNNFEQnm88cajoXBhcTkg8Qc/a/VSCDUUYdms/IE4cwRBNKhKCeN0luFYLeNxDDikcE+9mK0PrezvogXMslzEcBhkCwsRrEPcZuMqceATWbpfcsklSZ9wmJtLTOXAQUSqU4FgJIzkclOcp7ED4wAIoywRmnYmjupvZKGxhiPYngHbCdaGsk9BiRHF2ZNB7MDJJpssjxtoRuwgBzOPLUboiCMcgglQRJxaIik09aUVfY1QQeKkglUR2GA0RYoAHmdjUtuPNUzxkUsUNNvM0QpQK+YZtGhhbbSTrSGjoGQSJJZTR+0Bky6acFJkI0IRaMaJ4bMprVJupuQCuKTbTMRi+mjr1GApEWaQNe0kTYjobTjeUlGJTtnLYScnuRFKw0ooV2kLEZEA2AiOY9q+p4B9KfoVYe5AYCGlAuNOu4IXhQIcxzo9BQFYcENDxIgeLAVqyVu2OxxWM0UqPTirwDIKWAKmXYjYUaRydOALwXLhLqtdf/31NjPkc889NzKTBDJl+d4xhbjEqbRV8Ihvm9OdQaCoDpWwNjBkTuUbfoqo6COuwvHJgHa704ZSihMAeYzbe2EE2UGs+PGLbecJHHLC0Uwhrtd4wSEAQJnwoeOdkZC404sH2TMCIM4a+hyVZIMWV8ZElrMMHLsaQbwcnlwjEthEZW8t1tRUbzCCaEZhscUWw9HdjtesQpY80Nym4KvRITtJpEWRs9Zaa+UJEiZjaiIBX5EthADU11d0a0ar/O8juvEuS3lwUJC5wyZD21VilJX9qYwViEJoPb6xVwQyQgd5OiZGxw7xRiN/AOgPgCBvTTnllILGSSS+vR54DT300ENdDR1zVLJQTJOHw2grPaBveWKRkIwOB4L9lihnaMIQgCegWUUwMP/FDUpSCIpO+Al646QymGulT+8SihxPCs4HiZYWLuZchRH6mIKdwtIqgVWonOpGqCQVechiYUqhKVLRdKlVXntxE23OZYxUw3xGTY5nZ0q5JJx88slYR3i9RiqKeI0xngeEmDqzBTnCoyN8NSqLIfW0wpSoPGW/OSFtHgutYg3jYAZkInDcZCTLAXAo6xNZf1YThZKrE0auJQ8WbiD9+vWjLx31ppQf9i2v4U5TRPK0hbg0x5JuSgZdDBTlinWSQLBF9VKANwNZgzflfsrKhpCb0+iZoKEtlbgQoBFUTxk9NSpDbfcG+FrGjQRNGIE5voLUNhgELsxI6Z1BgYVXgKzFl26KFtW8Y4EvgxAK4QI/gFPV+5RPOIQJneoe9yz0vstM/fv3N2skmqYaYdwsoXWkisyZNZVPPbsHM5USmFf09C2CRQyfWYVmlsi1tjHfO7s5lQCpXmw5uwhOsXmsV4QJU5+xg4VF4PBKn9mCBic6Ujay5TPCZGSrrbZS8FgeCpGhKOKTJMVNMWOWu3/L2cGPtBHSNghCzAJmBFWNoI8xyVBwpHabv9pKkkhRLXQGpq88KjfUGmVWizg6rGYWkJgWLna2y6L6TNYsjNid2+rQKZgBYMZV6Mudskjck2eHdshN/8RdcPC3IENcaSRLuS15qZXgkxrEgVctObvp3OsQjFlizMhWB7njFBsqsRzUpuIvQGjqg484yrQToO7WjvdEvPFsACeJdO6dMZ96lZWaPmgdmXZjZFAGdDkNygmg/gY7taOJ/V0yB6t12jrqDI0FYyPpWbVjq3TDhR0pNzTC6xHebrSXkr2KGPK0X8h4v2+I5kAixzLk0RolRR1XZy5DpKxlZ62MAFCmNWSFa+JeMo7W9ra6yIOJEQ2aca9AXuULwYEHBllAU74Ea9TrqExxP9PA77R1XAWNlY075gS0SsbybB4vbh3xmztClzoE+ZtsOWGJ5MWwDnLTp2KZSgx2VqfVZ2eJWw2cKEiRQg1Q1oJNFcdJKz7LLAqZ0odO0z1SuQ00pxivQaUOfXcR+rumpGLmZgBVXaEQY4u8NoBdNWqQrznMiC7apj22WO50Y1k1es0FTZqgAqXsVdqBUcVXoyZ1lNEEo6A9pleKNIltl8gUX5ChSwv+F8ld3EDW5j5AqXaksIiODiU35ryuwNF4li8YB5GgAeIR55WS7H+5dfOrD07dXNqMZaKWhrm5AxioUJUSmEZP+erxglALaLPen/cSb1jqNrd+g+gI6ya+ENURwBR2+vAF2K7UJAA3U0eIc7Cd1pBqtTg2Ol6kamhhVukJn31LeJ+IRNlOqakbjQvlzNrqSU/Ut5yLAdn5nS5vdPC/AdToyoHEz061g2WyGCWu5XKflKQqFpXk1nZmNcpO/tMQZz4EWdzm+QuimcOoVhxsQ+KrZdMSgJo+jdM9Kjeq2sDjF/EaIuVeCN/a+I7wSTe1qLk28KZQ1jg0kZ1oRodT4mK1R0Ni1EceZAFNw8QxDVmEaRK7XF5MxnDQnNS1TFZHN9b0OwSvoawZkwkgB32dJU2Zog4/CWu8KGhH4avFowkFffyaEGkK37+ASKkAJdT4Lupg7bNdM+hgTAYxBZMjIiRfA5KVwfJOE2N6kAU0j/J6tSZ8r0XbaC4H0Bbs/pSRrvdOdn8w82ItaPBiU3kx1LpOpBuYGFmFI17F3/Yq//FoUnKimVL580c3uPz1S2zI6sqwo0eqA5p48SMXG5ePshkyiBQEg0lh9n83ElYtCwziGrqWWF0fZ53s9QD+1u2v8d6z/bXPM5MjDymG0wuvkmO6Tr8Xs2dZoPI7gR7dRLNQtvVld/ne7xD8qthvQvwq0h/tBXFuY0mNPgP0aJV7ha9jgR4f0IJY3hXWTjdHuR8GCG5R69eV3vYBDsoSzVJ1b5KuEw0tMNU6JYdfHeRXMqJWTKdOlZJT1CrUlH0K6xbwWa8KdSzQ4wOabnKzHJw3IG8LAjoXau9EAAWJLC5P53ZSxxa9Uy1ggVYIaPEqoNXQ8YeA9il8E+IZTHD3xnQLhGx9FQbZs119sbo+m7JYNMvTCgwLA4eCl7uUHHkwauLzUNcl7MX8Ky3Q4zN07oLitZQcAlqrNqL0nD/R5QZZPdULt5gF/g0wlkPuozkgvQAAAABJRU5ErkJggg==\n", - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAAoAPADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+is7WtUj0XRL3VJopJYrOFp5FjxuKKMtjJAzgHvWM3jKMHQ4zpN+LjWQxtYWMQYBU3kv8+B8vPf060AdVRRRQAUVi+JfEEPhjRpNVuba4uIY3RGS3Cl8uwRcBiM/MwHXvUB8TBfEVrobabdC8ntftbDdFtijDBTuO/qCR0znnHSgDoaKKqy3ttBd29rLMiz3G7ykJ5faMtj6CgC1WT4h1mHw/od1qcyNIIgAkanBkdmCome2WIGe2a1q4bxzL9q8QeDtEUjddaqLphuxlLdDIe397b+WO9AHUaNdaheaZHPqmnjT7tiwe2EwlC4YgEMAM5AB6d60aB0rjPEfia5t9ci0SwDx3QWO4dsRkzoxdRFFvYDzSUY/NwFRutAHZ0Vz/g7VZ9a8H6Tqd3Ij3Nzbq8pjQou/uMHpg5H4HtW6zqiF2YBQMkk8AUAPorA8L+KbHxZZXd5YZ8m3u5LbcT9/bjDD2YEEexFWdY1YaYtrHHEZ7y7nEFtAG272IJJJ7KqhmJweBwCcCgDWoriZPiGq6xqOl2/hjX7yfTpRFObeGIqCRlSMyA4YcjjpWx4d8Rr4jgupF0y/sDbTmB0vURWLAAnG1m6ZH40Ab1FFGaACiqt9e22nWjXV3MkMCY3O54GSAP1Iq1QAUUmRms59TQa5HpaxlpHtnuGbcMIAyqAR7kn/AL5PtQBpUVyXgzWda1eTV/7Xslt1t714oiJ1kIx1T5VHC8cnru9q1/7UabU9QsLaEPNaRRtl32qzvuIQ4BI4UEnB4YehoA1qKzND1WLW9Jhv44pIt5ZXilGHikViro3urKR+FadABRRRQBxvxGt7vUPDB0iztLmc6hPFBM0EZbyoN6mRj/wEEcc88dKztL0AW/xPjnhttU/s6x014oJbuaaVDO7jdtMjHACKo44OfYV6HijFAGF4ksLzULaFLS3ExVyzD+1JrLHH96JSW+h4rK0TRdUstWinuLHyoQGDP/wkV3dY4P8AyzkQK3OOp4612VFAHEeOrC412+0DRha3jWLX63N5cRKwVERWKruHIJfbyORjPSuc8q78PXXjHXreK/twLe2ttPuNSaSUqgPzvmVj0dyQp4+XPQmvWsVFJFHPE8UiK8bgqysMhgeoIoAw/D95c3N1rNpNcm4FhfeRFK23cVMMcmGKgAkFyOnQDPPNc1q2k+IF8W+H0fxLukf7Tsf+z4xsxGM8Z5yK7qx0+y0u1W2sLSC1t1JIigjCKCeScDirmKAK1nFPBZxR3Nx9pnVcPLsCbz64HArhzu1L44IpJ8rStFLZ6fvJpMfiNo6jHNegnpXEeDIPtXiPxhrhBX7VqItI+uClugjyM/7e/t1B60AaHj1NTk8Gaimkm4F2wRSbYZlEZkUSFMc7gm/GOfTmuU8J+HrPUdd8SJe+Fbi00+4nieBrqMx/LGgRCv8AFubMrE5yNxB5Y16lRQB5f400u2+26fplvomqvbQC2USWtuzW9rbLLmXyvLO4SFVCHgnaRjgtV+XTbqTwzY+E9N0++0uC9R/tEzjz1tYSXYxlicbm4Xb0UMfQZ9BooA8o0p9a8OyalZSvLCmoeIYAl/JbiLzI5EVX2KflU/u9o+uQOlaFpf3N94h8KX13ciSJLvVLASYGJHVmWMkjjcUhfpgE5x6V391aW19bSW13bxXEEgw8UqBlYe4PBqpc6Jp1zpcWnNarHaRFGijgzF5RQgqUK4KkEDGKAOX8VWmq6N4mtPEmgWTXc93F/Z15bqCQ2cmCVsdAj8Mf7rH0rqdF0tdG0e3skkMjRgmSVussjEs7n3ZiT+NaVFAHPvp95H4UlttX1C61CdImM89nF5EswBLbUVOhI+Xg59CDzXL+AfDjWeovdX+lTW91Ha280cjtJtWSVHMqDc5yVJ247ALXpFFAHBfEPT9XfQNRuItb8qzPl4tfsaNj50H3yc9ea6rSrTUbOGVdQ1P7e7NlG+zrFtHphetaRGaWgDx/QPDepXlpLLqS6tJrclvML0vF5KO5bd5TStzKhwqKqEKq7jwTml8I2M+qw21l5N/vsJrGK4nuEaPyjbDzXXOcMxlldNoyAoyTgLn1+q9tbQWcTRwRiNGd5CB3ZmLMfxJJoA4zxd4Vlk8H61BpzXU9xcTyXqwoRl3YY2443BT84GR8yrmqPhSA61f2ep26Xgtba9nnFxcq8ZkAj+zRoFP38ogdjgYOO5avSCARg1UjsLeLTV0+KMxWyx+SqxsVKrjHBByOO+c0AchoGsRaZY3t99luJ7S/8QTQxSQKu1Q8gjEhyR8m8EZGScjAOa7us4aLpq2tjbrZwiGwZXtYwvyxMqlQQPYE1o0AFFFFABRRRQAUUUUAFFFFABRRRQBm6xpEOs2S208txEFkSVJLeUxurKcggj+VLo+k2mhaXb6ZYoy28IIXexZiSSzMSepJJJPqaKKANGiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/2Q==\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKAAAAAoCAIAAAD2TmbPAAARdElEQVR4Ad3bd+ze0xcHcK1SrVltbVoURWxixqpKrKBWUwmNIvbeK0FrBq2IGDFSHUbUXqUkCCmlSFpq771p7fJ6vOv+nnxXg+/zPD/f+8fN+Zx77rnnnnXPvc/32+n333+fpxHtt99+m3feea1MgE6dOv3yyy8//fTTQgstVPA///zz/PPPH9G+++67hRdeuEUxQz979uzOnTuH4Ouvv15sscVaJK5GWtesyIAJGXCYNWtW9+7dkf3666+GIMFFpJkzZy644IJhYvo333xjIZLPN998mYIhmX/44Ydu3bqF7Pvvv7epQhNkPfs5SqnnklmL+n788UdwPIyOKCIapyAWpSk9MyNrzbqm051ZaJjB58cff9y2ddGzYpEBwAaE0YMXWGCB8GHaWDejX375pdFY99133wUbtRA/iHUZu0uXLvFI1rUpwse6iEMDqH/rFP3Wf2GqoRHrCtyuXbtWez2DJRxLPJUYalHOjJaIZ0LTE5ot0n/77beLLLKIIVPiZyUuI4whTIgXG4dJhKGuIOUJHumz2nhm+bQXcwu+beFblLAdkQ2L4ASKndCynkYSJRTHPALigw8+kC19Unq1optsPur76quvRM8rr7wibmiWCZuQVX+yLrbMgFLosy6Xeuutt1iLq4WSDBYlm9UT3OISHLEZO0kFB7PgzYok8VR4SNPxRyy3VwtQV5h8DWwsUVankcAfffTRoEGDllpqqaFDh/br1+/cc88tNM0B2od8/fXXd91116WXXvqwww7bcMMNzzjjjOaUwTAAgN4tPXDgQLo+66yzrHLttdfyMEOswktCzDChL7LBl9HQ6HEL2XvvvffUU0/BhBV8oWkU0LAUTbNxdsBnn33mPIvXi5t77rlHBK+yyioPP/wwzZ5//vmU7nRsw/Hvv//+L774Yvnll3/88ceFvimLL754a/S0b9QqAnfJJZccO3Zsnz599txzz+WWW44Zkt6TbMMhKT0HKnlE+dSpU8ePH7/HHnsQMguxJQmPOuoo5r/hhhtOPfXUHj162MW22267ySabCO4cCq2JVEN8ozzLGUy/dH3bbbe9+OKLn3zyCUmqA4X5KUsunauEJaQE0FyJJUw0VC86syLLMUAmluWQRRgSXnXVVa+++mo+kzCuuOIKPnHaaach4wqZq76TQsAnnXSSw8WULbbYguUy2qi+YWcwfQnWxx57TAYWE7169aILJzH8EUccse+++8JsuummF154IaW34eBso9g5/PDDTdl4442XXXbZY489lnO0NsVRyrri6eWXX95///3XWmutddZZZ5tttnnggQeYfNFFFzWR8xHJoY65QPzwww9PPvlkn6zrwP78888tN2TIEEcJbogtx1mff/75ZZZZBhM0AME9fPhw3AxxgtbkqTmeZ8V/45uSIXGbuFuc3U7i/k1G/9an3aaZRXHU9+ijj0YAS4M32mgjjj99+nQplyQMwMxlCZoqQQZJZjlZDjRLDsDw7bffXn311XHIlHAu0zG0ik/BR7PXXXedsLPQzTffLOYmTpxYZuX4tOXQr7nmmkcffTSYBqKHAw888Pjjjw/DqGWNNda46667cCAJwbT+/ftvueWWMNWlRpaoW1/x1mymiS5IQJsaIAZuF5n+su9sqjnllFPEEAE0zN98802l6VZbbZWFIAl23nnnQd53333VvkUqfCIVO22//faZIrYAzCbaHnzwwaJW9OBs0MRzzjnHrJgzbPUw4hggLsMte0fvE3EuRbxBxQ5z5JFHShUkJAYaCdlxnonZjgpup512uvvuu8sJktE693NOCDLZG3GjlLgtTLZHJkMUFB39GxExTLOQ8FXpWJqzQ+69994SI7VSGUxWEWGqHrHi0xT6DT4EIlWNI6tHbEPwDMBaPEMqhqFfzNFEeFWuVVTOMDZodacsMmWRWWFLAA1S9Wfjsagy8JFHHqEZGFNU+BI1GnxgTFdhobQoGrXViiuuCL7yyitVGMga1SrvDHHVagmIGKUUpIADIy6YfwbEunq1roOKpsBY0Sz9iukIo4ex3MiRI+HPPvtsNOyRRWM5t16mOuaYYyCpmIQxszsSYwRvqKT0cGYYDMOnMPz0009TDMeu+mggZCZqBxxwgLIZhscood3Ktt56axW4RbnOEkssgUliNxli1VVXlaLtEf2/11sk+Qf9nNc1kpW3Q9cVEvvUqNLh5FMY0YvUp2+XduONN1IixeU9Ydy4cdj27t3bogB4pQrgnXfeofq1116b0l1Onn32WSfcBRdcYGjSpEmkcrcBY8LYEdJcRt1hhx3gJ0+efO+99zoIc+WVABzzjAHo2bMnntmstQgjH9js7bffPmPGDFumE16i7FL64emkQIynVVZeeWWhyTV5FZ0o0NykJSSj/FJFduKJJ/IeppXYNfiGNU5BUBuI9/ksfg0mYrwmcZbQCeaf9fikHXzwwfZcmChhqFKKI0YEAIhvZgiZZI6Aja+55hqhQxKRaijnLoOhF8c+BY1ZOFvo+uuvX2211RyWDAaTgpwB8in40DCtWh0rToYD+zEet4CR5zlBUvRBBx1kIiZoitgAZ/YGG2zgyk6kMsTwJoYsab96Sj3hLvTCQzX70cTHRRddRCayUhP3dP5xcK5ttB1v6y4nfy44DyuynKRKQQDy0L7AddG8+OKLjXrEYAPalyRVyKJZYJGEJUQtIWkTTNEevzwyqKXvuOMOxkMzePDg5557LknCQwT+FlUNSafcaKWVVrKWuGQ5TiPrUr1PbHfccUcvYmpyG7d69o4zmGbQZEUpx6KIU7ebiCEns4QpKC0KmZ02pK+Y1q6ogFElkyRJ6qZo1rWf3FAJR4+ufe0l5W677cZ+3DyHnyssSQSlXEJ9UvGhhx7qQUqZrWAhCcHISVlvvPEG2yu+tttuO6fdiBEjVLDrrruuelXVg4NnTqayI6zwLNY1XUKy7nHHHedF4sknnxSabquygj0KVrbkZFycH7g4wTsLzLJ6PB4ZbkapRehjAuAoxLARYQDGhHX5pX2ZS11kiKXbS3V/jw8RyaGV6wHRg9GnQiFfkIAMmaVw4K2UWIjRhEwPbzRDBZnPVBx0QREuM6UI8qQVZ2cq905HmmcQxiMYDqLWOzMOKltJWDCBnZd2S7NOdH4AfuKJJ7xL55cDnE10FmiAspCAE3/em1iaMzmt2W/KlCmRE9vkZ89VEVjPYOSR23h5kIhbbEYpJ3sXJNEPoLCqM9DZDrkt1Ug17GerAksQyG8ea1SJtkEdPFfmYQAEpDeLX8NzT3P5rx6NVoDAPm1Jr9GO3kSRJBnIgTlZRRIOXoNdYT1BCB0222uvvaRNdyfLaRyCliVeYcTGmGBFTk6g9mZUxzCDbbbZZvvtt5/ptJxQE/pa+cTq1ltvvfzyy+3FxmVpe+Rbo0ePjnhid+edd37ooYekgVRz1IK5pUW/lEsDhGnNTqSiE5oBaFFCKsdg6t2zH1kTmrQc+Mwzz6TBZ555xidkccACZHuGKC4wQEOAoR5Dnxkqs4r7B3PnnXfGBolpqg+93rWSkehF9cucMGpmpj399NMdw7vvvjstCw7NLD0CV1u6o1wlTzYlZHkMk2uARHBWSfFoXX4mNBmbmTHhavIKqdxwHATlhyy1uqWJXbaAeK4NfSSZK2XtCCovpYU7TakVadBzEuU6Au2WsaMUj7co7ZB29LEKTDEkOJSFISBOUzDigO0tmumK5/XXX98bloniCTLN05UUUv1ICe90dMQK0HBj4wAsJ6TcVXiAoIfEP8o1RT2lAYK0x7gXMpJ7BeMWamCfZMMTJdjvFg57bDXhPmDAAEJmimgGYNJiK/qsBpqrBYf6tMrv7VayDb0goNYXXnghr+Qw4sb+WZr2mwgkYQZDKTajUfT777/vBUPM0YI+ykXGJ3KfKUwYDGyuHwleeuklyvJJxbEEOKcsT4LJKGSkxc1yhuCj7gSx2huNlrl8qzgBIK7Gvcwim7Wi91hU1WYinjgTW/8np4qDXnLJJVZEnDwnyg2RpMVmX+aixAqZWThEvDCsc185IGM8u3LAODMUNZdddplT1q6IK4OBkYHR+Bkguc42EASv33zzzVVGfpGVzfr27euhDuy3HS8AjkkEaZQC0Ns5r8pn3Kt4AM7Fe/6aN0dIMkTLsUcJR3NLkRjxykTm1MonoHwycwSIAQo+xJA0EzvFOYqrNaGsZo4h+e2IqPA+w6Gapp5w5Y1G1ApTplXig1VbIgA+TzA2ucIKKyC46aabxowZo/SQrIYNG+Yi6wAjq2OPtZSvdmJX+Gg2aQhA9a4iuBly1PEVQ1KijOozNuZYOODjXDCF3j02MaTRLJGJ3Iv3QBpy/ZVFEZtrFi+kdMBrr73mZSN/F+coLcUO+a1rL3nGQg+2QQRkw8d0DQBDcq5pm4jJj4+eZhwBAHx4tpskns2bXShfbBZAbN6mmFBO7rPPPs2J64CpVNEMYyUqc9mgxF122QUShqLdL20vP4k4L0844QTXFS956iNasFVkNEI19MVbqdj27C3bo0GhzB5xF0hwlG6uWWD7j+2DkTlVtiLYXKzo0ahVTFQQEImBGZWivR26a5pOEsZGIF27QZGEJYiNDMxmGsAnJP56CUCPv9AkM/HAnImL46Z3AOstrSekIeJZPaK6AYdt8554aKhCj7l1Tcxd3y7q3yqea4cWtjGWloHVky4SMt56662nXvV6wN9pXHU6bdo0RvLuQ5uuiXr6pVYbYBU70fDBzc7pRQPzCRHPYPQY10GDoNa7LavYI42LJzslIans1EYIA8+0hbLWItWf//9ubLTPWyWT2ObSSy/1inTIIYeQieeKb9WTUsWdkjriFvzaLEPCwt8zwDcxMFaGJDqU+MS6AHzEU013S0KLCiOrsKutkeTpp5/2k1/yfH7sk0KJ54AgfE3lKXuv6SrNmVfeKRmJYSKB3OUBlnernGnk6quvdnFiVLBkK62xmRPIgUQp6klxaaIgiMFw0yyDTAOIfr1Y90nR6WVXKzaXph0xpCKe1Xme6oGBPWp6w/JzoZ96ZHs7HTVqFOvaTh3kacet/T1W7MHNGeBP01TKevYGJ60FqacOfG+55RaW9mc0ydIZdcyE3hRzJT0N4FPD2Wfh44gK/4KpHZCFvIuR3MXPNl14/ODvIdNRnR8kchGonQwN51w5etMcS4zHJPnMDVIGUykYgvT4oBTk+/4SpYzCG602Yaa30Ytdq+hr2mI5OyIJAzMtQGGhTpSHRHbMn+SMrKbCYN6GQmo6VMm3MqcCJAVRwp9RVU+BxZz8Bo6Z6UU2lgBDL0Dlc80eQt+kp0Fp2R4AoUTAwNXLNZnSLp9FPO/Jmsrf0yNpVZGs647n6GF1a4ls229N/nYRBpNa77c1Obs4RI0VK8avWRfADGzJulTgPHM/poUYm1ugIXSO3uioxTVYVzOUMz4RY6LWIn17IbljKjvJRsWQs9bbi3dHj50+bZC949w5rdtr6f8vPkybFEH1NlzgxBzLQcbqYAYG5xNB6IU72FDmVvdBhknwMEFWk9UIzjnCIxXM7E0Mt2oXNr9TySVeYXMeRf4aydBwtpUrfDxOSMlUBQbAKI8hqcMnWCyWNAsT+sR0wjTTSx9kmAQJE2ShqRFAs3KM0OTBfj4hg6t8HqT8UjRhwgQXQuFr9chfIzEazrZyOjZciBoJ4MHVXwT4a1bvl2B/eif3cFCRza3jtSkR6uZ2NdppG2zn/ClWGxT/0SE5OX/4oXTw6KZocLtTB2jKjmSRFATiuAN7eYc1sAB1xDKz/2oBe+XIkwsMl1UbxsaJY8VEOar+ow7dmtgdOUVnz34klpn9aumyq5yuVoTru7MZRijnPK4e7RhwhzWwmpn9vEEWOwloUauGZ06JWgkJA0AgRSegC3GHATqsgWMhJbQkLC17vYJhXXZNHwKm1bhCLvQdxq5lIx3ZwII4Vzu7laXFaDlxwYaCTBAXjXQw4A+sQ4pmAn6GHgAAAABJRU5ErkJggg==\n", + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAAoAKADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iqeoX9tpdnJeXcnlwR43NtLYycDgAnqaj0vV7LWrZriwm86JXKFijLzgHGGA9RQBoUUUUAFVFvreS+kskmVriJFkeMclVOcE+mcHH0q2a8our+8X4c3l5G0llqGua09rcXDtta3VrowZLY42xoFB7cGgDr18TzTeKv7Hgi0yRN5DH+0085VAO4mEAnqMAZ9c4rqK8y8VnSZNM8P+G/DBtWum1SA2wtWDG2WIh5JSQeynknJO/uTVzW/H0sfhbUr6xs5Ypjp9zdWMrlW3CJxGWZe2C6sAc5Gc4wRQBsat4nmsdfg0q2i0yZ5CqhJ9TSGXccdIyCSADn1PGB3rqa8p8Qpo2mfC6fQNOltdQ1S7SO2RY5RLLcXchA8wtnJbcrNuPTZ6DFdxY6rNHrK6DcxO88NglwbouNsxztbjqOfWgCHxJ4lk0EwBIrBxJn/AI/NRS1JPYLuB3c9emB6nit63kaS3jdgm5lBOxty5x2Pce9ea+D9c0aDwndeKNcvLRtUvkmurwPIrSLGrMEhVTzhVG3YP4s9zTfDGu6h4N8E6PZappN0/lwQvJIGwIxPOyxwpuzudFK5XOcY60AeixahbTw3EkEnm/Z3aORUBLK69Vx1z0475HrVGPxJYSeFn8Qr5oskgech02vhc5G31yCMetZqI1v8RL9bUqhvNLjlkDDgyxyMiscf7LYPqFX0qtD4evLbT9F8PSMLmziuTc3NwkexSkbeYiEEnkyFD6FUagDRtPGWn3WrxaZ5N1HcyTva5aLMYnSISvHuBxkKTz0ODgmulrlP+EZ1CXxqmu3OqwTW8OVt7Y2hDQIVIYK2/GWJBZiuSAAMCuroAKKKKACiiigDh/iB4iudJGnaZbDyG1Pz1N87Mqw+XGXCgqynexGFGfXg9KxfBPjKSztLew1e6N1CujWeoyX+6SV0km2r5MmWYmRiQVAxkH7vr6Fq2l22taZPYXi7oJl2sMKTj2yCPxrCPg6HTvCkWiaIUiW3uILiETdCYpUk2sVAPOzG45PPfpQB0Gn6jbalA01rJvVHaJwVKsjqcMrA8gispvEWohyB4T1dgDwRNac/+Rqk8N6Vd6baXbX7Qfaby8lunSBiyR7yMKGIBbAA5wOe1J/wg/hTOf8AhGtI/wDAKP8AwoA1YrovYrczwyW37ve8cmCycZIO0kZHsTXB2mt+F4JdYs59RgudI1GRp/s8ltKSryf61T8uChPzDuCze1d9a2lvY2sdtaQRwQRjakUShVUegA6VPj6/nQB5RpZ8I6N4rbVdP157awMUa/2dFaSBS6KUUmQqWKBW4TgZwewq5pF/4U0jUBOfEE9zbQwywWttLatiFJXDyAkJl8lVAz0A75Jr0vH1/OjH1/OgDyT7P4LtfEdjqWkaz/ZlrbxmOaztrN8TDeJAoYqTGu4fMFA3DjvXQ/8ACSeFv+Ei/tr+3ZvM8j7P5P2ZtmzO7/nnuznnrXdY+v51xXiXXLm38Sf2bHqLWVlDo91fX06xB2hAwsbrwTkHecY52d+RQBzviFfBer3UN9purppOopeC6ku4bF5C52lW+Vl2hyDkPgkEA1b1K98K6lf6ddN4p1GE6fEI4YkiLKD0L/PET5hHG8EEDOMZNafw/wBTur+fXIri9e5S1uIVhIm89ApgQ8SYBLEkllI+UnArucfX86AOBsPE3hyDXdR1i61hZbq6CQxhbaUCGBMlUHy5JJZmJ9TjoBWz/wAJ94Z/6CY/78S//E10uPr+dGPr+dAHOR+O/DcsqRpqILuwVR5MnJP/AAGukpMfX86WgAooooAKKKKACiiigAooooAKKKKACiiigArnIvDcsfjW5186jIUngjhNt5Y4CbsDcc8ZdmwMc49KKKANu2tbezh8q1gigjyTsiQKM/QVYoooAKKKKACiiigAooooAKKKKAP/2Q==\n" }, "metadata": {} }, @@ -1270,10 +1595,10 @@ " \n", "
\n", "
\n", - "
H = H _ { 0 } + \\int d ^ { 3 } x A _ { 0 } ( \\nabla \\cdot \\mathrm { \\boldmath \\pi } + e \\psi ^ { \\dagger } \\psi ) ,

\n", + "
\\bar { \\Phi } _ { 0 } = \\frac { ( \\tilde { Q } _ { 0 } \\tilde { Q } _ { 1 } \\tilde { Q } _ { 2 } ) ^ { 1 / 2 } } { l ^ { 3 } }

\n", "
\n", "
\n", - "
H = H _ { 0 } + \\int d ^ { 3 } x A _ { 0 } ( \\nabla \\cdot \\pi + e \\psi ^ { \\dagger } \\psi ) , \\nonumber \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad

\n", + "
\\bar { \\Phi } _ { 0 } = \\frac { ( \\tilde { Q } _ { 0 } \\tilde { Q } _ { 1 } \\tilde { Q } _ { 2 } ) ^ { 1 / 2 } } { l ^ { 3 } }

\n", "
\n", "
\n", " \n", @@ -1287,10 +1612,10 @@ "output_type": "display_data", "data": { "text/plain": [ - "" + "" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAABkCAIAAAD/pVUqAAAziUlEQVR4Ae3dZZglx60G4GvHYWZmZk7sZNYOMzMzMzvgtcPMzMzM4MTrMDMzc+IkDnPuO/utddtn5pzps8nz3Eyv+kdvdZWkkj6pVNB9Znf717/+9T9LXn//+9/32GOPMP3lL3858pGP/Le//e2IRzziL37xixOe8ITq//CHPxz96EdX+Mc//nGEIxxhXfFh1ESB3XbbLTR/+tOfjnrUo65L35VjEPjjH/+4++67H+UoR/nnP/+pEJbf/va3xzrWsYY1Y0Q1zWZHoEbfn//8Z8FwpCMdKTFw6KGHHvvYxy7raiRWTRemgcCO8b+UMTK7LPy73/0Ol8zuLrP/9Kc/TWb3mMyuUPlFeebCKK2bFWR24aVVYurMPoPS+Mdf/epXiI92tKPJ7AYzYD0C9pBDDlGpbKinUtkgd+9r2ghkXSUwhISRKBiykstwq2AwEgXJtKHYNa3bbdmV+1//+ldLgAJLHlFjYahGxncd5zjHET3S9HBJXvTDAl5hJ6cn+8g42GtiGFJ2eQwCWaEDPxOn/dMxjnGMMAKW14x2uy7j3DVGYNNsXgQMK2HA4xll/C6bG5W/+c1vjFB2WZwd85jHtIo3BlFuXktb83kILD3IhYtsLlnIHYRaxSeDWBh+73vfEyUShxgSTKJqXq/qa+GQzC7UsHRmX4DYvCaTqOv3v/99zl5CxkE88t3vfle9GhNn1nEpzxPV9ZNBwLDKaafcXUNVnDiQsU7/8pe/LLOLEI/GbLZ9k7G9DQkCS6/cZ4DLOlEqucENbnDKU57y17/+9Rvf+MYXvvCF17zmNVEKpjpPn2HMozg7/vGPP3MIuC5lV66LAIRTD+esxcyarre+9a0vfelLL3nJS/7gBz+48Y1vfO5znxtZ7bqqsK7MrpwAAjX0FCRxlyRuoN32trc99alPrXDRi170Rje6kXqLKhPABExuE2YQWHrlLi/88pe//Pa3v/2Wt7xFZEScpcHb3vY2GeQlL3mJGPrEJz6h3ppxwdlulvZ5seNu7WCeyDJzRsV+XIyA0euybZLTbcbtu4F5j3vc4ypXucpd73rXz3/+8wcffDC0Oasm2nofvlhyt25eBHic8j//+c8NVe42Qr///e8/6EEP+tCHPvSoRz3q/ve//73vfW8pXpPg2bxmtuYLEFg6uTu6/eY3vyk4rne96/3oRz+Sykl3IHDPe97zTGc6k+QixWQhILwWnO2KKpNEsszLX/5yE8OJTnSixzzmMQt07aYFCNgw8cjZz372W9/61p/85Cedld385jc3uZ7lLGf51re+JeOblb33zphf4JcFXXTTJkIgC68f//jHr3rVq0zqxuYHP/hBb2Ws3I1QNS5BkqP5TWRXqzoegaWTO9HnP//5z3GOcwiOk5zkJB7N/zL+Ix7xiC1btlzsYheTRKR+y3DvbdDMU0XwneIUp9DqJOcFL3jB1a52NeU6F57H1fXzELBIdwjjkF2Wv+xlL2tU+zLVMEYvxZ/gBCcItvEI78yT0/XTQCALrNOe9rQGo/I1rnENB6dm9x/+8Ie87+WWBbvM7mjeTN+L92k4fcaKJZK7CJAmsvR7/etff5e73EVOT/og1OvTy13ucmc+85nllC9+8YtW9NL3gneqQiqHMM5wnBs84QlPkJj23XffoX561F3WIMqVkswfyBKRac0jYj3mLCj3fK8ZRi8GhsLXlqMtIaG3sZihITNiUx8yygxPk6IbAl2nbPLzGKDobER5zH3IGJkb3ksBolx0hqRNt17e9a53eZVNgnW6bZBdES9ota9CyVmawJXyUKtgGM9CKap6jJK4sNQ9QiJHedkrILMCOOnR7B4hKtOax/LsvC4CRZSMsyIw9LAN/uRUlM4TNb4+XVRHFZNViCg9ooFbdR1z6Jw4nIf/eE2KsgI7WlWPzHfg+c53vpNusjx6NaZ5C3ZqKFApgM8ojzIej0A01UUJR0MI8AuKvLYtrVIgJ9dM/fAxblIT4Qv8PgyPoYQur4vAEsk9/FKG+f8zn/nM5z73OecAWS1yj/czH/nIR7yC37p16/Oe9zyxy/cLXtRYQmrlyNe97nXyjsiQg3LIU4qi0V0tOas1eYp8/WoVmgk+ZTJValIpVuhjkIdR4lscHHipkZwoP4p+mgjNoT5VViAWPWWMloR4HvWua4uj6Jl7GFlkrRS11WAcChxTlqzJRwk60hglrzGTqC996UuOYow3eyZHMe9973vZ++53v5uezl6V2UIZXC7DPnJABzeaZ4QTWAOYquzCpUkBl07hid7lcYzCMzRAJhACNCFEa7yjC6YlJMLiUQFxLtoOL2YGCkoii7P4Tj16lAAJ8gwXsZH5799jNc11QRrldQecBIOafDOux0BEyQRnkPQIYcbOw38nNCQQFzWSFgOLMijUm/LpfKtb3Yoa9sqveMUrePDAAw8ULVgA/pOf/MQdSogrvWLBDk8nOdWqhl3kDCPESE/XccRO6B83lUxAeWnkDmFWCBVNuiCZJjshf9dlgdrIK1hz7bZt2/j4Ahe4gJRxnetc52Y3uxkJFt2O3V13uMMd3vOe90SmQ/kFwsWNVoPwPve5T1KPVb+adDRk5GOXGixCc9j0s5/9LI8ZPEJBZKTGMDOKlBXsRodca8tiNDoUu1eUM5oMH5UJcaePTqkXdgt29SkrSJrupgp3MepKjUc9YlRY6goOYUyZDh6lckHsjRlprDZlXulKV1Jz5Stf2Zu0dBHdlJMBMyw9FobK/OtelLqAXtUrxGsMLBtVjr/SdehBDRDluCl3YilmOb+uzLggvkYfZ2EhtljMdsUbtAvzqt/pQvyOvWRSJlYMZcZBtCoXx/DAGyHr4j8UstPlIIldp96rG63KlOQ7Y+24xz3uqU51qle/+tUq6RBlypuWBepTGTkZcQwJwmkamoM+18zYTCX6sBxGdbh/A10iWQNU1xJDWO9r6w8nqB/WIPB/K6M1TbMVwI0P9ttvP2tDzWLlCle4wp3vfGflioAMvEoos1IOe05CQWaBc7/73c8orYQSEnJcOnUpHMa3498K3zxTLEMlqYeojD0xUWKVa0DOSBs+6m6YHaJDCDTpyH1IT6wAHWpYGWc45nUd3fBGjSHLUODiMi62uxLulFHG4uMHSEZmOtLkMdnEUIzvcGVYxl8sDYtKTdW1R1c9agqZmhSYMCQoyg0LQy5CklMic6hA5KiZQVu9mlTG8OpRJRtjZggqDIrmP1IoxIbS9AvqmMAoukWTUjJxiDcpcjH+Q8mLy7E0KqGsGIvf9WKCf+ADH6gpuuVurRP1IjyLKk2J2ERFViQkM0cvCdrcw6XJpRxR2IcyQzPyHjQQJyRiVO6RoCPyhzUjJe/KZEsfywga798duItaG7G3v/3tJz/5yQWuvZXAskZQL55UCmKxorzu5VBY/Rve8AYBcZnLXMZqghs4zxV6jzzq0Q5R2qqoSquONCHwKJnaijrVQWMfQA1vd5/1rGeZdRwf5ZxBgGJZsHNkV7q2HXnRi16EnY1eBqhMffrNrjxldwbSze41llrkKrBFk326eshg98bYx8Veat3xjne0tcSiO/eSM76AC9Qukxll0q9e/CxFJfCNTKc0d7/73R/3uMch0F2yibGhFyDkGMSp0UMf+tALXvCCztNud7vbneEMZ2B41DDSgOZSwzsq1URnCCtwDSRJTu/jlUdJLPYkHUJIo7O7juhG+cQPSgaqUe/a7oQdc2q6AyCnMw22TgIRMBZvJAsMr5QFgy7ovJSGGxLHamijpJu77gJ1jkToFgdpUmAvWyjjkaU5W1iAP7LxV+Ailla58AoGnSr4lQN3O3ihp1ZR8ZznPEfhZCc7GVVpFXByqCVCWPGkJz3JN1eGpFf0yIQWCeo5jkB42tEqEKJTsFOAKJHPWQqalr2oShQu3iRfd+YVkOrCFWkIjCZqLCt8V6Zf2hl8LGI40uCRPoC+11572eJxs5wCSu4RJdwsxyGbB64BYBwKFD7zjY0QwY4rowWXsqZ43aPBkDgmXKbm5hBoso1wtyQkUP2DH/zg/H7HW4ELX/jCyASKO5oF45xdVCLk8Y9//BOf+ERfBHnTe4lLXELk5cI+E1v0YaAU6fWyAgRoEoVpiD4suvaHdz784Q/7KpGod7zjHWwUwQIXS8iWupvMDEvwOgoDGkDc/c7AR5AszYuyN7/5zU7bY7VWTklOSUfUo7y84/O4C13oQuxyjGM+zohKGkJjAmYOWDJdgYgXKA9nyuMq74zXP25KF7hoGCHu0KA8ZCQUl1NpBIkBfbk8puAOcLxf/epXvYc3l4tG2NIwc7xWiQkyWFSWOzz++5eOCInayT7eNtl9qpSeaCUM1AMtEQvA2CIDUokj3Ofhv6x6gQUXmaw+3vGOZ4K8/vWv74BOF9bsUH36059OW+4WqAIDWbhoxaG8mThUJoeSH/vYx8z6fOFnK2i4TD0WksWeZYrHgKBT/hISfopoLy5+1KcJzZiLBN5JcJpXDjroIPqAjt8pTFW6EUtUWTpGbNOsIhBnjLlDmRedp+PKYfptbnObi1/84s7cHeRFguBGpqxQ9zStvVtic6FxLsVrTWYxKkKprxTU56DDpJKaCA+BUEhlMTr0P81pTqNS5qJqiD3KF6Fc9y6C1ZMpuRshAu4rX/mK2FIgOUYhUMilErGRYNg85CEP0ZQdsbRrzjOuIlC9GcXdhTFKGiSpKd3yOOYeKGK7hHKe85yH2L333lvo22eQQGELH1+pmuGYTA3E1m7ItFIsiEW9WKee8jRXcKXygAMOCEsq0yPJfpTghw5RY0gQsg3v9lLe6emCQEIiIcJVYs+BXuoLQwSgkwjcxUPoEWMRij7iVghxEI4aEhziErKhbiMJ0gXJ6Knkfstb3lKocOsHPvABsywwc+pYIcfRPlG1oLYZQs+6BfiPVGNIxq1luHlO2PuNofWEgt8n64u2VDXN25JijBpxokdNJGSCjBw11Vr0QH74wx/uMXFbr2oi7ZGPfCS/MC0XspFX/P6FL3xBNnjYwx4mv9vQ56QoEuhGpnL5faTkXZxs6ZW7L6ss1XOo4mXdN77xDWnF7yGhLztYs4gkIaUgqbkrr3uJNuNBZpeeIk2WJIqD0ccrYZSMhJFDksc+9rGSqUrOdhd/7takiBU+9alPobnuda/76Ec/WlmrlawvvokVPQho6D7vsr7D6P3wSU960gyPq171quc973mHmgx5ybdGe+pTn0pnxxoejRzD++pXv7qOLDoIVAkTGlqSODoQuKYBs6NlDpS0LsBn2NewbFGDEXoq/drAnc4GpLSyZcsWmFtJaWWykaAJwsaJXE9P6FHMAs1aknq2ODbp7nYA8nXWvNDOWux0pzudOcMIJzzQKdgN8IKclaW3LDbUbUzZGu0pT3nKa17zGuixhVaEu/Mp3aRj8UB5NbqmpFb9qmEa3XTt7pJQVFJVwDBHjQJnuTOfI0Spj0NgRUhicox6G9LQRxfI4gIxTHMJ3YkHb+rxAQ94gA9UhDStoERJxJxuEY2RyR5ZNw//DRVYS8Bq0BHO40ATwFe84hVtpg1PCffZz362Vly8f+ITn5iSKysrdmkQizI0ZIVhgpEtz3jGM/bff3+B+uQnP9nyiHCY+4Ov5nVdWM7b1App1rFRAMBW6/nOdz5LIp5aq96GNSIBqnY/ILVMPNe5ziUMPvvZz5q2ixdiVe7CWASSvICrwN/uynxsVKQp9SFQyakZ7SJJWHhUmVa+qamVBI+RVnLyiEaTmPCBhyjJspcEokI5XOqqEUBCVvBZg3ikpHf9DjqU0x19FCxO2Sy/k6zJiYrPNLOYxYImonTkkc5RTyUraCsL+45Q+EaybwyMgfe///2aog8JWBCHxZ1WAj1HN+nUpuEiF7kIUUFPZZD5zne+YwIQxEYac/AW1AiiWySHEYFLfdjz6E6ZKitgMQ9ljRNzIsREwhDZzXn00572NKMacbAKmbvLhsnvFYFGK4/xC8rYS0Nzm/cWmvSrVcY0tuV3SobGsayJIUq6oxyqp0xIKmMjF7syvZEmX4SeQOz0NMFwtLFdaijwrFNg85PU6XttiUk2OdvZzgZ/WuGSZXRUGzuV0pOfXOCNXWqUg3kVSluFAhZl1aN01WPRRG0Kx5VvetOboA2W0As5kNI5vGKAyRIfqyOBQGi4KAx/aev5z38+mVnmUyB4IlYIC2Jll9a6UqMp/XpU8EgrNBQgMCyJCodXFJOFvVJyUCNK48TyQti//vWvm6hQCp6ISu9aAUgfR523v/3tPWrVxBzx5nBPTUwgQS/EDoO5YOR3lEWcgUOUr+9IxkKIcQfS7OHC6M6oMPZ9JAKrPz6CGkyF4FoeQCcyNPFrAqvIhE75rCqHBfSJuapMtIXLmlEMiTMOToy6x4UVFklMuAz7+973vuQ4i7DqoW0US4Cix2thIpf5EsAa1skMhZ2QSGHrmoaF2BgV9US/NbV67wDMOqJQ1sveMxLSo0BEjxElrSzTMjz8EQ/HkdmxMjDEtKKhjvxQ0NI+HSUdhzL2qiet9KxC6OFTOEdyOQUB4UlbuCKNITSx9KY/AqpGjh5TplV6l0atLrVS0hWysOhCPrLQ9pjefSvtQqbHUHKfVw7KGdUKGbog0lG42BUJRUNPmZcf1aMMesTKKZLdWc96VmJxJT+Gy/d5KNFYsLskpgSGGib7i3UxHA4YNZkhYmnYVcZrjIpWXJBCGGkycw3rlSGGoEwoYhOMDSKdSUYGGZJN+XZpaOIXE6RdYEArXxBIK2eAjEWZ7mJy+Si9ICuu6nfdArIYpbVCQhlK7iY8epogrc3jfZWhzx1LCmLV9k5rruRfQpjAdzKvuSohymoeN9caJjmqRZZxHVFRPtZBryYSHjxM/Oq/5JjkrPaUA9TKyoojoKHtBMYLQ8YuL0Bg9bAizfE3NPlAZXDkQjUIxE0IuEETb8FapUcEHnGpUQh9ZEbUsHuSw6vJrl8OjdiMPZTYyUyP7tbR9rmvfOUrrc4cWcrUt7jFLYwHwZEe0VgpOFF57nOfKxMJRGcgsr895ulPf3qrPPEUG+V9axaPDhYcC2BMgGq1e3jxi1/sixFLbwsx8p14WLd6m1TrQS/ukBl+1HMeLZpdFvsJYtLEolFNsdhS40cToGyBLerxMl/NMEwNKqJUuugfxgCVSuzhUkiNOwKMrtTADSDYja6szuwVHFKxyA4XeyEceHEhthI3B2ilD+EkJBFo9agLk4Q/MAkoXHYeTnI1yV9+hCzJGpB+1A6TEEcT98LExmK//fazBGOUlEGHhIfcB+H0oneVpNmQUcMUrqMs3hFQyT1coXfPJbE6f+MUvnbo4S/qxLQ4AgsDUSbpEIveBGy3oSkasivyI1A9ZTSpZLtJImTupYCDOC8zmGPiFJa6cIrtPQQJ1aOU7WwhvtaFaBRUCBDHC/EaISahffbZRxPYo7x+ywXqXXE6HYDj0osr5SiWtQLK1CtUVCijiVGmQJoD1ufLN73pTQ0lyAR8ZAruVJKsHePYj+aDdzJJ0JTwUOBNL6v9AbLYAk+JuKA2YI0Ohz/OCRGvvXSkXz+IYa+R60SXLU4FzesRCDF9mSG8StE7QIJJ1FgrsGvmIbD6AUm1ARHiAFUTbymAPsGhSbmI5xUI4ZvyhMchpcdI04uVrDQq2yJOBA/lG4pW0H4E6/NBZFYH3vX7KwWSkZFj/NAc17WudS0f893tbneziEZGgktO0ZE4U0jUWstf/vKXN50IO8EtKxntaHwPQA1/sMwhBgkmBv2STIjIU47y1rDmIekSsaWuvG+yMTy0Ig4yVmf55F9NmS9e9SJZ0C1rVW8pSrKmGD6ESDnsotxVHlEPNOaQNlz4UBVZSTBPUM/w9pWqjy/prBetyEKTcydlo9TmV7YqaSgDl1b9urCbTfH665I2zpVHIObkilEKH//4x1HipZ5CSTvooIOgZAsvhZll7dx1J2OSBjoHLE6ropI76FCSoAu7Lr6gXuwiE0GA0gtwxEzFp6mLQPnC7IuMfO/5pYbY625Csg51pkemv09nypdtS8kokAgMUKkJDqAubE0/Up54Ez9iwB/bYL4zYu7GksQUVdnlECkTNiuscyOz5Ec3OpvGTEt6QSCx+vinaNQw2SPiCqfImbkXS1mBhf7ARAkoj+z1MkNUbNu2zUCgdgVeAZtdl5hnlw/G8BISizCmFyCot4HzQY4C2+90pzvJ1MoIePxe97qXFYMDFpMf3sAYiLgGma/FRIUBKxjOeMYzWg9lTUaNXGgYYv9tqFI7ElS6glvKfd8QgdUtIcgy1QtKoSDIICumjRb+Bm5h6pF3DT8Fd+V6FNy4sHAhIdzpjrciL6p4VMl55mpj3ggXTKFx11EGCWL7faHvEz1l7jdiFbSKPCle2WVV6NFrHwKNWIs4hiSmhUWpbZ1oVY7ehlSnzPTo6wXBhF3OEoWalJPNo8/2HlZzHFuEoD9SrywizQemlnzXiIYQWLlseO18FVTqGkSgcHl0KMkWk5Oyb0Uc/tjbwoGS+gKUer0ogwX+ygY8Y7cLXl1dxij3FNBThrYkhFjKdlFGTrHFwagcBBAQmy7QK6TeCpdW5gCPDpdkeYlGxgkBSBVucpOb+BREwes1+JgsSeZ0NYxVI88quyiPJdC5I5NGLWnpyV5zgJ2T3IqG4UwzW9OfkohFji0C3YBGlB9kkexloDJ7gyEuj9FcIWWasC6YFDIWnjkUpoN4kNRsy/TC9QzkRyf4+iUBC7EVrjoSwJShnrtlfmhC/MxnPlO4stcLYeqJf7nJ4p2BLmqs6rT90qlgyGQDVcQsJZPyROmUYghN9g4S3/e+9ynzGj3NHHyNxp1icYFWe6PVSDrkkIy7DMDUoESAJQqQLAwwenRl+kQPW+ZwLhxoi0BNogI73dxdJl0vACiccQcEWZ69JsjtVq7OsoitzWVnoijpZaw9mb6CEgLsdtKr4g6TjCx6qjHNv/a1r/WIjF/ElbWI+hib+AyjrUYeOQh0utOLpr5GIrD65UlIjVvzrRWHUZcDDWtknpBYr33ta/OoNYhRoWbdywkGZ3jNZdllkYuXg0U5lwxVSUBwpO80pGPHrNUaz2niSANA3vHliVYBLQ5kImUrDuVkQ8NMp04e1AsC9XIuPUVSgpWcFMTQpz/9aSOE/hbsiF24/GFryTonfSTrUaXLsMnwq2CSyHQqLzsBEPFoYheZ2zl2KCCJe0ynqU/u878i+K6DNLpJLlTVmmhWSBZQMCz9eEQXvGB14ySHgS77U0BZoqKJ5saG3OcI1epGgkBvuuI4KdJlZwNb9Xm0YrXkTNYmwQVSrnHeFU187EE9f2xE/pXK6UxPZGLDyt2amjuyf9rOvXpDQz0SUsPkmJO7nEtPKUCrKY3wgBZi97DLFwk/uTiTtya6UdVq15QQeCOTwlxQ2MI/LsACWKIiHIZwyMSgXkfeQGiyYuVrEtgSSncRQqxAFa6CVugKYGEczCXoj370o3p3EWUp6hGXQwmvkfGq1KQmAVn5y0hxxAQEMDoWA3KpjTihJcb0q4mcSOBBx/fKZQsDVyP10EPNkQRSzEUrV8oqfe8YCRj1Yutp8LLFIIWDLYtHQSKcHNZBVZOVip2H2PAxe8UeW2hLFAm0ig4rKys3vOENfb3qRNFypAx0qkNV9LgQJ+yzMBItdrfq6ZNFAEuVcznkNFvA/MADDxSiHtMRzZmJhkyQwtO0REPTkkouqzS1Q1D/MwKB1SwD3wTf1772Nf7jDEORq8Soeq3GW4IY1updaFwp51HIajVDuGtyj4NrBEYZj/Ff3roYeHqJcB2FmC+xCxGJmD6Sr0h1yCsgcCUF+zjB4Yb4cGYnFBybyDWi0BEB+fqqQKSex1TilcQ9GurqSZNBpAM9OrGxYDz44IMtnBG4WOEuEOtuM5G412S7gFFTkgXz7UYJz9BV71s0KxrJhSayBvkBxGiXfI0ih4wOLlGGJVFuMWURB0aMuhbT+nKSwyMBp+xCgIyDkGVlRx+4sQuk5Lvka2MGPjk/1ZeNM1QzVORcP1NQaQB7eaDgsrzFrsApoJCgHcuQII9bEauXeZlMLCiAzyinq6WVphqHuJSt2VGykWl+HUMsxagtQ2Xws84SeCb7m3dxWdYRghfLMJBUulJDFK1CE4Qx+mhKpSs11LNMltH0iF6QQJWEII+mgjYBrF7e0WlN3hUGCvKjyZ5wm79KTx7BhUVBYuLxZCuLEpNK1EAgbOwjI42cLVu28CMWGloCU8w3KlRNpfpcesHLsy6au1JWGQwFT2wBOBM86jGBzTRkrPYhOWkesWC3SKdtuByV2NPgVePEklYoKWmSI03ZHJ+VFtCQyeBOY9TLDMI+078h5rKZtpgg3I4kVpPp4iyMWDJe2KgjlTQBo3oXxFCmTJRVjrknXo6oNPV9JAI7XqgmvQb9AjeVHhXikjSBe7sfV3OoK49FnBqP8Uru2wkPR5w/4J4PaTUMu4hwQzRfYlifWpkKJusF49PrUJ7meGGKJhtAa1uLLxkqZwgZ8MQS5e4gxSzixaAJwyPG5CnngySo0RRRFkSJZowVZ2qErO9wvQPAgt52wVKazhlFapS9HpDN2QtGY1Xikyg1mYdKT4PBiafBY6hYqSUHBfYMs8KZAmRid8UKBUPLHX2I01RkKRjJQ5qwZOZgERhjMq2ol/2Qocsu7LJS3mpSI/nal/JmIwJlfAiDTtnF0sgxReUVpXynUlPANyzNItaVe+65p5d4pFn7+71bUCVNcjeNoecy84eB7dHMgV0uk/GtN7nJ4EdD/wRShWjkZMynMiixgkpyBy7pSSKjhh8bW3vyiEq+yze1yrlIxjUM1CAZkAlJX2ZrsSdUrNzpQzFrDq2w0nWICdEk+cJK2JAjzQmqtGqiQ3DzexHJ3ddcdOAjPxy1UDXLXupSlyJfnKhHHy8ok6wXF5mulIc6xxZN0dajsruu0zuUNGEMpXtw04tgjlaOX0z5NnAqzQ18lIlB2PAyFuzstdPyGN2AmSY6M4ScDEkpHjjCzLIgixjs0DCURIXPpQxJBDa12Dm91Eamd5M9fFImxNxjQTak0dTXYgRWU9u8S+isxtEg7hO76Pm1tvkI1FgbOr3l4IRdBWWE12PC0cAwb1vR8O6w98h350VfqfugQugIFxnHZdXpDaFtpv+gNefXRoJjXDnXQgmZU0tjhsBEbeU161OtjibcxSV6R6XI/BBOjVwg6ecwxPQQriTZ3K1MkRl70g1RwtEgTAqL/qxD6cRfay0xLGckFOMErxSZdZwVmZBVk4wZ+UMExpST71BiB1RSZAZwNWnNOJypkfUsk52rWifSlr+gTZkcUhtRMguxfBocpNd81Seta3KAEw0VWGFv7msZIAiG2IUr4Fu4cbFlHWC9rHbq4nCP+bqjmCyJPV0A39zMvzlz0EtOpZwqYHfgm+kqd73H0qix7p2N++yzT8JSTOqIQL048mKpEOK7KLkueypn8ojwZixR4s0Kw0R16UtfGoyI40R2KWft6XgQpUeBARxhY2eZUJHpRDVGm0hvpLOSoIzgwWJLhxJjGTsUrn6piwmyJLRzxxtpGYwUNgmlZuvWrezyl7q52+DiJvV0EPPZUUnu9rViO+AbuZnIybRbFUhMiKiVlRVhL+A5TqukzC4JPZo71/LI3dzhmMjBvSWRWSTooVGgNqxs+MRP9iW6wGUhUmSR1vfFCGyQ3JOpIwKyGTAOHGVYWzYr6ywxjBY7bqHpjROWRIDQCT32eIXb0iTaBLfZOzTINLnwIo5MBTHnLZaCt50mf8RSjDM7jyVHzNlUOlByeiPjOKtJX0JNIaFJslhx8i6boHfcT2aacJk/SPO6ycmmOEuMIsDlngTkRMj6gp7eBVnkaspYRVCX1agQNHISkcLdAMiOIaOLPgazeYgCzkAdIuUYvSSMKeiX5JhfqkaZ7OVlc/VBPiYQy4rQyMJ+WOA8StZTn5W4jx/8mtHQ5Uc5mpK60CpBmwNIC5kPJAzFzGRa7brsPFBWL94Hsl2Cox4y62VjG87e1mbVDIFMfg6pcj5mZiLBMp9zc/G+S4+5rOL15QqjAlvi4u3VszdkHGFicNdGjXz+qAsTfxaJ4XHQN8u85pluCQAtPmWR/l72spfpXbKzkFcZnOGmnPlbweiwXQBCHGSv4Esq9VyDl+HwtwMIbmIeGXqXD4p8eQKu+JfwFPAuewk58jOgMuWQpiMgEyVxR7eIFRXWIsaab4WrR7Y79gzatlz5PIZMkSNIyFFmjqHnbDNoI9YLcMghOQaayWSM9Asop0P6Eo3WaubawFsg11rEgkDwlNWJ7XrswhgEFiV3/JxXUhIc5lsJzlDxPt3rmuzIDCGOlAtkNzkrIRXGSKiIQaZVrgyvECz5KRClEGcjNs5TT0JiRSFcoSnJ1Btqm1yGN0GMuCgrsjWJ4GKUF3SRXiraSDBhuMs15LsyhhUwhlgrme5+9p0VDVG6Ix+Z+hpIBrbkDgEv7ry+zjdkCMZfQ4HBgQ5UilZDtTOcGBhIdUFhd4oZQgFWk1TuTYOFM93Oec5zWl+XUdb4lqjRDcu2bdusubDoN7gl4WbrYGr0vq4sxYUlkaBHykRD9b62FifwrI7SxYI7sSW5CvPo6Wad4XBARtA1xNJRoMOFYMOui3hIWYEdw0FXNUEeMrK/EwlZLCFBB68indLEfJhEsnsMgQNegEh2Zn1HPT61dHyhlZ6xcajDPKtn6iOc5HhHa7xfZPpVQ0+FVCrHnASM9w12OVbi0rpsLqdTA40ZKIeTeSGBxTGjsNc67EI9Y40dW3B/R1YX4EpHWf0op4AxEaUm4Jg4rSry34kUcaERIX3fEIENkvuQPz4wmVt2qec5+836pEGrSjXORgRWQirxralSLecZb9mEOgpXz2eGChYhldhKViItAYqgfF+eJgRB5nNkghgZ4S5C3LWGxmOFbwZSGENDN4woRa36mkuiScawemS6SNDnsSoVKBAlqWe/6es3lS70uBQEPYGE+/GUl2ZqcooVDVdJR18ZP1EPE8WAE25o0IRMF801qS/KFNxTrynoKYCFI+RxQ1QOitVOTvIDJY+sQ8YWh+Nmd26NQykTwBVkNGepyCDpMYYLgzgxaGsy2h1o+MUZShflQ68LlC7qYacnllxEqQ+9gsqU173Hj1icMFgzxmUAwRV7daSsC+zq1xWisnpURh//hj7xiSBKBop4wUsLn6A47guGCFLv6M+kHvaKRpKjBszzXTnbhUf9/CeSZ5TxOOaqqdQ4TS+kqaRSja/ISTwUyABMDUoEfn4lMKzblAFoSZcASGt68apc2ENbRy5YsTTK+/ZG6vdYUcoj5LviKbEUh7rnsjo0H0gOQzNJwDKs6fKGCCyd3B1zO8cQ2Vxo9e14gctdnG0Hbb9pDcLBOh4OD488x8GpdN5i7BkJa/VLTCR0tHqccSohukZAIAJeT0FZJeJ6TBhVF5EjHDPg1asZKlmdhnI4kZTMTFoIilghgetIh0yn+baTAFGuYRziiu9MIaEp9cYXkjeH9DKCQ3PHpg439ULb9FiUagAVFt5hmhqXHJT6wB56+KBxoFQIIMtQJMEZjt+FZtqGXqxAH1TBG/RQRqZC8XKczJXMPtQziq17JxlXmpRdyrmvS1+U3so4i2NRjFJPsagdGmKH3l8rLRCpV9Cju3IBm6/g1ZAfk9nrsMXhTylMPi6WarKg8boy2RBoyf4o8VYkBLGw8EuI1yo2ssaBidMwR/xeQkjx4Qp0Ft0MSXfu0X8YIYg9qkdPf9qyRXn//fcvrWJmIPVCOMt5yicSYmCGgJryAsmRgL2mmWhFJX35pbEf/ZYyKtM1xqH7Yk7fFyCwQXJPQIefA2owqOcDefyAAw4oNyDzXlul0ctzFbLFTgJX4fVu09uzuFZlgkxBBCQmpIP0VTGR8CpLEFeQqfQoLIatiTw1iVEFokpVURL1EojYEVCDeqnBHtuLPby0SgFldVcoRU6aSEt9rIt6rKikoKaULFEjC+kisW7c+vDGZtlZmXdQhh8hKp0RRxrDo1ghUBoiUE7yjYY1fjyyVGs5PQRYQp8pKjZyZTkxMvWoKa0kxK2a1EcmaeVcAkNcdzS5sOTSFCs8jsFNp1wcFoZEZ7yJunh5h+g5/+hRdqPGTHskqKx9XghAR7FITlOSplb1LoXCkGLRLbzog3NgLEatahJyoRx5l7790ME7ZCc8hqS34rrjBa9A/D8HEZJeqi/uYEK5G01YqkcmRGeYBAQCyyJk5eUSUlhpNWCLuNwRWOoxZO46ShP1dFcCNfU1EoFFyV1wDwdYRheseUjZqbEcnW4ySgWor02c2+y1114ZElnMYuGbhAV6k7loswBcoCLiigOi4mb0hmvqK9xFT0lGgDgaKheXckkTYQnBaKhpGFhVmcFZ2SehNpMRPBZ9LXIJNELSBZQYHrjUIw69mhTKCq0jLwKJjWI0Vza/OjEPO2D9fNfx6J577ulDHWemNNFLUgaa9MicKAArlRk5qfFYeKagr6CHGLtpA30Roy/hcTfzVQZ8lDXHp15TAE+nJVz9vEtfpIV+Hk3Vp98yQX3UAxT9s4Atu4prTIECwIy02BL08AaZCKGAGKsmlUFARGU5giA7J02JqAKQkokc9cgYXhEY4ePvXuf4ETUJRPnoyNtavHK9b0689/ZzPCDoLgKZNhwFKnk8NqpH6XFoUbwPzGiLPufp6sutCljSBSti6bDThGJCiwS8ISYzBewY49DURHh07vuGCGyQ3Dlj6I9ALBaldeczpOdjBh7S5I+niydntY5c6pfNiYPogYarhIu3JQ7jOC/hrlW9jhDHlxVJFfcVRtVUkYRdJceTkI7cMyrQRLdojqDiIz2G1x1BNWW5UY+EV+hnoFYTrsRoJFCyglVTAlpTlNd7lI+NJRPBTlwBlmQJ3YfkhPOFT5h82ODzZMe+ZPqszcY83ZUyQSl3yqdQOMccLOFKLzGqEg3TUqP3siI2xhAECoVSRKkkreBCkBlUASyaXGGMkNxVDh+xDyUMm6oc3fTO5KFWAR9ZyYxixTgsDIkD0bC1yrExasOwIEqh5FePCiWtVrWUJKdohsgPy9XpmILP1Z3RUYkhIsRM75DK92l60a+vOTXpdwhmFKiasqUwVAi2tKo5m+YVPGEZDurUlMk0D7CpKXoARnLuyAJsyJSDQ+k2BoGmWZTcC50MS0BzjPLKyoq/x6LV90++r8gMn6/IHQVwgNztF4bWcQkXM3x8k9frlpaijReHAU1aeqlOuzAPgRpsCBzFeJflewyw+0UMYH2twTtWUmp8qphftNd4wxJfzBPe9ZsLgSTWmhgMIvp7M+T7lryY3bp1a7488VYmH6SaU739Fga4kkM7JDaX00dqu7t0sNS19957+0DYgbvjXUe9vufzhYxXeb56dhrgUzkTgD/hsu+++zry8zG7Gd4fBrCWN0v7LYm+vP2z6se+VL9NXAgYt/K7R9jC3A9NHaQa5HbiPmT0iYufd6LxR4HMx1ZwKD0a9tK9Ml+UqC5sdgR81GDEGVwxRNmyycemfG2F7gN2v6gy2Tu4Mww1WWlp8ssyZ/GGp+CR4jskNnsYrKv/HuvWzlQmEZsuFLy4yyLdr9TU5Mdpco1PU/2wXjz5ONIe0JG6dbrfkjgoIA2Bry8Q+FsCPmNwAkiUa92OZir7cYiANxb5g1AqTatmWT8c862CH2f5TZkfQDrPtZa3WJPNjXweMeA5C9oG81BUl6eBgCncMQtbJO5M6r6TcbzuN6K8b+tmGy19+1uhVmN+iyAYvBiT6y0IMDpYs5CfBhRtxeEQGLnCz5lJ7f7s41z2dDkiyAeCtffXZC3pTngIHN0II8lIqMkyKGUcQVkCUerCNVKfXZkMpIalA2WXfJ0/DyCn5wTTeLYu8ycMDVpTqb+PqD677wIN+FXuwqZGwJDJQDOaYojwMMLzBjWfZuXdhs+U/ZZK3vd3SeV36/eKipyXbmocWvm1CIxdyq0us7dfkojQIcjd8tBKQe7wtbt0YzmQeUONH9pZLEgiCDRJ676PlImcBTsgtlJQjsCwuHuschcWI2BJ7jKefbPk+MvwtpyHf9ZufiXvL+2p98MZv31XbxLNxKlAsrG9WH63biIEcqjiyIXOBqbh5rsGvxTzaHnu7oBOhPjzcE7tXP6ii58mqTR+tcrsOS9V7mtKCOyWNL2USVkwSi7iSUZ2bFfJwhJeHnfOa9noLrlnw6gXlBix+DDLkmF4zNdpfTz+RmmO0RVgCE+5G7zWa9A2a3IHaWqAHEqPBnwcIcWbVnMf32lT/tciYILP6ON9ydqe2EGofC2tS9/UNugc00V/UYFAAIiT1Bf7f62BrdhOI7Azyb0ConK0FCNikq9t95JuKmV775dDPTQURZywi9ICTqGId9qSXYQx8GYkW4a77JOyE4KAR1neZQbNUDcHqwTyEPMZF+wi0E3VTDM3X9dEztcmb4M0NVqNR1O+tzWyvDErWhAIoWLpyX6SsbF0cq/MnjWCxCEysr+rFF/rRDUCqBK3xKQsyyRDBdAkd+UimyTQ/0GjDEuLtSzMlU2ZWa17sZFtePqqNX4eM54RcxavheU/qFWL+v9CIDO93k3q5vJ65HED0LmophqSys7uvFaNtvkCogZ1Kvs+DQSWTu7TMLutaAQagUZg2giMfaE6bRTaukagEWgEJoZAJ/eJObTNaQQagUZgFYFO7h0HjUAj0AhMEIFO7hN0apvUCDQCjUAn946BRqARaAQmiEAn9wk6tU1qBBqBRqCTe8dAI9AINAITRKCT+wSd2iY1Ao1AI9DJvWOgEWgEGoEJItDJfYJObZMagUagEejk3jHQCDQCjcAEEejkPkGntkmNQCPQCHRy7xhoBBqBRmCCCHRyn6BT26RGoBFoBDq5dww0Ao1AIzBBBDq5T9CpbVIj0Ag0Ap3cOwYagUagEZggAp3cJ+jUNqkRaAQagU7uHQONQCPQCEwQgU7uE3Rqm9QINAKNQCf3joFGoBFoBCaIQCf3CTq1TWoEGoFGoJN7x0Aj0Ag0AhNEoJP7BJ3aJjUCjUAj0Mm9Y6ARaAQagQki0Ml9gk5tkxqBRqAR6OTeMdAINAKNwAQR6OQ+Qae2SY1AI9AIdHLvGGgEGoFGYIIIdHKfoFPbpEagEWgEOrl3DDQCjUAjMEEEOrlP0KltUiPQCDQCndw7BhqBRqARmCACndwn6NQ2qRFoBBqBTu4dA41AI9AITBCBTu4TdGqb1Ag0Ao1AJ/eOgUagEWgEJohAJ/cJOrVNagQagUagk3vHQCPQCDQCE0Sgk/sEndomNQKNQCPQyb1joBFoBBqBCSLQyX2CTm2TGoFGoBHo5N4x0Ag0Ao3ABBHo5D5Bp7ZJjUAj0Ah0cu8YaAQagUZgggh0cp+gU9ukRqARaAQ6uXcMNAKNQCMwQQQ6uU/QqW1SI9AINAKd3DsGGoFGoBGYIAKd3Cfo1DapEWgEGoFO7h0DjUAj0AhMEIFO7hN0apvUCDQCjUAn946BRqARaAQmiEAn9wk6tU1qBBqBRqCTe8dAI9AINAITRKCT+wSd2iY1Ao1AI9DJvWOgEWgEGoEJItDJfYJObZMagUagEejk3jHQCDQCjcAEEfhfA2jI3MdBytIAAAAASUVORK5CYII=\n", - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCABkAfQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iig9KAM221mzu9WvtMhaQ3dksbzo0ZUAPu24J4Odp6VjeHPFV1q2sT6Xd6T9jmhs4rqRRN5jQmRmAikG0bXwu7qcg5rhxqU1rryeIVnvh/bHiB4lWJj5T21ujRABB95nKDGR3yMYJPoOg+FLTw9JNJa3l/MZizOLmcyAsxyzdOWJA5OemKAOirG1vxNpPh4W39q3fkfaZPLiAjZyxyB0UHAyQMnjketbNcRp0x1T4tay+47dI06C0AION8zGVyO3RY/XoPegDt6KazBVLMQFAySe1Q211b3cSzW08c0T52vGwZTg4OCPegCxRWRrmtR6LYSS+W91dCMvDZwkGacjsq9T6nA4ANRaBrn9trqANu1vLY3j2cq+YsisyhTlWHUfMB2IIIPSgDcoorkfEfjaHQjctHZSX0NnCZrqWKVAsZDqvl5PHmHdkIcE445oA66ikByAazU1m0l1250iNna6t7dLiXA+VFcsFBbsTtJx6c0AadFUF1G3n0t7+0kjuIgjMjq4VX256MeMZHXp36VQ0DWLzVhcG7s7OBYiFVrW+W5DnnPRRgYxjPJyeBjkA3qKKKAA1yr+MrWe5is9Lhlubt737C4mR4EikEbSMGZl5IRc4GTyPXNXtd8T6f4fls11LzI4royAT4GyPYhc7uc8gYAAJJOMVwenwjT/CWjX2rJd2Gpatrct8Zo5Eie0eVZTvYOpXCwjBVgf0FAHoug6qmt6LbaikTQiZSTGxztIJBGe/IPNadZWgWljYaFZ2+mz+fZLEDDN5nmeap537uhznORxzVG212+n8RNp/2KyFsrNmZNRVpAq5HMQXIOQOM4APJyMUAdHRVX7Xb/AG37EJkFz5fmiMnDFM4yPUZ646ZHqKFvrZ76SzSdGuYkV5IwclVOcE+mcH8qALVFFFABRVW0vLa/iMtrMsqK7RsV7MpwQfQgjpSpeW8l3Nax3ETTwhWliVwWQNnaWHUZwceuKALNFNLqDgsAfrWW2rFPEkGkNavia1kuY7jepU7GRSuOv/LQc/WgDWoqp9st/t32LzkNz5fmmMHLBM4yfQZ6Z64Poat0AFFFFABRVa9vIdPsbi9uX2QW8TSyN/dVQST+Qqrp2tWWqJEbeQiSS3jufJkUrIsbjKkqencfUYoA06Kqre28l9JZJMrXEaK7xg5Kqc4J9M4OPpWNba7fT+Im0/7FZC2VmzMmoq0gVcjmILkHIHGcAHk5GKAOjooooAKwtY8U6Zol5HaXbXH2mWGSaKNLd28xY13PhgNowCM5I6ir+q6gmk6Td6jLG7x2sDzOkYyzBVLEKO54rz+bUbXWvEOueJ2tnudG0jQnt1BOBLK+ZJlRhkEhVVCQeCSOewB1vh/X5tYlkt57QW0otLe8AWXzBsm34BOB8wKNnHHTBroa5PwbYafHayXlnqM97M8UNtKs1wkrWojXKwHYAMr5hzn5jnkmrWua9faZexW9nZ2Vx5iji41BbdskkDClSSOOT7jAPNAHRUVTuLy3szD9omWPzZREpY4Bc9Bn1OMD1PHU0txe21p5XnyqhmlWKMMeXc9AB3PU/QE9BQBbooooAKKx9R8Q6fpmoxWN1IySyW8t0SFJWOKMqGZyPujLDmtVHWRFdGDKwyCDkEUAPooooAKKKKACiiigAooooAKKKKACiiigAooooAzNT1G6sDH9m0e91Dfnd9maIbMY6+Y69c9s9KgtdXvrlZzL4d1O2McZdBK9ufNI/gXbKcE++B71tUh6HHWgDnf+Eh1Pj/ij9Z4/6a2n/wAeqe01vULi6jhl8M6rbI5wZpZLYqnudspP5A1yOkx+ILTxtpVm+qNe3C2sz+ICkztbqT/qNitxG55O1QOATjGKveGdXjg8e+I/DyXjXNuGW8tsu0nlNgLPEGJ/hbY20dPMIoA7s9K4H4YO1/D4j1t/m/tDWZ2ibnmJMRoPTjaeldbr9+NJ8PanqJOBa2ss+dufuoT079KyPh1pP9h/D3Q7ErtdbVZJF9Hf52HX1Y0AZHjjxdqOk3WoWWnvbWwsdIbUpZ7hN+9y5SKJRkD5mUgk+oxzXL+Hb+Hw9dG6F9FNp/hzQRbiKMcT3Dq08qIdxG4CDJPoemMGvT9U8M6LrcyTappdtdyohjDTRhvlPOPfB5HoeRikg8MaHbztNDpVojtALZiIhgxYxtI6EY4+nFAHA2E174m8bQw6tqsFvcx6JuiFgBHLazXOGZUZiSSscQOSP488cVs39rceAvCjQaXqC+RCktw816I2dI44s7I41CB2YqMk88sTkkV0ul+FNA0a5F1p2k2ttcCPy/Njjw5X0J6n8al1Xw/pOuCEapp1teiBi8YnjD7SRg9exHUdDQBxcXibxPALDTry50ptS1K8WItHEyixQW4mmDqTy6g/KD2ILelZ3hHw1D4u0Iarca1dR3Umo3F5IlmIhH5j4WN2RlYbvKCMv93fnrzXet4T0GbToNPm0m2ktYZPNjjdNwDHOTzyc5IOeoODkVe03SrDRrX7LptnBawFy/lwoFXJ6nA/z0FAHIeJNd1+11+DT9OvtMtopneJTPGZTGiQGWSaQhhswdqgEY5JOcgVH4ht30/wFq2qoUfUtXS1W9ntSdp3+XCxjzyECliM88k966O58H+HrvU5dQuNItJbyVlaSZ4xuYr0ye/GAR3AGc4q/q+mW+saRdaZcg+RcxNE5XhlBGMg9iOoPqBQBQ1PXNL8O2VxAWgQ2enyXa2o+XEMYxwAMAZ2r+I4rj/B+uWvhLSdA0XVDb273OnHUbm4kfYRNLKMJtA5JMh+gQ9q65fDdtqVtZSeI7Syv9Qt49jzCM7HwwIO09sgNg5APSq2o+DYL/xKNe+3XNvfxiOOGWEIDHEocNGMg5DeYSc9wuOlAG1qN7PY24lg066v3L7TFbNGGA55+dlGOPXPNVrHWb67ulhn8O6nZIQf30725QfXZKx/StmigDJ1PUrqzkjWDRL7UARuLWzQgIfQ+ZIpz9K43xXYXviqWyefw5rcH2LfJDtNoxWYldr/AOvGQArDb33e1drrmrWug6Lc6ldhzFAudqDLOxICqv8AtMxAHuawLHx5afar+x1a3bT7+zYebAjG4+TyllLZQdFVgGOMA8AnigDS0/VRZaRaf2rFNp7mWOzjF0IlM0jYC7ViZlG4nAGeK5HQ9XUeMvEGp29mbm41G/bT7QBlRRHaRZdi5HQuzDvk47DNd7eWGn65YJFcRR3VsxWWM54yOVZSOnsRWXfeErd7ewj0if8AsmTT94tTbxIUQOu1gUIwcjn68+oIBQ1m+g1CLwfr9mpVpr2ExM64byp42DKR7gg49VB7Vzd3e3n/AAq3Wb+DMGq6zf3NqVkUtIzyTtbRoMYIKqFxjJAXoa7OPwtHHPoUXnE6dokI+zQt8zPKEMau5/2UJxjuxPYUkPhaDfqlleRwXWkXs/2tIJFO6KYnL4PTG4BwRgglvagDQ0WezXTLSzt9Qhu2igCq0bDLqvybgAemRjPTNcbq/iTxMuvzWllqOi2sQhmuCbiNpI4UjlWOMPIrfekJbIxwBgcgmusi0C3i8SxavGsMYhsfsUUcUCqQpcMcuOSo2qFXgD5jznhkPg/w9b6ib+HR7OO7MxnMqxAEue59eefY89eaAMz7XbeHvE/ii6ldltBZWt/Ki95T5sZ2j1YRRjHc4rmb62ufBmr6T40u3Ae9f7Nr+HyqLKwMbdekTbUz/dA9TXa2nhi2d9Wm1iK3v5tUlVpkkjDRiOPiKMA9Qv3sn+JifSn/APCDeEz18M6Of+3KP/CgCa78LeH9SuXur3Q9OuriTG+aa1R2bAwMkjJ4Ao/sGFNXsr2CZ4Es7draG2iRBGsbFCRjbkf6tMYPGPetWOJIY1jjVURQFVVGAAOgFS0AcHo13emz8S6lbpbx6nNrMlqsl4cIqRssSZ6EqFywUHkscHLZp3grW9b1i6E1/qOnTWUkUxghjhaO4ZY5jGkxGSNrgEntnbjvWpJ4Utp77VIbuK2u9H1MrPLaTJkrcABSy+xCqfUMCc88aemaHpmjLKum2ENosjAsIV2jjoPYD0HHJ9TQBWu9b1C3upIYvDOq3KIcCaKS2Cv7jdKD+YFOudTv/wDhHZ7yKxFpehT5cF/KiqrZwC7IxG3vwc9utbVVdQ0+01Sxlsr63juLaVdskUi7lYfSgDz/AE59Y8XPd6XrGoWUujzSXdqY44WhnuEhdFMikEjaXLKe2NvcnHRa3AkHijwtdwjZKbiazbbwDC0DuV+m6JCPpWlpXh7SdFllfTNOgtPMAVvKTbkDt7evHUkk81DNozXnii11W6kDRWMTraQgdJHGHkY+u0bQOwZvXgAxvB+pW0GhS6rqTfZbrVNXuI284/M0nntDFH07KiKB7Vh2utJp114x8XrBFOX1KDS7ZGcRgrGVjJD46b5HJP8As9cAGuqi8LQrNqVtdJFc6VdXIvoomDB4ZycvgjsWG4YwQWbqDT9W8G6TqujWmi+QlvpcEm/7LAiqrYVgB04wzBsjnKj3oA1bLVbTVNNF/p8q3cDbgjRH75UkEDOO4IrM/wCEh1PP/Ioaz/39tP8A49WlpNi+mabBZvdz3ZiXb50+N7emcADgcfhWhQBRvrue1shPDp9zeSZH7iExh+f99lXj61y3iGe/1/RJ9Jk8KazFBOUWXD2h3Rh1LL/r+NwBXPbOa7euHt/iLZSXcMlxbNb6VdQ3M1rfPICJEgKh3KDkK24beST6DIyAS+D47jQtNlsrvT9QtrO3VpUnvFt1VEAGEPlyOzEAfePp9Kydd1iwvvGulakri407RdIuNbkaNQ29XULFjI6lfMIGffjiu3tLyz1eC4SPLqjmCeGVCrKcAlWVhkZVgfcEHvVJPCWiw6Nf6Xa2S2sF/CYJ2h4dlK7B8xyeF4GelAGXq1/H4h8MeItOvLSS1uLW13SpuD7S0fmIysONwI/Ar9DVbT7yfVvGumm6UZh0BLuJyvyLNM+12A9QFA69GI7nNuXwbPPpupWs2ryzyas6Je3DxqjfZ1XaY0VQACVypP8AtE9gK07vRn/tnS9T05ooHtUa2kjZflktmwSox0KlVKnp1HfNAHP/AA91IS2Wqale6jCzalfPdxo3yFYixhibljw4hyACRwcE1Z8Ya3rWmX1rDpU1hGZZreBI5kMryySyFTlQwKoiBnz3I7AHN6+8GaVPpTadZWtrZwS3SXEoWANna247c/dPGAR93JwKt6n4U0PWLsXmoaXbXF0I/KE0ifOq5yMN1GOcHqMn1NAFTw5p4ugut6hPaX2py232N7m1H7lokkcjaD0JyN3YkccAU3wVLDZ+Gbexe4ULBd3VnbCRwCUinkRFHrhVA49K3J4JY9Le30wQwSrHsgDJ+7jOMD5R2Hp7VQ0rwzpml6Xptn9miuW0/LxTzxqziU5LyA44ZiSSR60AblFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSEZpaKAOLsvhxplhNPNBqOsiebzX3vfM+yWRCjTKDwJME4bGa0LXwdpFjLor2cUlv/Y/miARvwwkXDh8/eycMSedwBrpKKAOQ8V6BrfiC4XTo7yyj0C5jRLyN4z5/yyBm2HoQ6jac9OvNdcBgYpaKACiiigAooooAKKKKACiiigAooooAKKKKAOd8V6FdeILOws4bkQQJfRT3LAkOUTLALwRu3hDyMcGsS98E3Npvm0R4Jrq5gu4ryXUJGDTPP5eZSyKRlfLACAAY4G2u9ooAp6baf2fplrZ7t/2eFIt2MbtqgZx+FXKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKGrw3lxo19Bp8ix3kkEiQO5IVZCpCk45wDjpXH/wDCtoIdBa2hvZZb9LCOytprk7kgRWV9iqoHBZeSctjHPFd/RQBg+HtOv7T+07rUfsyXV/d+eYrd2dIwI0jA3MAWOI8ngdcds1vUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMgAAAAyCAIAAACWMwO2AAAWO0lEQVR4Ae3cdYxlxRIG8Le4u7tDgluwLAmyuLsT3N0DC8EJ7iFY8ODuGlgcAsHd3d3t/S4fW7nZmZ2ZBwPMvW/7j7N1uqurS76ulnt2+v3222//acfy66+/DjfccD/99BNi5JFHZuIPP/wQolfM/f7770cZZZTvvvuOTAORmRF//PHHkUYaybgjjjhiani4X79+vTJoCwlpeKQti2D//PPPoluoQveipVAFW6OOOmpQ9fHHH4eAKgg21jfffKPm008/hSo1vTh0S4jq164ZSy755ZdfRh99dHFFQ4B4JJ30VmCkJYgZY4wxIpYnDWQ4mAumM1DyVm8N2ipy2hZYFYDmuH799ddwUE1/hYBawIIhQgxBMmARPvzww6vxqqDHHXdcnL24BP8Vnf/Jvm27FCbeX331laijgQDdW6giEGhGGGEEYHrvvfeWWmqpmWeeecoppzzwwAPVnHvuubPOOmv//v332msv8IIqCeyfDGpfGKttgZUtzphjjinSiu3OaKON1oseJ9Mey8L35JNPylsvvPDCFVdccfDBB6+wwgrXX3+9ykcffdQSueeee+KUtHpx6JYQ1bbAsrv68ssvhdY+WlwlGOXzzz/vraiQmfx39tlnb7jhhmONNdbss89+6qmnPvDAA5988onRwe6UU06ZYYYZQHzYUthbbv/35bz11lv77rvv8ccfbxG0ZokuncYZZ5ze0oxMy5zN+6abbnrkkUd+8cUXDz74oEVwvfXWGzRo0EorrQTTyyyzzBRTTAF/6N4at2XkNNaJzooDjt2JljzDYpo2v6ZSjbDZRtRraMyCmsqeP0lL6XmXGlqk9bKXEul11113xhln3HHHHdVQL9LgoOdim7t8++23zFGD6CjBIjjxxBMvu+yyF110EQzde++9iy++uG37YYcdFg9kXC7VN09sBCqM7Siw08qObH25pptTIQuz8TRBzRWOsKvIhU2MV69Gk1f1gmpbU7MqlfXaE4Kzwhax3XYROZxRz+qTY9qLL7449dRTH3TQQZY/TyaU/mq6lTkEAzBlf8Z83T2BQw174YNwtC38pJNOqiNwS1Gs0Msq7For0oA7r7pQBgNR6GIYYtBWf23ApYvCfl4IkrAVEVor6CRUaQoauH6Ijl0M0WlTD1GlL/UwG86TDkLuymqmmWbSJMZeFUoKv7j+CVSRQ7hnWQrKoMNGlWARZEwyySSGsIebYIIJYIgytlk4M7UK8boEVZHZ7E9N7VSGunnnkUzQGM8R8UWz8YllXJz6OnlxHwkduzR375QmU+m0qdPKMAc9ibFwWnrEUlEDZ2Kcpk4ldF0JLoEIaeG0nULAqPSMYKMRk4egytDGKj/EA/IofoWe/IlIPS91PXrrtg4VWALG/jKM47iPOxQ098GN1mY2M5XX+D0d0ThLwt9E0CRqRB8wkploJZYKbVNPGaV5DvRQH2kPZ1Yxpnm1nfLMuIDiDOj3HGBS+dJLL8EfR/kl58MPP2S+V73CRk65NPOhhzq0Ilv3M0YweKH5wJzZz31iljknfnjMbC4Ye+yxk+q0Nvf6094hXN+hRUJGMQo8NYOGhgKvC0BgEGA8VK249lwZB0mSrXHjjz8+03R03nT/iWAg7Nqkf/TRR2xXjAVnSVfBN3jB1kQTTbTNNtvss88+cQjdQsRvRCEUBJ0VRMuXmNTxGdx4mm3Vymt1wuJWAUsTthBvvPEGwr7VMiEe1fFPE0ZJGZqE5lHENdqKpV677rrr7rvvPrSOPawv0/ADUF4dAwUeAlyHfvDBB5pee+21119/PTQwvf322xKVHf0111yz8sorY55mmmninAA9o6NDsIJkpdmcNLXo84+50lF7oBEbz0ISN91+++1ua/g3/BwRIg4SzkMPPVRN1VffjvJ7WPMHrDo7k5cEwaiBEpjPPvvs+eefn3POOaeffvrHH39cvsFMFA2rVw+JCLTMhWAaWl83VUkt1157bbMo2aiuJGBLE+fccMMNsPXII49owhD+IigWtPE2wmuzwBalG18ssTnx4zu0wrzrrrvOj18OO7fddhvbVF599dX777//eOONZ4vqlX/tWtKULtI7Xy+//PLSRnJG7WE5FI+S8CB0TJh/r/7jYVyU7p5RzPOOO+6wtNHk/PPPV29D45lxw08NS1L40RisVldddZWLpdVWW+3+++93+wB5dLMUlo2EpLC9CGxFhwi/ZS5s1lPK0PDCCy9ceuml8bgRNURa6aCVDlGMVmw06HLLLXfxxRdLn9GB8lCFU15H33nnndZThaWYwZHYGBgdwh8DU9MCT0rzghJCMje/4SCX1H6pMCN5R253M2TmYVMyF5mq8A6Gmqauc/bee288QsJ977777u89Go9aOpsnKzZCBCZs8XWY1WfLYr8sJLfcckuNUimqRKV7nkkq6DKtuZXM9PKbT8aFxWYGrWqiSRgoaUT6NLPBLv/YS80xxxwUiw/ZqGNppbv6vFordTeoJ34FESjDq/u/Sn54sqYbN2JxElUO9NrHSyMxUJEBpSgD3B3DRzwbBvuVNddcEw8fVVBxglQ6Bh9Aeffdd9urckF5ARshpHElf6nXy2rlNYFXqeDBWWpEJZpwevYuasrjOjp5YY56iChQ3Wt0NYajM83JL+XDWWELf6Ku6fDDD99ll10QlIwm4ff0SluEoX3OkAPBJptsor7wFOb4Kt2hOV0yosqg32+LIEVDChBoxjY7QZfgLwIjKnQffzZSbgoDOILLnn76aRiSbJ955pmayq4ErYmBGo8wHrPCI++//754AEqiolKSl955MFFXY4gK4eABO/k3TtQLMydSwFpG2nPPPWe6p7WyUdhKii6UN5aOCkIRLXTxIPJK7dopimWzbnpJzw5xfgREx1Jy8CT8kYbWRJn1118f9Lnr8ssv18RjaapBjVhYIVB9YYVRa621liOtnSvEx10YdCmVVOa1akpyXyYaHqEx1zCPom+++aZM8M4778w999y26rPNNpufvcwqW5yFF17YnolTbDj0WnLJJV955RW5xCHcZmLCCSe0VJl8cLDRRhuddNJJiy22GMlCogbhK4Bnn32W001xT724jDQ7Oduy+eefn0ycmkiDYFAGLMo429NkgQUWsBYLmx0ePTFYhrTamlgl9c1OC5FCFEJEB1c0ppAIsdQE0DdoUIPGA5Q8gKDe5JNPPu2007IOD+Ekh1kTfnKYg1OTcuaZZ1oTGb7lllvylVsJTTE8W0w8nEACbXlJawaySfCBDTzNM888Dz30EAXmmmuu7EDgL5rU0AwhJNlRU98vjfvxaMlfXCB4bEOsscYa8BE7L7vsMmmJkXg4C/hkfhPdyctx2uSW5Ozc7eudtMWJ+/wAzHGTTTYZ4YIBQ6DA3QrhvCxhwJbwawUv/oVXjovvxAknKJ911lmSluF0AS83kKA8cODAxMyI5CQfUE9fT6/6IlLySg0Scs/JCsrQ36cHaAzQTCAkQS0eMn1QRVqgD4jgyy5smHHiIRAU0HguueQSv3nLXptttpkvZ0xCYzVM/d1YQ+TWKqgCL9aRwDnbbbedQwAz/VieKBhC3yBPDeFGjCHxTNha4MnsFNBhFZofxfuAAw6wLchS6GMBlgh/GOw/GGkCpeNUU02Va8C8cgREWke88jXc5LQPZ9wUHs/QWrN/UqNjgiFgXvM0rm/ljGWhASNQPv300x335FQ8NPHBk+zilihPysg3YuYpF5onCHs+iQRoHAKCezFeaKGFwJSQFNbZg6cXZEAM2MG6vvPOO+9xxx1XeuKnW1yRowm1nVcS7JNPPtlHf4OlNnJkdnXwFJPZkkojYjMQVGV9JydivcZpGNQ0+60k93GikbHYaQLxtZnBBgabMRYggUTzF4RhYKGJm1e+ZhhHWP64wOJlUgYWaHnOpCRKJZl8R84JJ5wAf1rVBLsWu0zfVVZZZdFFF8UMr2JmdDkDDiQVPMYyugPpiiuu6Atg8QZ62mrdY489tthiC5rIggpbFPLJMe/ZRVtiKwHQMPUYbAqZwygqpf7mm28GO8ZKpW7JaSsVgYUaiGQFNrBA6GJQwnPEYSyVrP6cts4662Q1lBTVU4byOI2le4bzSggJrgatesyHYJKdCl20mhsQD9ADBgwwW+JYXRQW0Tx0H382vlwQXa5kv1AhzjjjDETOgOw3e3baaSefsOGMMdKYyS2rcbqP6eabbz4e1CRmeLhPJGJ/Akay1VNshEr4E0gMfIo2Ip8GhWoCAriBV9sykVh11VU5VBaRpYwis9IKLPCQJop68X45migjwi586y6FqKGbGvwInBhg3ZfEahgIvnTIdy/i7ZVAoWWOsaBNF7YAfSxFqyFKXzWU2WqrrYxyyCGHMEcThXVEKCwN9OkJQKAfYw1tf4bTZhQbkMmLDz/8MHS68dphhx1c2dMquwUSDNcqqGqYbWJRWkmq5ztHaNHNIpgm4THhbOGFVnjuuusuN9qrr776EkssYU/NNRh4jZd112WWWWbZbbfd0pcTS4ixuNWrLqn01EWc8qqVK4VcIfCoo46iIVqr05PdMcJYIh21MacjIaEjKmpokoRqPugllgQmPF6znkbDKBZpnlZzG7u8GrE0TE2YTT+v9Bw0aBCxueQre9VHJcypjJDQpodXq3zQz6vMvOeee+DSRt5Uz/6P/AoENTJ6SzwbZyX2R2mZhoWwwqfMBhSt2SJIYM5uXuOmV1991WJhU68mMS6suD7mZSd2nsUc2Il0GDx5lnC9qovRjdJA0+DvMxH6Opk6GSQ8W2+9tTDg9ItbjodkVhSpETrBJlnkVPow64gjjiBBvVVGDa10JIelXo0bFOLRRDF9VW6++eaSELaIValJ4ZPYq69CzxtvvJG9uduUujDQPK1DPElLDTkxymZx4403Vmnp9zzmmGOkcGw2tXLbeeedR2B5Sa9meyOqzz4bGT7KiYRlZe2112aSX29UWrk8hQSPa0+tfiqJbRWGdE84MXM0NEjjkVmzTa+4W0dFqxoeDPjCXE+LgvXFCUuC8csSz+p75ZVXmtyCvcgiizhGRUKekRx85JkaOktOMrEJE+EBk2fYSI45zVhJk1SXnxwkj/SNzNCeoMB2qJLdbR/VRDgiAA0nOshA+CE1MwdwYVEC9jRQunjan/E/BVxHy1gWxNK8PByxff/ZyFjspDf77SJtZSSJzC1eCG7MQjy+8bWPFid0DONr/gotQvj9vxS/zuLPFMSpkBY55Y4KEpDF7xiIIgS/3ZV11uLrDK8LsRlF5HbeeWfqpTJd0IarJ4LMgMOVR35cUkmsp9J8uPNaikUNNYm91wiJqtVdvZIwIyQYO6TMQH0DUx1T4DXyEeaqoysTTGDSHESmm246MNKEWV+VllT5Hs17tgGuhdGF7FJVZd8vjT+VES3pDQH8zl9MTbTQSTCJuiOYO+LUlK95gffD6RYnKw4XB51DuCCckVbwwtNMexW5ZJHKeSo7Ckwgqy8dlCDj1ltvtbuX/HTE5vcZKXC//fYDNbRsISElohjYgodWSqzzDKE1DJ5ac7+ApoxThYNLo3kwcHWJ2qmMwjzp7Cw5PfbYY/GqmUNUdnjpS20EzUt+6RZzIjBsofv4sx/9GJkzbU5MYumoL1rZ9vKCNYhfqsjPOVHzQq5AgVJf0zEHqHDyQp1ijOKVTKubExkGMXDeCWeQUfJtLCjgNZog4MyulovpmdXNq2xBiFZyrNFurYLmHNzcYrsHP/bYY19++WWnWnGintEd/UiAOemwf//+tCKzjI0OKomKnmrwq/FUyScIGrpAfuqpp1xZ6c52OoCU1hhFoE8qHHfsCJ944ombbrrJuPadeDDn5Esy5LGCcIbkwBTDWepQacayBUNxsqL6RtW+++QsUecI4GBhJorKvHpqFRJP0eWIJKqaT0CpySsJuofWKx0zZXkto2hV0hRaffrmlYRw8mwk65umPCtNRrJBFZzuFAQbT4Q7W7gscJOOzU+c2267LWL77bcXZpfdkVlGpQs5pWSNgjPMnhhitZRs+bMTFVQgA6yKrqgXHINvTUGGW9BoGCWlrhiYQQmvVBeiVsDoSUk8cUJLPBsZq/zSigS423Vdeumltl9HH310kpwjpBnvXl56EHtR9B/eHWxdlLhwtz4Kv9QigQm2zVzXhkNA0JPk7dUFGNxAvwI3EpVKAkOogQb3dp5ocHQx5ltT1/rGMmiGgxXqdT10C7e2BPy7UBKwHMudE11SS0g4XVu7ZYCeZFA18s0GG2yQ/7zqBs7vQiqbE0DS0tBGAZokSFBAY/OKqAxXHZNdvFbqTRP51ZQEqb5ZgZLQNsRQ/5dOq8wVuzp/OuHEE0+0QvmPyNR2MvXnX2zCkj/EWFAvuOACB3ixtD76GEGmyXqHHz5q/epodVJRUovkRyaBEpj8RIhWMuUkUFMvjXmVBZONbJLsR8nUq1ZGDBmlUlfHQdugpuWBlSxi5y547oSgxAcX/n6Q7Y4mUYQGnw77MUDSwmPPLrdZKLMLxtN1FBN+T5JxQhgaKMEItiCMzGytjEWalGO9A2XMjggqzznnHDdYNRD+jJik1fXoLdzaNrnXH0oQcj8PuC5ilGzhKfwx0NkQMoRZmkn480xrVrrQHZ+EZNtuRSMkDCFIqy25+gAOkYXPcuwL2IEDB8KH1JUR6RAJpVte2+zZ8pt3MRMwOy1RX3DBBf3afd9999lyqRddC1AWKdtnNWIpgSEARe6xAqbGitZ8uMPQXGAoayVRNuOevuFxzwnBLlx8pucrRYcGEoBD9nKgk7QATh6Fder5C0eyplsbr0aUtHAaorJX83DtQbf8qUTOsK7lXs2fDXL6gypZwUkwl2oWLGASTsd4OAMpsVfEL0mi6wCHP8yBlzszqy1s5eM+A/nO0SchzozA7dVSK3UBjf95Boi+P9YEUgo5IQxNyTYGVjtkLOGUfgSpbm6hQUSFUIBdOEGVNJObJ6FVkqKSgcQ4IU9Tp09Ji5BcKECJb1l9L+TLaeDAb2ifu/gFCaqM4ko9W3UfIaqhni+8XZPKWM2nBPXGba7pdOgWrWz5jMXv4h3vJ2+hk5AQdY3ZjCr1WfiAD901quBJwhN+2IUSBHy4VZeHdARK+PCx2mmnnSZ3pgbOcPoEw7WZJRitr1NqMFR4onZwSYf2K+0ArL81KllGs81KHrKf8+OMC09NkKHSbb4flWEXpORCGJIydbFGO6haKNEuRGwBXc9mGth4QSEJf6vy/6LwdlgK/wH3wYFRJB5IUvyAjfYdR7410jTEipY852lTHyT5dd/PhTCHGfg8uzguaG31MgxY3USwDozwZBWz9mWdDXTSWX3WNfgLjPRKPstrjYFBR5VZf7PJq9Z2IoYBq5towpMFrhlGOngNdOQtAMoRIYeAym3VBaeCU1bDDFJBVeS062o4bI/VDbCgCge4QECgIz95tX+ycwoskpbABQMAYdAFmOQ2OclziFVPRwwBZTfDt2zzsIz1P4TOtj2bpPSRzBBBXtV4hRugSVoCQbRnwCRpeQ2zlAaCWVhT007PYRmr+2jCRPbmyU/SEkjBTTOkwqMy+y1CsVVHrwUg9Ulp0lhVdq9Eq3EMy1itFrEW0bflv25oET//36n5X2nv2xjERLasAAAAAElFTkSuQmCC\n", + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAAyAMgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iimO6RozswVVGSScACgB9FMVldQykMpGQQcgimrKjvIquGKNtYA52nAOD6cEH8aAJaKKKACiiigAqvDcw3KuYJo5QjlGKMG2sOoOO49KfLGk0TxyqrRspVlYZBBHINcv4G+ypFrkFp5CxRavcKI4doVB8vGB0oA62iiigArl/Enie40ScxWthDdGK1e8m827EGI1YLhMqQzc9CQBxkjIreup3trSaZIJJ2jQuIosb3IGdq5IGT0GSK4fTPG2m+ObMXln4R1HUYrScqDMlruhlA/uvLlTg9cUAaXh7xsviC6tjBaxLZXZlWFhcgzo0f3hLFgbPwLYyucZFdhXFXGvDRmudXbwFq6TOuJ57aG1kldR67JSzAfjXUaVqNtq+lWmo2jFre6hWaMnrtYZGffmgC7RSZGcUtABRRRQAUUUUAFFFFABRRRQBkeJdQl0nw1qeowbPMtLWScb84+VSe3Xp0rgNN0S20nR/C+gPCUk166E2pyCWST7SY4DK27ecjeyrkDjGR3rrPGeh6r4hsI9JtJbOLTbo+XqBmDGXy9yn93jjJAYHPqDnirfiXTbu9tbS5sCpv9PuVu4EZtolwGVoy3bcjsuexINAGRqfjO9t7i5TStHhura1vodOlnuLz7PmeRlXaihGLKu9MnjqcA4NWJhNZeONHuSixTalaSwXsUblkLRhXRgcDJXLrkgEhvYCrqeFNKOqjU2hmMpm+1CB5maFJ8YMoTO3fjv+I55p0mlXV54vi1S4KraWEDxWkYbJeSTG+RvYBQoHux9KAIdf8AEsui3kdvDaW0+6PeTNqMVuRyR0fk9OtSeHvEUutyzRyWtvAY1BHlX8VxnPqE6Vp3Wk6dfSiW7sLW4kA2hpYVcgemSKW10uwsWZrOytrdmGGMMKoSPfAoA5b4jCe70zS9HiCGHVNRhtZ1LupePmRkyvIDKjAn0PvV7w5q2jRWFtpmlxSxW0Nu5thsdlkjibY+wnLMAxA55O4EZzTZ9G1a/wDHFnqV7JZDStNEj2aRB/OaR4wh8zPGADJjHXcOOM1F4e8K32j6pA9xe281pY289vaCOJlkYSyLIxkJJGRsAGOuSeOlAFxvGGlMpVrTWCpGCDo10c/+Q6gtfEGg2ZZrTSNThLfeMOg3K5+uIq6USozOFdSUOHAP3TjPPpwQa8rvX0XWAdf8QQavdi/kxptrYyTqY7RSER2WNlHzsd3PP7xQOlAHo2m6vb6r5ogivo/Lxn7VZTW+c56eYq56dulc74l8aRadc2MFsupI/wDaMcM5GlzsrpkhgrbMNnHG3JPap/BFlo0FrcXOj6fqlmk+wn7fLK/mAAlSnmO3HJ5GM1t6tpKar9h3yvH9ku47pdoHzFM8H25oAm0/UIdTtRcQJcKhJXFxbvC3H+y4B/SvMfFtncfDvxivjnSo5H0m+kWHW7RBn7xAWVR65P58fxHHqk88VtA888iRxRqWeR2CqqgZJJPQV5rD4s8M+K9a+36p4g0eHRrGbOn2k93GjzzLwZ5EY5AByEU/7xH3cAHpcUgliSRQwDAMNylTz6g8iokt47S0aOzgijA3MqAbE3EknOBxkkk8d65y/wDib4L02AyzeJNOlAUnbbziZjjthM80l3P4i8SeCoZdLisLO51BGLLeFz5cEitt+7/y0AZCRyMhh6GgDJ+HUFlBpD+KNQaCHUdcZ7iS4kuHBlTezINrnChVIA29gK9BjkSaNZI2V0YAqynII9Qa5G/8DwXMXhy3jeEQ6JEyRGaESHIh8uM89gcNjuQPStnwxpk+i+GtO0y5nSeW0t0hMiJtBCjAwPoBz3oA2aKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzTW/D2pWXjGWDRrVxpfiWIR6hJGSBbOjZklJ5wXiZkHT5sV2GqaEmpDSYRIILOxukuGt1jBEoRTsT2Aba3T+EdK26KAMvw/pR0Pw/YaUbhrn7HAsKysgUsFGBwOnGBWpRRQBUv5YINPuJbmMywpEzSIE3llxyNvfPpXKW2reFrrTo9QHh+dbeYK0THRnYyBl3AgKhOMd6667to7y1mtpd2yaNo22nBwRg4PbrVBvDWjzaXZ6dc6ba3NpZxrHBHcRLIECqFGMj0FAHOajf6OvhzVtT0rQ7ZpNPgadkvtNe3VgFJwN0YJPynp04zXbx7REu0BVwMAdBWMfCegrp93Y2+l29rbXibLhLRfI81cEYYpgkYJ/OtaGIQQpGGdgowC7FmP1J5NAE1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z\n" }, "metadata": {} }, @@ -1331,10 +1656,10 @@ " \n", "
\n", "
\n", - "
- \\frac { h ^ { 2 } } { 2 \\lambda } \\int d t d ^ { 2 } x d ^ { 2 } x ^ { \\prime } ( { \\tilde { J } } _ { k } - \\frac { J _ { k } ^ { 0 } } { \\rho _ { 0 } } { \\tilde { J } } _ { 0 } ) ( t , x ) \\Delta ^ { - 1 } ( x - x ^ { \\prime } ) ( { \\tilde { J } } _ { k } - \\frac { J _ { k } ^ { 0 } } { \\rho _ { 0 } } { \\tilde { J } } _ { 0 } ) ( t , x ^ { \\prime } ) .

\n", + "
f ( \\sigma ) = f _ { 0 } \\frac { 1 } { \\sqrt { \\pi } } + \\sum _ { r = 1 } ^ { \\infty } f _ { n }

\n", "
\n", "
\n", - "
{ \\frac { h ^ { 2 } } { 2 \\lambda } } \\int d t d ^ { 2 } z d ^ { 2 } x ^ { \\prime } ( J _ { k } - { \\frac { J _ { 0 } ^ { 0 } } { \\rho _ { 0 } } } J _ { 0 } ) ( t , x ) \\Delta ^ { - 1 } ( x - x ^ { \\prime } ) ( J _ { k } - { \\frac { J _ { 0 } } { \\rho _ { 0 } } } J _ { 0 } ) ( t , x ^ { \\prime } ) . } . { \\frac { J _ { 0 } ^ { 0 } } { \\rho _ { 0 } } } . { \\frac { J _ { 0 } ^ { 0 } } { \\rho _ { 0 } } } . } . { \\frac { J _ { 0 } ^ { 0 } } { \\rho _ { 0 } } } . { \\frac { J _ { 0 } ^ { 0 } } { \\rho _ {

\n", + "
f ( \\sigma ) = f _ { 0 } \\frac { 1 } { \\sqrt { \\pi } } + \\sum _ { n = 1 } ^ { \\infty } f _ { n }

\n", "
\n", "
\n", " \n", @@ -1348,10 +1673,10 @@ "output_type": "display_data", "data": { "text/plain": [ - "" + "" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMgAAAAyCAIAAACWMwO2AAAac0lEQVR4Ae3bZbitVbUHcA6Il5BGuXSnIijdndIpXSJII0h3d4cP8dDopaXzHEopBRRQaSSlpLvub+//cZzXtffZrHW+3PNw1/zw7vGOOeboOWa8aw/66quvRum2//QAn3z55ZeDBg0addRR0/PFF1+MNtpo4I8//niMMcZAoPc/B/0fv3366ac0jJJUoX+Ub1HV6+eff/6tb32L/gD0ZakuZnoaGD6ffPLJ6KOPXk7oyMKhjutozDeVmE811nE6z5ZDk1UfffSRLlkltz777LORzQnf/va3qU23mNBUnqrw7777bkyTKyjlE2Qsfe+99+QlGIHet956SxeY4fi888474E7boOjR6bBvJH1PWvXO17LOqxwSs7fffnv88cfnfcBYY431ne98p2hGEuBf//rXhBNOGGVSvcDyY+yxx25qKEukC0p2yaHYheDDDz9UxnT985//nHbaaYNhacpbk0ObcDexWh3FuVCZ8aa1AKhSMH/9619nm222UL/xxhsTTzxx68iR4N3ipf1Xb4s6ksz0YNSYY46ZmpRV8oMPPpBziPVKKQnEzKSRIeYSvFd+ULxHIL26S+HQdODuSgx+9JplIlk111xz7bbbbsKA5rXXXhs5s0rVod64444rryzcUscrK7yqPYpTFjW5wjpZJYEQMDCT54UXXph88slPP/10WfXKK68YqKQhsIbKPEBnTWJ2Gw9wbvxgchcMI1qLL7743HPPnV4BAwhMXkeeZ+lsVkQrmBdffNESaSYosaVqqpRXpgWJJsMvueQSeXbVVVfBp9SxNEANbxMYpU26bzxZxaOShq/ffPPN/fbbz3yN+c3wjGwOqXQJ8P777x9//PFTTDHF97///XHGGWe66aY78sgjo3+loCmkjHmyBdIWHjB48GCV6c9//rPX0Mu/ck77Vnf3WK0FnqNz2Ob0l19+WWDuuOOOH//4x7Vht6CMN954rcNGgves4BYyuiQVrGUvvfSShZtFEk41imkhyAKnIFkcwQzXzKulllpKnt13333ZkyGGzKazAyuNSeubjESSBO9w4ZlVAGA2GEJ2equi9uUwMIapNXtQxhfhhnNeFXNdxA3Mani9xQcH+qeq1+Q2ii32EBkeKcgi2uucc85pd1VKBs8bTQ7DE90vXlLCb7XVVhNMMMHdd999wQUX2LrZDEGGeTQM3C+HgZEGljmU3HvvvQlShH7729/uscceGTswc9b98Y9/lEC33347SrPLqPLAwNKbvT3JmNbEgjFNPoHxjTbMLmRoRtjFESfweGJSqoehV0BSuTyVIe0/DU/qFxCdPZtqM182e4ZYL+leb775Ztte4YcRe0tDCBJ7yI6aDA79JptsYtO27777Kh4qyvXXXw9PXNjG5I44F3E5SvraV+2zzz7TTDONp527NfGGG24gQqI0ba+xBbAd2RZbbDHLLLNAUswzqV807QBDE6svaUU6KUUb3vfkXJjq5S+pFvF9mbSJwTAcIstVioHJ4GBGLJaRXulCVSZkJ2G7irNINDUvSl3gzTbbzNEJ3KTB04mpBdOmmSG77bbbkmTSSyFJSajUH+HESrpEW0+ybrzxRk/2WtoIYnLp2YQLWQBvm07Wwcsvv7x8Ur1tAgNt3l999dVE1x62ya4ZcvgsXk2CdmCTgBMrQZtDwh8GEH+NQCAxj3+bnPvCHMePmq7QR5bYO3tvuummNEwuIghZXyZtYspRV155pVr1u9/9zkA2klgmxyEjIKglIx955BHML7744u9973unnnpqNGRscnoAhTk8Pletd9llF8VvBMoV/gMllm42MzK+BnBNJRmRVXtbrBpA75auSixBjTdhwo0sjiC6nfxoYZvXOAhsXUhQg7GfJYWLS3ro8xo/PvDAA/YZv//979OViWt4XDFix8PYdc0119gpW2dxO+CAA15//fXyHubhX5hIb/+Z1InH3BrYrV933XWGb7fddn//+98BcXJ5pl/O/IBg991354EQ+MjTL+UAyH4uSEOdLYV48IKqKDZ0+sMf/vDUU0+RSnUXcc6xKnnEe3bUcOM+jsgoGw5SsCXODHMcg3ESQQPg7o6YI6ak85EsEbnvfve77p2xwlyXjzMAy1xvHHs4x+SIyPFHPOhj5x4N88SQhuEQ4k6fVvk11liDOBvkHXbYQbCJyz0kVnQmFBA9O2JunqDHmV08xoGrr7661wcffND5wPKtAIdhWd0vfzqQTiVOm2SSSfhB+eCxfokHQLbeqFIl1Pfff/8666xDzJlnnrnaaqupqFdffbWTxU033cTL6iRLFPCIFLYBZPTbxYMZJcNMEe5gD5vBngRJr+DFMu7ul8/wkMkPSjrdPPfcc5Z1pk0//fQ5ZhLngkqiJGNIRJ8hZrnpdO2119qaIGAjPREQhJjHbVDqq9zwpPfFm6jm4fnnn3/WWWfNOuusG2+8MbYHH3wwpDxAT0QA8AgkltsQjjKRchVCkJxg5s9//nOGE8o60RQ4/NnYV8NgEKSabLjhhrvuuus999yz6KKLDo94IDypzca8NAlrmCsQWwEaCwyRNp6CncJowu28887GcpnkaDJpH37yySePPvpoB6VtttnmV7/61bbbbptVYKKJJvJK7ghzpkNW7SFDhjCEK3/zm988+uij55577gYbbCBjLIhoWvhnxVSeEbhRZGwRcAtYbu211160bd/Goqy9WqQIc3VhTlZeS2L1tgPUcMTSC8NcbVC4ZTjKJnFLb4bnKRdNP7Cq35dsYMyojOR3RJ5mZ/RwBqYWy+VTEtbxWAovueSSNDYPPM844wxDtJb0l3aQVDezAeHcBKRLBBHtGMyPJpkJpxi4dInN9gc+WpnBkNQw3ChPcjFUnMHBYwXOxqiQAM1MwNzhS8EzDdZdd92ZZ55ZEsstErFCw3dM7iXvMT9FVBWB9Fq1BEGqprw//PDDJ5tsMhiJkoGQATyLWwz3pAOjdPEbwCspzKn6pAvzqlJMDjdjtcC0Lc7B5Jm5pyveCI37Bb61V2FCynBzCEFa6OnTl63h6BV701spQVkVmvLl9r4Dm1KGbi9SJ2LJQw89pFqoWLfccksmGV5e7Tq90tjW9fHHH8fll7/8ZTAG0sOTJYgBifSee+7JI5jnBGRDRrNIyROZRLQPUEssWM8//zyGmOBmT+D+MIrF/hroFSz1i1swkAWki3QrAlUt6HiqXjQx/zbaaKPoGbUN5CZP0j1VLEm53nrrgfERPMQAGxdfanH76U9/ardkrC40Gj0Dhxh9i86MCqVnRAOIQ99vS71Bw+HRrQbSBLLJUFc1xKxuvsL0bQiiYUzGsIZENItMQjPQWJR0xrY4Byhv19gChu6xVH7+Cke/D/ERw09EHFnNqgUXXNC+BKOVVloJjVSwftvFg828v/zlL8qAoiUSHGTmYSVXJMqyyy7LePtTTZBWXnllZQnGjJRhZhLmJoc9pv0czP7773/YYYepc2SZ3Msttxwp66+/PoleiVM+VbInnniCIKJRYmi9w0rlI4LO5iKP4EwNRqK0SzB2kUUWkS62sZtvvrn1/ZxzzkHT3C1lZtNH2K644gpD5p9/fk+zaNJJJ0VMunsdt9iQ88wzz9NPP73AAguwl9+NBaAhjgLkeiLjd8pzjl7+oRhKAP+ozTSkP7J+m3oDrzYHwBMszHhyoKY3uYU5mBThQyADSEcgY/gtdvUrApl8ogMT+NM88WSFBoPhj370o/POOw8Hr5A8Q3ms8kolyH45Q/awZmEcQS2oFVdc0Xbkhz/8oS8PqYo+eosfFwsJ79haMdL29pBDDikZ4WA4eXR1O3fcccf94he/4MF5553XMhrXh2GdMvDkKRksEWWelMWB9mxwJEkkGJzEMlacaIKGT2nOEfE1b8qbmWaaiRRIBKkKmD/22GNKOm19/HKJIIn14u+ZCs8Eo7gPwyTW3/72Nykip0mRVTlXqtk2wooW5d2dUjIRRQnWMIQxK1Q1LkVGW67XhU9UEu/kFsW0ZIauvk2XlArbTABeTbAQs07eEAfpCc8iSKMoAGYUJN289mUeDMdS0gzhaoKwMtAQ3hZf+wEiUNKTzgzx9BqeYOIk3/CYD1sK0eFLM0xRW+akiEmA0U477eRUmL0wJEoEdl0OsV41GoA9EQdDacCOO+6oQsgPsC7MPXUxm9OJM0TXXXfdtfDCC+fjBhoY7nA5uf322+eVRAUD3lwvETjgA6lxIprAnnzhib8nVeU3HTRFVP6l16teieKJVXO4XZRRdEiXZ1gZy+muDWGC5KvwoSf/ILP6q2TW8ammmkpSTj311L6ryHV5OcMMM0AKifk55ZRTqrJi+d/DaX6P4AzroMBd0SRCoyeFHfTUVKGVHDPOOKMA+eWnFCGaXHPJKym2g/02qT/77LMj0Hxod4sU/rGUUBYp8BKOz9PlqTcRCdxUrGgC9HzTZqqZVGWN36mr2nOuOgTPdj6tSmCILpPbjJcTP/jBD5QlPoLElGAEAiBX6OGO0ZxgPCZYpQsZbqaawOCgRvrmsMIKK9jGqVtSR6LwrJ1cCiEDOA7xKaecwgWYMJhrPK2huFFglVVWyT7dq1F5XnrppbxsLGJ7OLcYAoyPYnDsscfCb7nlltSOMoB0VVGEz6SUPVxkrIiSJcvvvffeVVddFZK9BtJEA1jNbb+YYCw9EeAgG7iC+RSDoYxX9DD0NKpvy5CsgyJCLoeTpZAgFjL28htWmPCPxsnChL/Gt2q5nKBtX+bB/OMf/xBBkUKs0TnqEQdJVlYD+NATAaC26DCNJhnSL/+eHYmcoJxuvJQQOwyA/SmM8SwH2/xmPL6KkGkhSADuc1/glpZmjqb48KNR8803n+2XlU4ZP/TQQw888EDayCEr0RJLLGHfhpshDz/8sH206DqyudRhT4Tyu2LJlRhKHS6jhqizhLWe8IZbpExWFwf8LhI8ouEQZ8E4FiilLrghVQ7JCpBtdDDWdk26M3bttdeG5zjmECSBvFqgTWUhZLIAIwsfPxnYeuutYZyRHY0Fz94g8e4J75df4ml4GkNwwDavmFP7pJNOohUDdWXm/Jt82F8GMpOIn/zkJxLFjKJGrmDi5GR8BrAaW6xULAqgh7e1tUnl4WFMG5AYKZxEsEsOnHbaaYaLEZ9TEqFXgnArQYbgTBb9DfR5e3jKGz4oXOSTYLATyvrlOGbDTgzZnpRWlo466qg111wTwa233rrMMss4Mpia9lKZfKaOHMKESJ+ocDBX5CiMpMndhCX117/+tc8LxxxzDGMMxHCOOeawh7MkqdjKm8rco1Zvs9oedNBBsRZbZqSiGEhtjkapaKdYSqNgIBnPC+xXlkxKE0OEXKPjYKBEp7a8J4QhvuQ7l4Cx5UQEdKO2zYDh8Q9unOPT7GKLLcZwlCeeeKL8M0rSSH3mo/RKuiZaaCgWlwqP1Jd8kslWT644stgRqnwVtgysJ25i7K5HGWYa52BlJvCPrjQ+oRjR7AJABpAQpo142XqvtdZaxbMFSE2hGxMUhVRHrwSRKIfUCx6IFK9M4BaF33GNOFtJq0ELz2GvtMlGByAzRM4ByuYUO9yrV3JoXhNUgXGZKajIID1VZv6VBDRzO09p+P/pbQBs+Rog5yQuAJkVx20+mFxJ4LIUrBEhw1iiGBgIwyQi+m0sTMNQ62XQ86AbfSwNaoOniEZzxHrpFT8SnSFRL2oTyrn777+/LvSMAkhWT4cApRoGZVhxVxwVsnBA2dJCrNfOJoUHw1I4vdGBmfD0xyF4sC5fAmgbmmLOKPT1WubYVEhZisXqoomS/GlI0yFlTpB04wRpuvTSS6MsoQGwtQpzaeFLgQKGHlnFgDCZ6yhkouTaqWSzUyapQACmViIiiIo+v/AXbRjgqVUXID4CkOIE62JJxkSnPBljhiFIg1TSVVqvkRgA3LfRJy1dQ1n0/oHBOc5Fky55BuaXCy+88OSTT7Y/RUB6lAQjM8ri64MGuHwHqTUxgqF4O/Nai8nSFSnxCYa8keFxiI2BO0LREl1dRplj6iLKtBA7xKiydv2iIHjYaiakihsvRclIEf5KGmRRgDgbXNUhGHcrTuVSzaYKgYEaibbRNvh2iuLSI6P3WNZU2K7DxTJ82JYyF110ka0O/XsH9f/o2W6HAndzwrHFhRA3EayL0qkZYDsJH7nkBFivesNBKK1iSuJll10G32yZHDDR1esRRxyBf4UngGe5hgFgN+NWnAjio/ixybkJU6BaEz8ATEoixAq6Rc/EvnQzT5Zffnmc8dHFpxSLf2GiEozKbx8DE22lWviU9IwiKG60iDjo6XWhI7mFTbqonUOGDMkQ+z/hNPdUNYc+SDNBaNRvVdwrVlG4whyk2U4WWO+dd96pRtioCI07I5PHHhcmkU1VYx3RzlXWa/XbQNkW82OCrYJF1sZXF0yEmhuaLYdCA1+5AW5pPYlF12ApF5dVTYpn9UYbu2xK8280gKeNZ8iYGtdXQY6ji95rBJk6AGrpKhERygAXYIkTmtiTUf0+a3hLL3yzEcTvHJQsL01ie72yC41Xs8j+0uQJ23IRnYOsWS5+LaIZwhU8GWfqpQnOdlcqsf9ToIMwq0yRJZP8BjrmO1VIPkMklqxtZg+Jca/eAPREUJpEEFVty+ST13333ddGEMCfLFIsBw8e7JVozJ1suJcmdjWQ8QwgMfW/GGikOCWTskWAhgKVA177tlGafik/9qUrz+oiIEwTrcQeHD+WvAB8Gm6yDYaWLWmeeIcGMeaRZWPUV40RwJQCNTZ6ikr8lWfIqBe1c1/vlxGV2YklJk3/JgaQmPBeOBcBS8sbaBylFQ+AUcIp5JyvdioMcgvSwqp62aHi4+zpLgpxgoJnyYKscFDYazWvPsTZIMokNLbkVlVf0znfuVKi2GDgYyHLmQA9pBMVDuilKbdE55/97Gc2P/B5jfm8QbfcKeqKvSW9CfRULE3Wx4NI45dSvbLNhzxdCBIDcHWZbRQKqwynh5oZjGdFpbyT9ILXKrdKKGQFnvF9k6M4fy3QMrYiTYGmzi0RYgW3ci7+ZWZVYr6iIVbxLBElJQBfOTZmYKqvHLJtyjTmBAdhMydChdaqRJDlCSzVXP3nd3Z8iGFSP441lmjE8eTZZ5+tqCDQUrpcBDp9I8CcOMUpajuLYO53YDkYWZF9u3v22WchXUSjd8rz1LjFWNub/OQGxmvFKwbyQJTvHdHPY5SYrSfKAeIyQCzJoPANjKBoYKpc45AhFTC9gSOlglpDCoNhmHs2M5L2WpEVzdcCvTr2PDgirYYISWYRDIJEqHoBscLmN+tI0w/JJCoZWEO8JhgEQcoMYwXMvYbXDJGjtupmYGgyll1qGEq3TRgCbC7dCzpVKGnqTRHH/3mWe52pFSSUyWCCbJcdj+QTSlqVhoaEOYw0AmN+wgkn+BThmCI68Xlcgfjmm29GY9uTwMWEyoEyv9xYggroqVjFDlxKg0uzWpU4Iqa25BABwScD6JGxea0hfFc1Cf/gESdIXgHRVeb1zVFD2m80DNsMwRyGVvFRulr8QmLwUdIvRjg3mxL+jUXNDQ3OLa9EMJkPHeJUDiF/5plniOZA33NqwuAfj/mqbR30ZZ1oioHlGQ6u9e2H3AISESWjtte4NMq4bXa2paSb2ygvd22Y0muIZjit3EgvtNBCcYVPUo4Cca8v/SmWKNMb29Uq/0qZZMjmL72eLZSFbwGGLoUt2P+HrwlGXJmCCuN+kt8FhkPyDNkA/qmUddATPwuige6EhVxOVCKC1QNXTb5G4ObwJX7Kj5O8V+XNbWqWMHkJk2ekKwSljCridlcGo3GnbbV1gRkdIguxCwW/ASbRHs6lgzqqqqXISUpHdWPL5KQR6XXMb5l+iNtp3cQa6qVMxBRvqETO/+KpHLbwXnWl1zNlY3j+TVzR2JLbNqG3Da9yBS+o9liC6nLV7xldOrjoscXx7VLBcL2uy70D/l5xk0/N6Ca94DU01k30qpetlY9s0SoFSaGVVXoVQh8xpZ2TgS8N7ngxMW18kHAlIWuxMqlioJs5iuEAnwI2sL39+qGbWEPdkkxKPKAEMvGzcAhM+a4ORIVpAQzEJBHKBtwXC5+txA9l7s8APtHU9xCHOAc3SJ9f/FpJOfEZI2yzrRH1VCwAPQMTFEChkrhuO+WlXZf8SBaizIbdtyPTgxWEUuxPf/oTWHqR60NCBOWJoTR1s2WNhiGuFr4mWTvwMJe1Q/2Np+HZ2lJksvKs74kmMdtr4mbFHMAbCb/UFHJRtGdCnGwDWHdSJwCkBB/YLYOgEiQ7kx9NKQlzMp6qWsaqRj5T+vyCgOiUnwyMqjb14Zbl1fWmpE+XvIxu6qgK7Tt9imVlVand1ORr4W5iDXNR8sZTwILlev4FKzlWK4BXm5hhY/pASUdotU0G+C2kgRgmrgl8BuXglhpZwUuwERRgSPSptJY64UCZIB0O1D/LHLyJkbEGItDCPBMGDIOMPkRngU4uQrphcTsNIFEr0TCdtm5iDfNY5USFUF9tt+tgOGzA10ECJsY5safMGJFtsq4qSOIXmigALk3QBza8NIEUdZikSAiSTO7PSqnwDI2xpOgi19iiCWAsPLgu6qIkTEaV8i0DB3gdpE+t7ramBwRDbjmy1c9gTHS/GEGjNtjKNIlb4IRN0qC3iUmv8IiNvYsk8LTTckOmi/NFFJkfuqgfJAZJboUf4BqCPpCOmYZEKwMBBkoLA/FHBmk7RbpfEmBFru96QXqNCDpAYgWjySGHDIAKml98RMnezp4H0TjXa5vAUMvbpP4GkwkG64SNH0XLAV7YhAQyWeUpMLIKgWAPzxWyRK/jesIvSCgFWz7h4Gl4sgoeTXIFMlkVNXQl2wxMduKJUvYYklqQ/Tg8VdGLvd4Qo6QqZCjJBeslQhrRgYFyLgTJKhssWUUNQxDo0qSaZwT1Ijp4dCtWB87qkrbvgW7Fat9XXcoOPNBNrA6c1SVt3wPdxGrfV13KDjzQTawOnNUlbd8D3cRq31ddyg480E2sDpzVJW3fA93Eat9XXcoOPNBNrA6c1SVt3wPdxGrfV13KDjzwvyMCmNMT1O39AAAAAElFTkSuQmCC\n", - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAAyAMgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiuatPHHh7UNLvdRstRW4tbKbyJXjjbmQkAKuR85JIA25ySMUAdLRVVLuFp1t/MRbgx+b5JYbwucZI9M8Z9atUAFFFUbnVtOspRFd39rbykbgksyoSPXBNAF6is+x1O11C4u7eFz59nL5U0bDDIcZU49CpBB7g/WtCgAoorH1HxJpWlX9tY3t2Irq6z5EWxmaTHXaADnHf0oA2KazBFLMQFAySe1UNK1iw1uGaWwuVnSGUxSYBBRwAcEEAg4IP41hfESeVvDS6TbyNHcazdRaajr1VZG/eH8Iw5oA09B1p/EEE19DbmLTmk22c7v81yo4Mm3HyoT93nLDngEVt1TJs9L09AWhtbSBFRdxCIijAUc8AdBVygAoorzfx7ayalrtlCNE1a4giTBvLRpAVcniOPaw2Fhw8pBAX5ep4APSKKht4Ut7eKGNAiRoFVB0UAYAqagAqtc3K2drJcSLKyRjJWGJpHP0VQST7AVZrA8XNOPDV2ltp9zqE8q+WlrBKYmlJ7FwRtX1OemQOSKAL2m6rBqyO9vHdoqEA/aLSWAn6CRRke4qxdPcR2sz20SzTqjGON32B2xwC2DgE98HFcv8PdNWw0SVhZ3ls0kn/L0rxkgDgJG5JjjUkqqkngZ712NAGToOtQa5p32mFZI5I5GhuIJPvwSqcOjY4yD6cEYI4Na1cWrnRvikYEG211yxaYqOn2iAhWb2zG6gn/AGB17dpQAUUUUAc744vf7O8D61eCZ4mhs5GRk4O7b8o6HGTgfjWDJps2k/8ACA6TId9pBdbJTI4O10tZPLUEYyAwOOvKiuh13wzbeIpbM3l1epBbvva2hm2xT/MrASLj5gCg9D19TVrXNIj1mwFuZXgnjkSe3nQAtDKhyrgHg4PUHggkd6AOK03U7KH4k+JtSvtQlAs4VtEVgMRwxJ50ruAuVQNKACeuOC2eNfxl4jtLbwjBfQatLbJfGP7PNa7N8qsMja8g2xjByZGGFGT1xXSz2SywXCq7QXE8XlvcwKqyDggEEg8jJIzkCltNPtrLT7exijBhghECB/mOwADBJ68AZ9aAMDw7rUEOj6aNV8QxaheajM6Q3AQJHO44KxADBUY4Pfr3rmfG97aXHjG209dYjtrgRKrK1tBIBk/dXepaSVt67UXAXG5sg4Pf3ukw3stizPIkdnL5yQx4COwUhdwxkhc5ABHIHpV028RYMYkLK28EqMhsYz9ccZoA5qMrF8TZ442w0mjxtMoP3tszBCR/wJwD9fSqHiDUtdh1maKzm1dIFC4FtpCTp0BOHLAn8q6XT9Iis9R1DUGkaa6vnUySN/CighI1HZQCT7lmPetXAoA53wpdahc2c/8AaMl88iyYVruxW2bGOwUkEe9cprMl5r/xGvYdE1C2iu9H0h4oWfDBbmducDcOQsa5POM8jpn03FMCIDuCqD64oA5ix8ReHLPxHLokF4japORJNl9zSSKBF83fdhF7AY5qp4zG/wAUeCopnZLQ6q7swHHmrBIYxn3ORjvzXQLoOmrrjayttjUWTyzcb23FMAbOv3eAcdM89eaw/iKpttCstZUFho2oQX7qBkmNTsk/JHY/hQBR+J0kbWGi6fc3klvbXmoxi4IwB5UQM7HJH3v3QAAIJJ4B6V1enazY39xPZ21xvu7RImuIXBEkXmLuXeMcEjnFXHjhuUQukcqhg6bgGAI5BHv3BqC301LfVLzUPNlkmuRGhDsNsaIDhVAHAyzNzk5Y84wAAZr3fisSuI9H0hkBO0tqkgJHbI8g4rJ1Xxdq+iSwx6lZ6FBJMrNGh1WZmYDGThbYnAyOfeugi8QafL4huNCWZhfwQidkZCoKE4ypPDYyM46ZFcpDa6vrDTeIbOeOBNRulh81pPLeLTIw+GjYqcM7HzOnRgMjAIAG/wDCx7j/AJ5aH/4HXX/yLXQad4stJdKtbvUbiztjd3QtIBFK7q8h+6oLohycHt+NcLZ+J9Zu9N03Sp7y8MOo6ndC31GNT50umQYO/KgEM+VUOADg7veun8HQTeIvAui3GpXV1IFuDcoS/M8aSuYd5OWI2iNuoJKjPcEA6LU59ailjGmWFlcoR85ubxoSD7ARvn9Kyr7WfEem2Ut3e6ZoVvbRLueWTVpAqj/wH/CtPWtfsNAS0fUJZI47m4S3RxGWVWY4BYjhRkgZPHIrH1xLjXfEtvpttsMGloL+befle55FujY7AgyH/dT1oAyv+Fkz/wDPPQ//AAOuv/kWtfwz4tl17UXtnTTlCxGT/RbmaRuCB0eFBjn1z7enKzeI9c8L6leS390+oJZ6KbvVYQ++KC6JAjVGCjbv5+TsvPudHwPdaqfE99Z3d7fXZj022lvhc7gI7yR5GYIrfcXZjAUYwB36gGl4nUD4geCJNo3/AGm7Td32m2ckfTIB/AV0tzq1haanZ6dPdRx3l7v+zRMfml2DLY+grmZ0/tX4s2e3Bh0TTZHdgucS3DBVXP8AuRk/iPWukutMju9RsryWaf8A0Mu8cQYBC7Lt3MMZJALAc4+Y8HjABo0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBPbxXVvLbzxrJDKhR0YZDKRgg+xFT0UAYPhvTL7RLFtKnnjuLO1YJYzFj5vk9kkGMZT7oYH5gBnBzneoooA5Dxn4RuPEc2nXFje/YrmBngnlHV7WVdsyDj72ACp7EVoeIfDNv4i0H+xWu7uxtDtDiyKoWQDGw5Ujb0yMc4x0yK36KAOJm+HsUtvHH/beqtLiaKa5kaNpZYpVRXQHaAnEaAFQCAD6111rbQ2NpDa20SxQQosccaDCooGAAPQAVYooAyvEOi2/iLw/faPc5EV3C0ZYDlSejD3Bwfwqj4X0S+0nQmi1O9+0arcs015dxgfNKQBlcjoqhQMj+HpXR0UAcFb/DCxgtr23k1zWbqO6SQEXM0bhZHILS4CDc+VH3sjGRjFb2maG+hWF+9tL9t1S7Zp5Li6bb50u3CglR8qAAKAAdqjvW/RQBieHdEbRrSY3NwbrULuY3F5cEY8yQgDCjsigBVHYAVt0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//Z\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMgAAAAoCAIAAAA0fiJLAAAWlUlEQVR4Ae3cZZBexRIG4BsI7u7u7h4gWOEuhbu7u7u7FV64uxQW3P3i7u7ucJ/kha7DLhu47G7BFjs/hj493T1t0yPfhh4///zzf7pI+/bbbwcZZBDKFkD577//fuCBB/7uu+9++OGHwQcfPKb4hPzxxx99DjjggD/99NMAAwzwwQcfjDjiiGAskdNF7O6Sag7QVbROMn3yyScUlhaff/657JE6EghmoIEGklVy6+uvv5ZtkO+++66UAn/11VcyCY2sIkSGwX/44YcoIQ1JNUB361gP9OhCFUsmyYMhhhiCC6SU/JA08kmSDTXUUJDyRoZJnfgohSowRiyDDjrol19+GQnBf/PNN9LUUM+ePYPp7jvEA13Gm8khpejTTz+VClJEGsmqKlpSR6olq8CAjz/+WA2D7NGjh3waZ5xxPvrooxC89dZbo402Grzk03dnVYckU1NIV6pYkkB6SanKAzuj8qNKMalK0RdffDHkkENef/31m222mbRLYqlqiAcbbLAxxhjjyiuvHHfccdUqLMMNN5xUq5rXdE033B4PdJnESsV65513Rh11VAYXkHN6TmDwyKSdwjbttNMuuOCCG264oSSTecMOO6zRzz77TDEbYYQRHAAUKphshYF9dreO8kCX2QptapLpmGOOUV323HNP6fXee++NPPLIcYTKFMAuqURdddVVzz333D333ONTnbv99tsvuuiiNdZYY+aZZ5ZSshC96iWfEHRnVUclU1NOl7kVPvDAAzJDvenTp8/4449/xx13yCpZkm0xyWETlFWK0L777rvRRhux04Fsyy23vPzyy6XRbLPNttRSSyGw9zmcYZGsYVT2mk7phjvAA2LTn2Zn4X3r27pHJgDCFnpwC0a1BMbBRS/GLUb/5KeJ0kIPNhE17GjnnnsupFxhdq9evRQeoz5DGX3Mft9999n7XnvtNfhNN910hhlmwA7eeeedMd52223RM1xMA+AlKhi5y8bgg/ndvggwYtFKgiFOa8EV9Yom/sGFrEwIC5oSDgijIVqB69NzCbgE1nQxthTIFBWO0JeQ4upw4D9tSUx+GI1mISv9aF8E8Uv5AmVgNjRD2NZErfEYtcLzkRxSaYYffvhnn30WPo8LFIv7nJyS7nnEmmWWWdZdd92wH3bYYUra/vvvz5UHHnigxNpnn30oTL6nrNA0DaxJA5S9LfA+cTWVLAK2N/E+C4PFtbQoQ1bERlHGmSxiclHWYg4GZTMzfCKGCTJ9PGMIS00BpkCQJbyTgDYTy3wxL6ZKoyiUBeEz/kosEbvA699///0A/QnJH1rCERUMxPlUabx5+nzjjTecxHv37k0H7jvqqKP0GvVMisauF+c6k7300ks33XSTdweM66yzzjDDDHP11VeDNdbpCXdbxG5GplWO9iP5TUiCqd50zYAVnpyCAUVT8TZX9JENmRcZW4pSxsfVCKxMeL8ZYEccrwK02NvMuXBl9kjTo0yO5vHFJ4IoE8pO6ttMrLKzlKA3+33ahq699loKiaIT9Ouvv07dQw45ZMopp4yWcRniv6y08LSIkIlIE/sDDjhA4fGagEB6gXfffXdDUty8G2ywwS677IJMutTsCaSEm3vuuYOseMTMuL7omZONBqb8UKMtkAhogiWt6CELbvKCM10MxFWjtUqDKSV5PlEgsKlqJCAOpVHSgmxOHUyTsWbsPKB/zw3C45zr3Qigp6ttZckll/T2c8YZZ8w111wMXmKJJWw08mz66ad3Ol5ooYV22mkn6tq2hJydOVyD/69mLvR5zCxGuXLrrbcuvfTSN9xwg+Qm+bLLLjv99NP/2685VzmSTzbZZHLO6R4Xh4oHwOvDFFNMMfbYY2PkXwd28llEf4CLIYXB8GTmOA8Paf/VB1NqAAoJQIkgrWhIi+15YwusHJpLQ0ax6FAsPsFqkkJr107d5WqrghqAzTff3KMuGtI0AOGGwuUMShl4yKjkMw6UdgBOQMl8beihhwZ3bjN9Wy3eMaoga4A333yT6xlvbQHc4SHZlmTiOBpHmnqehZLP/6vnF7z6cOWTy2TVKKOM4mwu0Q866CDTGXrooYc46IgjjlAg119//U022URgMDbr5aKLLjr//PMj7tOnz8UXXxzFElpeTjHAgsAn08yVqcuE6NDUqggMBW7R816xm6JmQQbOAaNqkkkZZQiL24ZnEZdZtmy88carrrqqK4iqbEOsKUqyWGjwpXPBFNMyhelaKFCiOglocyukbipz+kzvvXGHHXYAW0YeilzTmO0t29EKMn8+IPzxEUzTmEj4M308UpRcJt6eDCSQunjSSSdtscUWCyywwFNPPRUaeHWUnlbt22+/DUm9qG0DnWaaaZzJDj/88K222kolO+uss7JIyKwpKCxN67PCVoGHkSjNXEHcWk/0yip8iQqAPaKeeeYZmBILLhcxk86XXnqp91tw8EkaZFGJ5slImFI4hpQcs9e9BFm1thQogo4F2kws14dtttnGirnwwgs51LsRq7KMKm9UbAT2lGuuuQYNzVZcccXVV18dwCPNNfTnlU60KjYALjPjWGONJW9sEKaTSY50ZHKuYLjowVjlntopGRdzN14HspFGGgkXAj0huKgammhIVVu5jeaKK65I2OBLgWieSONqGtWkMZ2UUiyffPJJaR2uSsTkpY3YAqjMoGrIFNcSNfXUU1s2GFNxX3zxRTQ0DEGR2Sv8YOUdOBL4J3kDoMPjjz9OeKlaE5maAtRIsMLbSf0viVXBMI18X3jhhW3ndhbPjPPNN5864cxkiM1ySyzpevDBB3vRhpx88smRAQhxcF5hhRXA8UsZnFF+KWth2moVDwQpPABOkUbmJTlixVIzJJD5xebhhx9OCCEzFwLEAqOF0RBMGPXiMeecc84666zrrbeedwobJQKUVQ8IxIvS5iuno0/YE2bEQdpnnYTsWfSHiUspnGvEjTfeKLlffvll8rXmu4PP5KJEca4A47VWl1tuOT8wqM1uspFGc8Ip7IDrmgI477zzsEcfgFFF0TswuDIYrCXzaOvXVcdQGHalEDIkJmSWfuTt7fqeFjViYv8tt9xiic8xxxw2EU6hqKEZZ5zR4cmsEmillVaCoQc3nXrqqRQFqBm5tTm/UzrqNlUjKp8YK65NgoKjhvxrhpbjaAKptRBOIJd5/JQZXiLoE7IITHrhDTveigGVGI5xvPHGM4pe9V177bXj4rBTNfHwqaQJs602+ST8NRRi0ixFQvLZ7NmimrrxQIJrCgBpCSe1Z599disTRu0EeyuhgGuHUi1LEGAnf7rppgPQf++996YwGp8IEkevKs5kQaoRpAVGA8a12267+SHVp0YmZGB9OacwfxnoW7FqYnZaChIl4oI3mXPV1ltvrcZed911jKSc+NllJphgAr5W3pJVTl0OMTIj+iEDxB2lcfm0/xrX0jFR/ykzatLo0JqY4+RT032qRXKC35mARWJ5NLEN7bfffj4TIT0TfNaRhRyUUopn4pxkKqNipogKPGPdcmiORq/51bK8mlNg6RlN6G9Ju7tRwxAhbrjSC3z88cfj3XXXXcGvvvqq/QHgUGtSGbb99ttTKYuQEPBee+11/vnnozGvnoZ6zaieH0zhhfnpp5/OZ4XGZxGD29l6Mszhw6yEOiDb3fJQZPWPOeaYouUnOXqz043Ma8Kkk05KdVm/4447yjYWOryznJyjjz56mWWWoXputlIQXooo7zAUZXZOSASCjbZubuMYeQ0XR/sEI84tnZAWLC6nCLx8whtNgE2ae368Y+jXB4EeNAGTJupuGzaU7bbbznIHc7eLGP2zWXjI4A2Zh9015bTTTrPVKtL+EtU9wPak2gmhWu5Y6UUNe4IE6ZwAKeqy0P6Iy5GIHIszu/YFF1xAE08nscuMxx57LJfyOTLvbX5joImgsM5xPn6jpG2OKAuYSs4ngsVLWe3eimlo8c8zzzyCMvHEE/NhHCjE1Iv36O/F0d8OEUIH7GY0xMk+wR3T4vqsP3s2A0Qlq79SnneYh1L+8Z0DoNNuVjNtkEkUR8Lll1/ecrTQRRcefZZjpoibwObyjO5V6XebX5pzOECGRQt7f3qUzaXW4rMFYxTzSyKLBF6NkVhKsh3HbmXqJIcdf7XVVsPrEMPRipz6AZAZVJJz4F69enGULRKsqtFBwQOfc845Dt0yO0dPAh1SpWz8SSYCozIyVURPvpSiEgVamOz1gUxcRm2UclpCU89lxTqHx67JRadhpdGRwBrAInWM8oaDnQiCKR/r6LzmmmvGw3GIUfL1HdX6/tmMqiOdAa5+nCUtHLO8qitRkJIji4weCgPvKGwSSDJZKAoGevVspplmUqXtjFg06ZXRuMnSUSe4nhlWjyi6uYSyRS+teZzMlCKSzevG0FxMjC8uESIZV1aeBSo2JOBCY6goA6gNyq3roU9TrLXWWqJOIMPlNNdb6IYY4m1s9NFHt1qcx1UdOz4kfQQA5bbbbuv1jqNiGgeyDrtT5rLLLksNZiLOMnvsscesRp/Rjfmqi3rvbuucxKsKp4cbq9pypTwFuBcgg5944gnpgpEHyFxllVVsGuyykq0EGalu+WsOa1X2HHnkkXpG3X///fZWKrm520YkuvUz4YQTxgmCwg+kCW78oGcIen1o2tn3LYNqI5NkDEsWWWQRoZJqsso0loLLjtWGTDw8TlKIZ90ZNUg7Jl6B4R3ld4899vAazpsnnHCCU7xgE1J5UHpjYUBbTVZhoYZexghS5Wus5VaS0yQQMvlKGsXQY7QuI/xXqr7/xaVliLGKliIkSNjzKSSyivKiJZ9cxwTexcXZEVfWjwCjV59kkiMwfRgOE8UETJpSmN+SGVaX4JkdOxrJQYfco11FyecT0twZpSnlZSoyCmC026pPlnFkEuv4j8AslHzkkUfQyCqG+K1dbgkf/Morr2zqE0880bLxYzyxCjOBp5xyCl/ZTOUuNXjJRETRh/fAPKbvqNaTy2hMtMmsY2mehVh+sV4dqsx3ySWX0MmdXFrwhY0fMmcCnuU7o2effbbdwdHh0EMPVagtqRiQCmQiLOKHzEr6XRs4jg4qBGmCx3KS5Sv7Qx+gPiNZSll/8kPeI2NO5m0xRTIAr3BKESub93GJ0JlnnuksTBpGn/fee69NkDTvvczhJWogphIkrZAByJFYZjEqMGCAT7BZkAVWxoScEErCALAvtthitggrU5mxi/GqEBBISeki1VS+4447jhvt1ESpkfYvVUD+0dBZylGJpdazPE5WeV916uJAoqSjE4upzYiLmUqmeTW5norOIpR0o63WkbnFDHbSTyDvuusulivLKpbNzlqhlkxHo6lYqrcNG7204wLpj9GQBeGTrhaH6y4b3GLyMGFIQ0P7vlL6NezS63dblPmVsO9/TQHJm7/bENCc3wGJCmJJw3daGEnQwo5MGPQWjES33N3g3MK41Y5DAjKjMAqS9eMOJSowriZC4u8NETiMgx1leMDeJMxcx2qVVc3jPc+kCDwXk4+XT7wLpNr5tAz0DhvWjy3Y1NIopRde8ygNKSFkagAsuR66GHqGUMlksEkR+3MSqS+NvGDZT1Uv+SHtDMm2HJcdvCQlDDkw7v5U4rSkl8VsSOOlAO3vexItkdnAO95O/GCinHjakcjOg862Sit3I0DphxHusM5sjnLIikHgRAlwhmC57JGaBPK434MpavGpBJYOpwszUVpKEZmtG2vjyhrymXpQmBaAEKo0fidggsWNnkPNAkgrev6SFrSCcXB0guFxpz3xsMplEjkYTcd2cVItHAkoT3Oi5NCjjz7qNM0JrmaQDk8ygyjBxqsEymYCBZuLUFqf1LOxOsjTyhrgH/L5x3XbVmU39DvmvPPOCynqZPI8B1rDKiKZtHV9U8+kuFO/m6NNUGYoTuKFxZnE71TOanZta8C2I6vs43ZwMHMYqzKZLjd9okTQ0yOLGKJe+MsiC4B6OUyXu9oFJDdNr4pYcz5TjVjIKsVGnyWuxjqhI+AsU955553iwX14ZZVHeUPWgVBZ6Fa8jOQ4F5BXXnmFu5sVqz8rQ2JpRFVrjakhAG09Cgih3zFt09x38803w7cQ0mQBUynPjGC6EZJCFbJSj98tJ9kAHyS35BMGHCQXsc5n2PVO8YEJj2RrKa/k8LKhRh3kVT6fTQVKFCukoFFZ5UyW2iybw049zg+s52r/JqA+aa4ke9ewQvDKSEP0TDFOJQuxn1PLkGJvJ9D3HUsK04/l7JExzAZLKTVGrTakIPtkmzOT0Ryl3VacfOUQAldfBJqVoURpGF1bxE8Z8w/6cFl/tOcm7CLR1nZuGbVYKK0xTQJVysbhbxwefPBBeMTm9cuBOsE1PrUmffKb0y0GYWO+8pDcRQYQYLohwChNIdGkV0tyKDGKRthMwTQOZB0YL0pkHAiw9+UEJiHcMU8++WSlCz2dk3CKhNtcTqt8QmcuwqgPQGyqiGJj8WA06iFXL1iUUef4H6+5+MFGSQdDGA3JKlXZ3uI+6FcBXHSDVO1sf+oIQxZffHFrjBCMOQQj64CWxGQ50YH1VrAehnnpfSrOUkSRp5a8EUvl1Kb5wgsvTDXVVPYRhc15036vCHse9FOXWwwVPeXxJhsiP3Ux8J/vE/vWPQmOGo50VAWbTiozh681ymOBL8bMaC+IVvmsPiUhn0IlQhHrOBikLQ9ArDAwKvLBmQVGM68eWZkcIfY7lQM+o9ZkuGDUHr1WdR1LuCA5lrdVYiwaTA2RECV5VbmymZgdAUP0GgIBCozXjSHv8jChcVzLaNmYz3b2fe9HUjsZShb9sixgasGZUiY5YPpl1H5sgdr4vB8yw6nC9mzRc64rrirt6OrJ5+6778buBYU7EFgWvXv3ZonpLEGzWFKZtJ09mSkPnkXcNIl1yna24NB+1eo35armEj86M1zMLNNc1mqU5pDMhOGT1DwGWu6hkTHYhVDNgBFmNIFLCICxmjqEl0C9JKAt+eiVKxjyU6gQgA3xD4GQJKCHB2RjAdQQDH3QC00ho6Q0dTRkY85z5iIHvfIpp6kkxEYr0MKR6cpAE7W3MYZzzQpIo8Sv4C+/SmYRxAtqckbDQie7NRbqhgwmQ2wuObV2syLrswj+MmBevP4uwAnGZqEqRBR81YOm8FhRNDGWu+kc3QyVemxJdYlpCFIwSI58AIF49aKrNb0X3Wp2DqkpDFmBhkrJAiAzKaAKDwyCONY6p1jEFoFP6zxIapirKTB4dpV6EUVOJGTGGg19e/q+KzIbH0CG6fmOTuUCGLO28FFZaFRLtHg/zoIJO0ZDybAaah4b+3H/pmvtDsOQbbUwc5nZaWV1qo5m9FmxD00kRFV9LIIMJjS46lN4gtRDVrY5SsJktElT5wcyE6FMEa+WP2sZIyPHjJklAQ4yYmuoeGteAGQIIj8RYXhSBEFFrZl88AlHCPRaye/AxOpBbnuL3t/KL+R+LRAJZ1KbgpsBzPPPP+/XmL9Vr3/75F0+sRQSZ4VJJpnE34FYeU4w7qTunkrXvz22f6v9Xeb/3dCWlxyxVSynVD/rOmlNNNFEngrtQa2P0m1J6MZ3hge6fMVyzpBDzhPeJKWXi0+LK15neK1b5h96oMsnFgtzbpVPCpV3S6dGmO70+sPYdypBl08sR/W8vrQGOtVx3cL774Ffnkb7T/RPHlWinNnd0qVXHh068pXvn2z5P1u3Lp9Ybn9uhR5gVCyv4c5b3g//2T7/V2j3P9oyXR9GWv4zAAAAAElFTkSuQmCC\n", + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAAoAMgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiqD6rYpBczfa4nS2DedscMU2gkggc5wDx14oAv0VwFz461TTbTTLm+0iDZqIgaLbc7eZZQoiHBBZEZWZiVUk4FdFoWqXN5c6nYX3ki80+58pzCCFdGUPG4B5GVbB5PzK2OKAN2iiigArItPEWkX2pzaba6jBLeRDc0Kv8ANjoSPUA8HGcHrWscYOeleOaFe+H9T8Y6TZ+HL9BFoMV1badE7yTNLI6fPI+TkQLgAc8k8YABIB67cXEVpbS3NxIscMSF5HY4CqBkk+wFcS3jnUEtbS5nstGsorxVkt0v9VeKTY33C4ELBCeOp68ZzVG01ufxhYweFtQEf9opdSQ6ykXyr5MDjcQM5Cy5jAHdXfHSs/4lah4bs7m/0eS+S01HWbaNL6Z3YpDbocgiMcNIRlVUc85JAHIB6pbmdoI2uESOYqDIiOWVWxyASBkZ74H0qeqloI4NOhx5kcSRL/rj8ygD+LPf1qWCeK5hWaCVJYnGVdGDAj2IoAmopM84pCQoySAB3NADqKarBlDKQVIyCD1qGK4hneRYZUkMT7JArA7GwDg+hwRx70AWKKydf1lNE09ZxA9xPNMlvbW6MFaaVzgKCeB3JJ6AE9qrafqmu3N8kV34e+y25zvm+2xybeMj5QMnt+dAG/RVcXMDXD26zRmdFDNGGG5QehI6gVLvXeF3DcRkDPOP8mgB9FV5biGB41mlSMyvsjDMBvbBOB6nAPHtVigAooooAKKKKAOI8aPc6hrvh3w0kskVnqUs0t40blWkhhUMYsg5w5YA452g1DrOg+FLbVrGeb7Hpv2C3k8xIIPLzHOPIXLLwBliBnPU46E11WraLp+twRRX8PmCKQSRMrtG8bjjcrqQynkjIPesTXvCqHwbqmmaNA32m7UEs9w3mSsCvJlYls4HBJOKAK8fgX7ZZWlvq1/cubeKG1lS3cLFdxwvvjLqVJRsgFtpGemSMVb0u8sNO1jVPt9/bDU7y/jhaJST5ZMf7mLJHJKKW+rNXOXGl+LkS4uLSDUfs0j3Edvp51IefDHJbqoZnLkHEqlh8xKBuPSo7jw54ruYzPFClvfvJYSiaaVJfLeKIq5YZ+Yhjnrz1oA9MnkEMDykqAiliXbaBgdz2FcP/wALCf8A5/PBv/hRf/aa6Pw1b3Nn4es7a9imjuY0Cyia6NyxbufMJywJzjP0wK2fLT+4v5UAUo77fpK3yqJwYBMFtW80P8ucIeN2ex4zWOPFwHTw3r//AIAf/ZV02BjHajA9BQBxdtrGn2mq3up2/hTXUvr0ILiYWJzIEGFz83YGrp8XZOT4b8Qf+AH/ANlWNqlzrOm+NdMWbV5hFfaiYljeMJaC28osIiSOZy4yCDyMjtivQABjoKAOQ8Rx3OvjS9Pt7aPEwN7LBfB1Qqm3akqqOfmdTtzyU5yMiuf0TWL7Svh1Fqem2iz3N5qU2+O3gMqRqZXVmhiUqWUBMhQQSMmuwvvDFpqurzXmoK0iGBIIvKleNlXLM4JUglWJXKkkHaOKtXXh7S7vS7fTHtFSztijQRws0XlFPulSpBUjtigDktD1O61jWdO1N4bBr6402/jjuESZNnlXCKFaNjwDlSwI3AqRmqkHifVdc0g6frNlY7NS8NzaliFWOzG1dp3E7s7w3bHTnrXZr4Y0eKWKRLMCSOGSBX8x92yQlnBOeSzHJJ5J5zmol8GeH0jRF01AiWzWagO+BC3WPr90+lAHKaf4s1XTdHurO6toGlsvDcWqw+VklTtZRG2fvHKZ3DHXGO9X5NUl8F+ANJ1C2sVurOJIZdQkL4dUfBlmAA+dyzlj0710MHhXRbaQyRWKKxthZ5Lsf3IGBHyfu8nj3qLSNGmh8M/2Fqwiu4I42tAwYnz7fG1S4wMMV4OMjIznngAovb/8JH4puLhJ2W10mJ7a3kTBxdSJ88g9SiFVHu7jtXKaTFHo3iSW/wBPvEltdO0qa2vLgAIdUuk+Y4QZ3sgHzOMnJ28847/Q/Dlh4f8AD0WiWaObSNWUmRsu+7JZmIxkkk1jn4b+HLWCSLS9Is7Q3GyK5IQnzIA6u8fOeG2gGgDmrCE+F/FMbautqo0/SLrU5p7QM00x3KHadmGWJyxAHGQegAAD4xvrHXIde1i3gjtGiS0aCIu8luHja5bBBIdlRY93C9RgnAz31l4c0qwN0YrQO92uy4e4dpmlXnCszkkqMkAdOaxLL4f6ZBpWp2jJ+/vkuLcXCsztBBJ8qom8naAgQY6Hb6YFAD9av7fxH4W16yeC5tLm1tvNKSgb4n2ebE4KkjIIB68Fa6PSbt77R7K6lCiSe3jlYL0yygnH51zM/hHUprDVoJdUiluNYaOG5uEh8oR26rsIRctlyuRkkYLZHTB1IfD0UHiqLV4kgjSHThYxqiEOV3hsMc42qFGAB1Zs9qAOgooooAKKKKACiiigAooooAKKKKACiiigDjz8PtLe9SaS6vXiTVjrAt2ddpuT0JO3dtGeFzj612FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z\n" }, "metadata": {} }, @@ -1392,10 +1717,10 @@ " \n", "
\n", "
\n", - "
f ( t , z , \\bar { z } ) = F _ { \\star } \\left( t , \\frac { z } { \\sqrt { 2 \\theta } } , \\frac { \\bar { z } } { \\sqrt { 2 \\theta } } \\right) ,

\n", + "
C _ { \\mathrm { b u l k } } ^ { ( 3 ) } = \\frac { 2 \\sqrt { 2 } } { 3 } \\beta \\sinh ( \\sqrt { 2 } \\beta \\phi _ { 0 } ) ,

\n", "
\n", "
\n", - "
f ( t , z , \\bar { z } ) = F _ { * } \\left( t , { \\frac { z } { \\sqrt { 2 \\theta } } } , { \\frac { \\bar { z } } { \\sqrt { 2 \\theta } } } \\right) , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\nonumber , \\

\n", + "
C _ { \\mathrm { b u l k } } ^ { ( 3 ) } = \\frac { 2 \\sqrt { 2 } } { 3 } \\beta \\sinh ( \\sqrt { 2 } \\beta \\phi _ { 0 } ) ,

\n", "
\n", "
\n", " \n", @@ -1409,10 +1734,10 @@ "output_type": "display_data", "data": { "text/plain": [ - "" + "" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPAAAAAyCAIAAADtF8F6AAAeV0lEQVR4Ae3bBYxcx7IG4NhxmJmZmZmZmZmZSSGHHGZmUJiZ0Q4nCjMzMzM475v9o9Z5szMrr6/1pOt3WkqnTnd1Uf9dDbPu8ccffww11FBDDDFE//79e/bs+c8///z0008jjTSSFvTPP/884ogj/vnnn3h89ujRI2x6f/31V/zDDDMM+u+//0ar8eDUNdxww6n1ao8oYxHUDT300Igffvhh5JFHNuSXX36hjlh0LDEQz5BDDvn7778jitIM+fHHHzVGb0wirS51BBKBnjAESSAb5H311VdBM1RBEtzAdHCGxxhsYIQoqIJFnPh79eoVTqgFU5jGBpTqb775xiiNRv31119kQvP3338PtRny22+/EYLn66+/NlC7UZEcQm0sU5nHKl2YfWqvSx2BEoEGhnxABpwBSjKoLAg3MBpQFu60+4S/YYcdNu0l6RKVbAptSrD73XffjTnmmEUCIok2EsrYKgNLMjwCY4ZGC8bySKNlkD0h0K8Or+n/zxFonAcUsAgyoPDbb7+FZkkU2tILxxCGTjsi6RwReIUNUhtA7t8f8sjxiYDmzz77TOL3iY1wudmpxnr49NNP4RJGyYdXCdtYPGrDabc8jMqi0sgkS85KUDPg888/j83RXtd1BETg3wMuCvjUsDXCCCOA0XrrrffGG298+OGHAAfHAOTzvffee/LJJwtzMBdUQfYoo4yCjRw0npwlbrnllm222Qas4diRY7TRRnOocC5///3333777ZVXXhmnUcrTTz+9zDLLkGn4l19+CdOy+5RTTrnLLrt88cUXp5xyyqijjgrEar3YxhlnHGPrUkfgf0VAagQgxRFZnc9VVlll1113lTI7ehpdIH7BBRdA9hFHHAGX8qUuhBotaxqoJMsinGF0XX/99ZRFjjwdaer0Yttyyy3nnntuLTCqBv155503bHjuuusuw++55x4tCy+8MHDHyDBYGCHquo5AiUDj0pYPR9UQN9xww1hjjSUpFqYgEmrBa6+99oLjAAvK8QC0fAl/p5566kcffVQwh22xxRa77bbb8DhpqJ0ZPvnkEwTmXBPRThRXXHEFQvY1RPK2DHwSDu5ADLhGOX6ceOKJdDEsNhdFmOtSRyARaByCITVodrQFoznnnPP4449PNwAp6ODb6eLQQw/NEDWogWYYAHTccccFWe1SL+L+++932C3rJOjX67ChVuiVmLfbbrsNN9wwLaRtsskmTjs+ZfQxxhhjjz32QB955JHWErjTFRzDtFUU1Rlb13UERKABaAUyFAhDDz/88K5rOctCT9++fXfeeecZZ5xxzz33dNLdZ5998DjdAtnEE0/soPzII48899xzq6++OsxJ0opePFtvvfUWW2wBhWiwdjq3AAgB00033RRPEm2/fv1otJawAfR9993nwB3maaaZ5rXXXtMO8XYGN0t0AI0TwWYt3SoWW/irY8uq05jtKAs1zAlFRmWr0dstpYOQmYWJFZkMSwbp2h7exdkwGyj7JIyla6AtjOogJ5LVXdvTUlfsAYmSEwtbmZ20wEbp6kw0nhRIicO6r7vuOnhiX0y8+eabwfSiiy7yeeaZZ6IPPvhgbE66E000kYDeeuutboECBHnTTz/9o48++uabbybos846a58+fTBbHuq33nrLvXDJJZdEOxBbJAhwl4ntCc4bcQkxySSTQBL43n777UTx0JpxJcUvUgFcMVhjd4u1RFfUGZvoJ2oFKwkr87LqMGdl4q9eBrqretDyx7bMVDvJcbMsY2hIXsBf8I22UEtA2olq2Z5R6hDhqdItR3VuNAtxJ12c6hDZuNeVYpOv8pT2KtHI0LwtS8qO7xkhxwOgcR5wqA0CcHrH2HfffV9++WVniaOOOsobyEsvvSS/ukHqRSSZJWSS99577609gAZ36+H5558/7LDDLAavH5ipwDzBBBM40mQsT/KbSz4Nr0bHHFRd+k9gzcdIIz/uB6neXihVeB0itdNRUVdsqzL839DJqQwQqJhRznLtDCiIL55mYHab0mt4Wc/tRHVuLzEp00RgaezM30VLUhWG6nDgJFCpDswTQrWl0I2nOidj38TBq/MAxJBIhKfivBlrN7tmHc+0007r1ohHOC655BJd0GwZAIeVABOjjz56hPCQZKKcraVnqXfttdeGY2foZ555xj5AoKueY4zkh7AAWE+FhWHaqFa7MuY9MTj2lpdPY/NcyP7uFqYSa02SxsgINMfeAWmcfPLJIzzPjhHOwhyE2DbQertrZ0v+/J5VtY0jgiyMLfk16k2X2JoatMklwXyhxRyDT355sQ3ngNcmjgQxVMghmT0aB1xC4RRbtFCzhBC02YlhxIYNDgHDXJRRzURZWFmdTrRCBt+MkzXl45J3TbNs3bt3b3NP6IUXXhiQPfbYY0bRNOmkkxrosLvZZptJG/PMMw9mo7JZU3zcccdliI3P2QazURRZJHn9EJqPP/7Y0bl6Tkq+x0aUIQpTIyef3aqb8lmyFIFVjSUBsEchn8tiivAZoltKByGz1RhjBITYPBaVSeysqKmLpxYtNpMinhmeUQP9DMqeaBGZCNfS2ZKuWzIQT5lZy68j/I34641Miqoz1Vlmz7KYsjpd/qwJZwntVsmqq67K87POOoutV199dZBE9HTTTedZ2vkBp9Owc7NU7WcXD3BGLbHEEl6sZ5ppJsmYBdIhIeD+4osvWnxPPPGE31PYDeJWi/OxXd5S8amXkNdff12+MbC6+NijpEUykFzRTTxV/nY0w3QJiulU2OaT7wwgzQ5z+OGH22Q0JlhMAh0xefzxxy+++GK+c1DdTv6gau88VWkRMcZwP9GQfWJMO/60F6t4KraZX4TfuXiXuQhdOAecECIzgl9k0P9JcCA4MwtvTCUNYbKyL/GFIlq6si0LPXnIBEsA8803n2NuWRwOCX7Asx3vsMMOQLnssss++OCDRHvEmG222aaYYgrvEhaQzHfaaacJyvLLL5/V5r7oPRunT2Y5bbsL+hnFIpHR0672PGJ5IARCvdVWW80wwwxWTgKtJUUv29AxGGEaiP23uzv/S1qy/6yzzjrwwV/CSXMoWnrppc855xzI5r6WEGTbSdwEPKvbWCgdOL3dsfHfdyfONpUIER82cERUt99+e5FvYiuf+DMdPEoA33nnnW233dZ5w13cjGPINoXIZ1QMeJ3UTqMhDzzwAPCI24APD2dUZ/9ER8I111zjLABUTrnYgtKuhTf+nhNrMBfRjhlzzTUX2siyQUuxxNkFtEe3WiDENOGInBwPQAEbxDix3XTTTRliOJ81Gkgdfi3kS4derHVRp90CtUIMSYBCVD0hPAZ0vfUY2K4Ejn6msdBpX2ihhSJqxx13LI7HHRJYFRwg+CJV2EPaSR6E7dxvWYLORFgcgGmyySbbfffdWzJrTOhwxiNHO7/12oePOeYYu1OBcmYnzN3ygiUebQUHASRiKKoxsrty8Fuo6gScqaDsZGvz9LZGfrGWonbCGxtrpHDGTDPF7M4yyyzXXnttQlCkhA2/6JQwURMaoUsEQ6CdN+644w6xI1DRomBQF1EbbbSR80mGkCPZ2A3CLEaYs6LCX4R0SGr8LoMwKuHzmRafBEYmU6t5PY2xgWGO+yQkOh988IHrYB46Iqf4mM/EYY455gAFo+TsmJGaEAajmZr4YKCuiU1I4wsi/JiLnLT4pDpCYmpq7VX7MSQ4vPCTql4tMbLELfzqaImnfgQ46KCD8MfZan7VqGTeWZ4IaGFYgtA0BWJry9p///0Lwuy9+VUuGs0FInKKNEkwHmWmyM8njdGiBcHs8cYbTw4l3Gd4dGVCEVFa2hFKTzk1p2djnE5kIAvipJNO8psITFttuQsjco5BkKVWHMKcchgqBDn6ONhpSa+fXTxXu5CKIJl+FU+74TQKjWdm5t55550mRpe/3HC2s3tiNutkklbOuBi0q3WZNkTOUjlmYfaZFpY4aSl4WKggxE4dI620d99999VXX3UBpZEKMs8//3y7mxM288gx2X4TFVO2nXfeeTYWcXBZdF669NJL8bszEKhX3BCE0IjOIZVVGKgLG2dFyXDHX3FwGHORAAVbU9ADVZ44pTcaSeOgyOy3337OOZgPPPBAjRLhQw89ZBYxP/vss34WoMvsGiIyGkGH5X5b9edc7KFUAP0+4E8JXFRcgahjIds86ruoOEa+8MILPIUwDgrIGWecAQ9UY/YwRSYbGCyGJBtLkT+t8TuXv2ggX6EOA+/co1gy++yz+0MgnLDFZpstCXfffTeZTBUuoOKU6XC2xBAsYeaXW4qtxg9z2gk0TQSyIZOLx+8hfHFKPPvss6GFjzj5iCG5AN0rrTpC8E2YFl10Uf7kcYRufGaCRATfCmSNQiu6Yhk7iMZjLtVAYMnaO3BOOOGEUQ9GHp6FxnHckRoOKOLP/B0l64fAoJN2qstaEsHc6ogyhBbL2p3VuVA71Xwj0EFCLJwRqbBtYWaewn7tBt57773kzzzzzGLkboDHrDhA0xU2f9wnZGYi118z4STmSiAbeasJLEgTK+7z2m0Y4AA9EmhBM8kQ0583+PyFjFMmUeIsAnh4KkS2KU/+LtlrrLHGZZddBluuFgsssMBSSy3Fx+zp+CEb1i1CPwLAnKTDADFhidMdvyQRLrOBaudO250r0Mknnyzm/GWVU9NTTz1l6VLq/uP4cdVVVxlIpicpi8cLLNvcLtzpWcVT27V2f1RDF4GE2Nw22GADj7D2K7ABUOdmOJ5qqqkkryuvvNJ2R8Vqq60GA4IMpqRRZBnDMUSutNJK6rHHHpt5pgkbaVwjxK5uqVs27Bec008/fcUVVwRILfIsLGGwsD0kmDITzdkODDbSKLQ0ZprReajiiZVEChMRomC8ueSwGnQUK8ZqtqxdoRAGGqUdP4MKoT1deGQOMyRkdKlhzkQapdbiSKqRfGZABisJFzVsZGKjEcEkhgGuIRmIwMNPMQIaUXPXQStmWoCOPfZYo7ApJIegCGEUEBOIppeDEFBOIKbZ3/3J2YLFC1CTGFjCDA7CpTrSUrNKOqfd2nBXlmh32203tLLTTjvlDs0LzLIUIZ41F1xwQRvU0Ucfrd1MOMYgeG2O3Uq15E8MyGEYL5KBoIc95EjnZpFJ/Np4443zBzaskg6YisE6ZAZC8Bm2+OKLw0fYyDzggAP4zhJZEODEXGKOXstDVAE0i598K4HBROUvahAi5jAA3KyyxvLzWdrNncSPBj6QhR+0wjDRIE0N68Ud4dLLHi6b1uwPaIlDuySojqmuOqDCKpGxJpdbbjnSFAxqbiKUxi7JYjmSb060/twZ6hsdHUXUuM1JW6cFCg2SpUZyiVAQGLXgoRiBwYITlPSq00irBaRAknk1T8GlbG1taLRnmU4JSTufzS63EUShRYQlLkA33njj+OOPz3NC/Ejut3QP3qSJAhtCkCCfRTUhJMRIPLxQywGWHwZd4g7QxhpCJgYnJVunt0VzLzLwTbtRCthRwQt28pT7/GKVt0umioAWIRUBUcUPc+KJiAS60JaEhGpKpEAgA1Nbv8RMO6ssD4lKBgJQnyz0yxSNoCxK7GRSFMUpMmUEYvEIjr3ihBNOgKToYgk3JUiHJRqxGWv7ZSeDTQ2P8LDH4YRAfmmBS8jDKfKK24XaurLCxZbBcGLiMICNWhB4LYCCYzib5WlewD0vhEIddaxiCUWyOIP5wqSHH37YX6RpZAaMVY9zUCHxm8Q111zTkoNM06G2aTDbxBHICwZoRPRiDd8IBY7LL7/cdOLTwYHgIAhOi/j6TJIXJsVAggghl1BEopzG6MCjC0OQyghC2K2FLtA05eRjZgnntUSIUVrIpJE9GmEamgkUiMTCX5vYgEwzY9RkYiaKLo+MZkXctcROiBEaMo31hggiIt7hR+P0aXgWrbcOBPe96NELi2xgcKbENPg0qbqMYpWBjihQxWADCcRAEXDwy/ZqazZJnIVvQpJZ8WCQeKRDGdSfvojD5ptvblUfcsghnvlhwj96cM2nkTpxo07o+AI3JGuhPesQDxDbmj162n+84eDMBBmFkzvCwlSi4MZUMgkKtdDLGMYrkGf9ECuShqipE6gIIYE6owTQQGZYnCzB72DjTq/Lz2RC4UAsv5ImIME6x02fLtrJJJAo6VxgnX/ke7OjUUywkZ9omyCRNAVShr9s81KcONCYGQlsfJLJ4J6x2BgRYYEcwGGNtCo+Ge3T5KmBngX8ZwpDMfDHBAgB9drZoUso9WoxlonqhEzNQ8YxwihdOB37mBj5YsQSbPQKN/mMwY/Gr10uFHqmsh6zECAMB188znmU8opYY9mAMEkCahQcs41kKtzEzb1gwZb5YKEzK4I0wrElccoljNRoLPchkv1iR4tGijgSwsmKMXgABRsGq4giehMo0cdJcobzJWhzcNfukudgKv7uWG482PxBgWODIybDBIEXQsQRASfT5issJOviPuHEWlTslOz55aAJFjJUrBIco/hiiHwhXOLATsOFiGQ2iJgIiDMagqVeXsRBuvDYCZlhjWEg3MXAp2KDFbRoN0QEOGJNuv8ZmGxiOJm0ww8Doo47tgJBc9hzq8HMEVbpNS/CC9w+M3cazZrzJJM4K3qZBYSVrFfB38iv4q4uBYdCWVoK4VPsOMBie9Yrr7zikJ1JpbKwGdskUPiM5TN8SB44uadoDI2wobhiI0yAujCg80kvb/NJHYLA6ie9MQaRdsEKUexhCURqFCaHPwTmmGcCXMLMk0a63I2mnnrqIDJDKCXf3w+agLBFUXqLMdFIgoJOWOIs+3ln3zQfLjqI7M42GasalL2+SeeGOEGCplxre0G4AiYgUAjlDpEkcMEp32uDJGKUiyMQW5nuEkTBrlVh2QAB1Pq1S6ZnqiupZQ9VedDgFDZItZVRBNBemcwRRDLJsduPo1DoqmobdEhwM7HwMLut6jLcCzEkCZd9hr/8Eh/XdLTrqW3QLcKOp12I/DGmBSn9ScnnnnsuyXicXkTG6cuJyPuMpwG3Sf6uv/76GGjs27cvaSBubTgrouFQLcLWBiLFgkH08F8D261Ko7vjNCLulq/54zAp7qpu+rw1PRiw8YFvQowGd3EkT4tPlun16VTKaLhhlqLFcBZjIBZ0zJbpwcNzc4CBLr14iiUam4qBTS35jDEZHtTKUmZUr8cE6dmJUGTDzFSzxUI/vPHUQndjk6tcmNB6WYiTYWLtSOdpiUkZ21TT1dSSTxA0JAuYXxrJZGRyp4mxJ0iWbodwudZaa0EV5OGkywXLQ5s/UcTmpsseO6+922RbY/70xSsks5Nr83fquQ5ZD/BqjpSoo1HxSRRs6XVkB02KnNA0giZTMePhC11MRZsyqwUhMmyDVCjXxQDJ1cXXHdQyII1MYWetqXGmd/ZwrHKeNtY+ZjbpStFClwirGW8/EX/XZRhgACBhIMo0mTjw8GC67rrr4qdUncA216LcsiS1JF9iYJwt3uYSZpdTFlCTzyS5wux6YQ70UpyxHpvlPxk9/GzNIstAbLAi8Vj9YaCOz6HVvCp0EyHiLUtUR0uGWJbgAo5+wXZmJZMWRhZF9lDX7TBr5I4ZzSdOWUQuET7qfLZUqtGQliVydBnLNjUaf9HOEmHB5uhMC9yg9fpjXRDJdMQpA3WV/QotemlEA3eYpTSfWUKcjVICcYY50vBQrVbIiWv5VBc30SWYkBAGA6u6NJKgpq7wFFRkEhOiahAiSk1UEVgaDWezosVbWdoJKQxNROPI0bLEMl3sML74bJEJRF6/MzBPY/hxAqhguRzY9dKL2V4go9ibmMXP4qpPvQSG0+qUrtxqfWovBvjkf3gGvC5xZHzCQaYcYB268nvELaIwYM7SsjN4ItAVp8JjIKgB0CKLLEJCpBnVshSxTYRRgVHndi05w6RLfNgg48rTtl2p0Y0+8AUpJaLUEBBkBCuG642QtIduV1NqWnEariDEAUEy14xiMFq72qcQVaMasQF06IhCI9Kijihjqz6W3kLQW6UzSuQ1VlWkvXB2JtoCuggqIuRdvwjY5hyFpVvnCrse052unH7sX7Zjo3r37m0ynLFsjo4lWkDT9i1BFj9FSs62obsR25XkEr04vZc5zMSNwpxPvd0qQU+MF6wiRLsXMaLMfbVRC43+FNZTXRThTChTO8k59caqruempZ0wQWAJJkILAyIwQDTrAS6cWefCEgyBUSBFciSkjo9VdTGVzFhYUIJfwa8QVaSVsQYmGthKY5UoUDaWtea0CMnCIDn8sSG96LKTaGGYgrOqJSYZS6bFXMwoAhOl+IKHhKphTXRbQBMnmkUxa9w8QFAedXLI3ZwsJyQHHX8VRZ/dHBq45xyG2ZSIApdA1r3b+QwPgbKdK6Bc6ILCONtrTKTCbcNPTYlIUZ3PJrvLJ7aWBQOxZTdIOHByKjt7phybeGmPwGxEuV5oMSrxNYVljypTmyEDV8fmMmcRQp0Ji950saS0FF+qYxlmVMFKkzHFr6b2qNBreHGna6AkgAbSVaSVRi2kVSUUawtzZyKOlHaSi3CTXmgMokF43MmMlFFNROOJpGUBU+d3NQRgMP2ekFw1XL29BM8///z2bu1+qSfRQd7RbYUVVvD86bQuW0u9UjizXLcBV7LRrjDLkvCg4+c3CV5KdpwlIQ64dhBrCNP5EMPcD1pamEYWtix63X6IihyqBQg4OOV5SG9uaXrpIkEL2mkVj3cDBmsxyo4vgpZf/NWIQd2uNMW3fIbfZ2YxNrNQu6VSjKQFA73pylUvFrLNcPxgZLhIovFjFiLuwFC0RFrYYkDaq7VRhPDL2IjVyzW6DCdcuBD5ROPHYJrwpEuvRloi1hAFTRoG1qLxiF4yOlHhTB2libwWQ9CZa11RZyyNekWDg6Shi7WR01Q3nqNblmiKOAygpvZpB/H+Zw7QQGwjdtLwBulCjcd7DQzhYb2S1wxR47aaBISfhRDg7jHV3dFiSAjMjd9ggUkv9/hGAk8KoX3AC0UsMVyUyReOFLYRIl55eyFc4UuQxGB24s9DjcVsAWA2i0GYsUBmhjJ8wO3JZIRfbKkoc0kpG4oounyyRxJxqcCpJJImmFO6MGeILnK0M9I7gHYtTE2dz9RFXYjiQta8IYkPZqVqT1qEKFbl09RQgTacdiUI1kI+UQiNhjBM8SkCdgPxRJcSIT4ZYGCiFO1qc6fGQx0iU6AOMIqQKtEW0CDFh1jJDsoS3LxmJ3P4mcP9z2+2+fsBQzwAGeWZE57Y4eEJ6KVzRw7TYxTQ2/FZILWT6egsWzuBaGG9t08PKWhjORBQ+owniM6lRKSpS6DTYmyCwgvusB9iggkpDQErilCquaA3q9fwuJ81zC8t2PB0gWZONVmSTza0bCc2c0ysCFhOZcoF3BACM9bqYg8edmoHmjKvEEMOX0RDSbiwFeaiOgw+uaCXkMjXrjEC1dxMu1qXlkQMTz5jUthoj0l6M2V8ITk41hgzDCmuaSRZrcQkNiPU2omNbVHKtUyiWldWS8a2qCOui9oE6/W7kWd/hw2/yniydSkkHVj9SRqhHu3B1NO6dAu47o75cwtHbb5BEoiQEC3+6opjftDS3qdPH0/uoiBh6PXHd37h5IDFzXQtadeSsXVdR6DrCPy7PjozAVkgpSuYdheEP8/43pL88m71+AVLr7O1H6I8pKuhWUu/fv28cAF6rn3g6LciY4NODNKzQ7YM5A9NckWzInMEzL9w8Wkl4AR6dV3qCAxgBNoCWo4kIqfhIssnnPlJOWgL0O1H8KcrbBq1lCHBq99yJXVwB+7cf8mX6cNm8RgO3P70NnLIz3Kqc3OJZE0MSATaAjqDwQtY0TKlMxwiORhkg2mAA8cw52FLHU7PdiUle37ypxH5IR6Uy0rAkOFJzzI6UTRWlwRkB9zRUtd1BLqIQFeADi4Nzq8eiLRAW8nHYK0E5RjKCQFMS3IFVhj1hykOIf6GBj/OpiF+FfNcrV0pWspSyXaR3rquI9BFBBp32BZXxY4mwHKtxgCObqxql1k5NXd8nyBbHgSMALtcbOVmDxputXDvtUHBmRsrxEvPeZsLf4G+52GJ3Bs2xLvJqjFEFxvKpbidtXV7HQER6ArQuqHNa0YegJyG/YJt9895oDzKSMBgrR2C8YOvgRoh2MC0A7HeYBRw4RuyXQrLE4zloSU/eRhORR6MDC9PQtrrUkeg6wi0BTQI5qcQ42XlPCsmZ0NeHhRB3LMupOJJWq2mUqC0GDJcok2XmrTyHmkUNgX6k7CzAEpGZwZAF9x37UzdW0egLaDr0NQR+G+MQNu/5fhvdKa2uY5ADegaA4NVBGpAD1bTWTtTA7rGwGAVgRrQg9V01s7UgK4xMFhFoAb0YDWdtTM1oGsMDFYRqAE9WE1n7cz/APaPjxz6MpGKAAAAAElFTkSuQmCC\n", - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAAyAPADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD2/WNUttG0q41C6ZvJgXcVUZZj0CqO7EkAD1IqvfaxJpPhm41i/s3Rre2a5nt4XDsoVdzAE4BIAP1xWZ4+3poNrc+d5dva6nZXFzxnMSzoWz7Dhv8AgNcv430y5ub3xV9u0y81CO60lYtH8mB51imCShwNv+rYkocnGRxk9KAPSbK6W9sbe6VSoniWQKeoBAOP1qvcazp9vpN3qj3C/ZLQS+bIOg8skOPcgqR9RXmEWialNqhe9ttR+0MbJ9MlSzJaGNEQPGHY7YeRIHDAbwehyBUt/aT2XgvxHp8GjyWUVpdSXUtwYiivEL0yhUGMOvk85B4zgjNAHpun3Nzc2EE93bG0mlUMYWbcY89FYjjdjGccZyAT1rPOuTjUtR0tLDdf20C3NvGZcLcxnIGGx8pDAqQRxlT0PHKeM9MvNX8TxJcG/k0Q6f8A6Olpbeer3DOdx/uq4Tbsd/lXJI5Ga3Yyv/Ce6TbqknnWuizGcud5QPJCEDP3JMcn12k0AObxraOnh97OEyrq5d/3r+WbeFELSO/B5UgKR6nrWj4Z1mTxB4fs9XazNoLtTJHEzbj5ZY7GzgfeXDY7Z71leDbOx1Lw0t49okkdxPfeSXTGbea5duP9ll2n3GK6qGKO3iSKJFSNFCqqjAUDgACgCWiiigAorF1PxPo+janYadf3yw3moP5dtDtZjIc47A4GSBk4FWrPUra/u7yC2dpDaOIpnA+USYyUB7kAjPpkd80AaFFZ9xqlrbana2M7Mkt2G8gkfK7KMlQf72MnHcA+hrQoAKKKKACiijNABRVHUdSs9Jszd30whgVlUuQSAWIA6DuSB+NXs0AFFU9RvrXTbCW8vJlit4VLyO3Yf1+neo9J1Wz1vTo7/T5jLbSFgrFGQ5VirAhgCCCCMEdqANCiiigAoqlealZWCQvdXEcSzTrbxlj96RjtVR7k8VdoAKKKr3N1BZWk11cypFBChkkkc4CKBkkn0AoAsUVmaPren+ILD7bps5lgEjRktG0bKynDAqwBBB9RWnQBj60mpS232ay02xvoZkZJ0vLpohtIxjiN92cnPSs6zPimxs4rWDRNJMUKBE8zWZnbA6ZZoCT9Sa6msHxZrb+HvDlxqMMKzTI8UUaMxClpJFjBJHOAWBOPSgCEX/ixnKDRtFLDkgatJkf+QKHufFkiMj6FojKwwVOqSEEf+A9cNJrd94Y8beJHkht7m/vZNKtI3ggdYw0nnfOy5J4APAOWOAME1rr4i199Z00ahLbWFvDNdpctJC0aTJHGHWUgvlF2t91jwQTkjFAGrYv4g0e3tdLttI0SNFQiCF9amZti9QN0BJAyB7DA9KguYNXj+1rcaHocbaowjmZtbmV5ztwEDeRn7oOFHvjqarrrsGmv428U3kEkjaZN9jjQ4B8qOJHCqccBnkY59x6UXE+seIPCWvQ63ZLZ7LQT27RqUeOUBnGAWLHYyIQ5C7jnCjGSAbMMvim3gjhg0HREijUIiJqkgVVAwAB9n4GK19Ol1KS3Z9StbW3m34CW9w0y7eOclF5znjH407Sbp77R7K7kCiSe3jlYL0BZQTj86vUAecXeq+JReT+VPrqx+Y21U0KNlAzwAS+SPeuy0Ge5uNGt5bwzmcg7zPAIXOCRygJA/OtTA9BUU8ImgkiLOgdSu5GwwyMZB7GgDjtJiN78T/EF5583+g21rZqu4bSWDyspGOnzoQQfx7VzsN/rNv8ACvQ5dPvFtNSvLxY3IG5muZbggjJyMBizMD1C4yM133hzw9b+HLCW3hubq6kmlM01zdyb5ZXwFyxwM4VVHTtT9N0SPTLi98qQvaz3Buo7d1BEEjZLlT1wzEtjsSccHAAMHX7GXTtDsvtupSXtyut2sltPMFR133KjYNuAcIzr06E1seKLm9tNMRtPe8WYyhSbSzFy4GD/AAkgAcdatX2kpqGp2N3cSForFzLFBj5TKQVDn12gtgepz1AxqYoA4HRdS1+XWbZLqfWngY4ZZ9GjhTGD1cNlak8XPeT+J9D0yz8S3Gkm7WbzFh8ok7VBU4cE/eOP0rucD0pCisclQT6kUAeSf8JH4lkvL67Gp29tfw3l3a/2dPIWjWJEcpiJU3E/Kj+YWAIJ5AIAg0zWtWvtC8RarH4tnc2ekedbwJdW0riUxl5HdUU4UOAF6cbh0xXqGraHp+tWd3b3lurC7t2tpZFG2QxnsGHOM81U07wxFY6pHqU99c3tzFam0jedYl2xkgt9xFySVXrnpxjJyAcDrviWO/fxjbf2xDc2MNvpzW6rMjKrO5LhSOufl9e1O1TxnPY+OJbhtZ+z6XBqcVlLHcyoieWYdzhY8Fm5w3mkr12jcK9Qg06ytARbWcEIIwfLjVcjn0HufzpzWds8xnaCIylQhcoCdoOQM+meaAPJNSmuLrw34ov7jxbcXNnBeNbRW7PDsUCaMq24LnPDD/8AVWl438S3GhWniQW+vmKRNJtbmx3SRBi7PKjFOPmztUnryeMZr08RRjoij8Krz6dZ3ZU3FpBNsBCeZGrbQeoGRxQB5j4i8SX1lf8AiG7svETEWNxp32e1DRsgErKsgPGWUqxOM8HJz0xoQ6real4mvluPEsumy2urLawWMcauLi1aNNpCYySzMT5nIUKeAAa9F8uPGNi8ewqM2sDXCXDQRmZFKrIUG5QeoB6gUAeW6PrMFt4K06GPV5GuLfUrQStM0br892yNHuZfv7Vdj/EODkCpdN8SapNLol3Jqs39p3+py2uoaUxTFpCvm5/dgblKbE+cnBzk5BFempawIZCsMa+Y29yEA3NjGT6nHegWsC3DziCMTOoV5Ag3MB2J6kUAeTaN4q1iBdDmi1h9XmvtP1GRrdzGfMkhb9yqhQMMckE5+b8Birquu3MvhraPEEl9Hqfh67uNSDsmLeYRpsAAH7rczsm09en3hmvaPLQHO1c+uKijtbeFpXjgiRpW3SFUALn1PqaAOI1qXVbrxF4c07S9ekitL2GZ3mg2OzRoh3uTt2k7nhCkYx8xwe3aWEM1rp9tb3N011PFEqSXDKFMrAAFiBwCTzj3qYRR71cIu5QVBxyAcZH6D8qloAKp6hY2up2MtnfQR3FtMNrxyDII/wA857VcooA5tPBHh5Xu3ayeWS8WNZ3muZZGfyzlDlmJDKejDketPl8G6FLbwQSWJdYZWmV2mkLs7DDF33bn3L8pDEgjg8cV0NFAHNv4eLa1qpmSK40jV4VF3byk5EqqEyBjBDIADyCCgxnPEeoeFYzoN1pemFoP7QxFd3M0zyzeSchgGclidpKrkgLuz2weoooAhghjtoI4IkCRxqERR0AAwB+VTUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9k=\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMgAAAAyCAIAAACWMwO2AAAS10lEQVR4Ae3cZYykxRYG4LuwuLu7O8FtcXdLcHd3De5uwX/g7hAclgVCkCAhSJDg7i4Xv8/su6l0WpaZ6Z0emtv1o7a++k6dOuett05Jf7MD/vrrr/+0c/rzzz9HGmmkePDVV19NMMEEAwYM8MgvhV9++WW00UaLjPIoo4xShNvZ6TawfdiQtIGlDUxElI8++sjL3377bcIJJ8QnBY+///67/KeffpKTee+99zCswypotCYNaPeIBSbsGXPMMfFJQPIobo0++ujKXBt11FF//vnnMcYYQ/2XX3459thjo1drkP0/76XtiSUyDRw4EKvef/99ZBpvvPHGHXfcMqhZCj/88MOpppqqVHYKLUCg7ZdCrDrooIPmnXfeE044YdFFFx08ePB/hybY/frrr+LTY489tsUWW9hvrbLKKi0AtNPFMASsF22drrvuOp6ISV9//fXll18+44wzvvLKKzz6/vvv5ddcc43t/GabbYZzgpmdVls720bGt33Eevfdd6eddtoppphi/PHH33zzzd966627777bCmg79dlnn2211VabbLLJVVddteyyyy6//PKTTjppJ6K0BoGBremm73rZZptt5p9//j333FNk2nvvve3Wv/32Wyvgjz/+ePXVV//xxx/HHHOM3o844gi7sc7Ove8Gokpzw4iVQ7vtShoYp9IyJ3lhWY19jIKLoiJpLCOQt6UVAZLelpoeFdIwue7EJM2/+eab3XbbzeZp4oknnmSSSTbddFNmeyu397r11lutgDkSEh5nnHF61GMzwhAIgFHCcUCVsgIj5TBJwdE1j5WtHGNValvw5L5HlVVJJT3GKPgUJVFeJdyiRzY1SgYvr8IJo8jilO1gYOGto35lc46Rif+pJwYXZYEkNdpyuLJVN8v0fPfddwyIfrkNO5iee+65KD/00EM93nbbbRS++eabFr7DDjtMmWSszcarm931Toxr8TfN8anAGK+54BWUbAojE+O9jYAVPPXyIkNJypEpAilUVcbNH374oXRdJd+Cx64J0SgV0mRUKsVYHPi4pMwHb5XhGCcr6QW4zz//PM0LvSq1dafMhgJfwqR7UWFpmWWWUW+yUnLggQeKT7HhwgsvRLIHHnjAtZZXGc7udDQCZVgCwzLNTAmgFVR1BLq33377nXfeSaccMXtTjkfKrlFSQw9UyUipSV5q8MlAtGwKVdpQW25IrOJ/CJSBYXoilpyTGeAo5Xalw4VYBSmBPZKVrWoN+tsavRTbUOf000/3SCcCucc64IADaCCz0EIL2dRHWwaJSZ9++unf6m9SIHOsSgm4pFQik9jDZkfUddZZ58gjj9x9992vv/569fELYsG8xFcxzITMDKnCmU7OFu5Skl5oUC9VWdKyx4bEigVcLe4VyOI/AUNlfnCGYyZW8Up9XApAL774YvEnrKoNgUVgOAX9Gp4CFlWIddRRR2mio8MPP1y4CvpDhgzxat1117WptzJ6ayznm2++k08+eTj6R+wraHCTkWXU2VDAxJWjjz56ttlm0ynohN7EcqZKseSLL74oM1lZpVa0SQUEhdSI31GeEKDrMkwj1q9uamtILEPI4qIFQIsssojppWbhhRd2/lLgSTxceumlX3755bikppJhxAzzWmutpfDBBx/Iy1vl7idqK0E3DLBeY401GLPPPvtsv/32c80119lnn63eyqI80UQT4Zbk154U3Dh88skn3e+x15KZbGluNuK6GoaJl2x+6aWXsjFw7DAZxCdppplmUkly0KBBCAdJJxJzxhAUuG688cb1118/NIJGSanRHTRctSiU1bPXLjTfsCGxqMYtsYeTCq+//vr0009vYCQ3jXimkO5nmGEGe+SPP/44Kw6Hy5xTzlZU5HA5Tr7JacQeQMuZFG00Y7ncDVbsESA9MiYryEknnXTIIYfY1xvaCLQsN/HuvPPO9dZbb+SRR/ZDExoJmfPMM48D7C233IJYjrE4J5K5K0E7uwViLIeS38t5Csnk999/vxkCczWV3EpZJSWoKWY//PDDHIxa+LfM2aqOGhKLrSFKgvBxxx1n3nPynHPOcVeEbbhF1x133GE3Y84pc4Of6UCBhpSRQALZ7bffrgZqmJFX3c8T57VNF/piTJp7lcos1qGyVzGgiKlpAbdiCQeDnk6RCXR33XVXrMUAgUdYOvXUUxP4BfLpppvOW1du1kQGe+WCVwCjLfYvt9xyl1xyCRlOqZQgIKWsUtlbU2jOOedU6Pc07B4rA8bKrBpyk8wU4ZU1BUx+a8MnEJx33nkbb7zxEkssoVKyWV555ZXFME2wLd+lBAsaog2r3ExCMyc1nx6Az6uCCz2RTA6UWNKF3FC81AOakWakLgjEngCaxY6kt3IGy2mIAWTYwzZKkNtjemFVCnIK5WmlYZU96tPKK8ljGpaCR9rSKh+BcZBVWply2Exg9dVXx3sucF/E4oV7tZtuusm8ffLJJ4UrMsIMS5QBtdJKK6255pp2TmpcyL366qsbbLABGU7pSC8mtgI9GBxMdCcKai50kcRLeTFSgby8IOBt36WBAStjo+Obb775iSeeGGussYKCkeCDCeSnXB7aDnP4yiuv9BucJtw2Zg758NIWvUT4U045Zeqpp7Y+ul4SPJzaMA/ua6+9tgkKR8hqm7GUcxVG5rFcX2qMCorQBi9vWRgiauWRjAHwCii4rt+66KByqKM7wtHATgNDgybq5ZoDWnd68Vhrjx5jj5+MtA1c6Z2wQU1z2jyKnfkyJ6FRExaef/75KMIYJvnIAibmmF2g8muvvbbCCiu88MIL4NUEe7DNT0+wsvbtv//+kGTVvffe61bFWKCpk6/R2Xffff1IusMOO+gRO/fYY48dd9wRYihrXp155plu+HydZjrplI9BgDG0KTMm7nvsqwQOiQVyMwPEhl9nwhKft912Wxt2m0GYGhU/zBHLqqQgvBtsuytl+CIHc10dQYRX55577mSTTXbsscfiAU8MyTTTTIOIyuQNmGRDavcNKVcDM88885RTTknGD8niuRWWmJT4l9x0TKVc8+RDNVVnZX0kU1al0pYN3CmPRU+tPZkkc8wxx4ILLhix2F/ZVpn7HFTIcqyQxwQPXLngggvsMvfbbz/DnF1EDCBvsqkxS7HKycPVruZZ0L3luLORPaJKTlJoJs8+++x+d4f2oEGD9tprL+OFcwHE25122sljrZ1U6Z2eFqSuiMVDLtkYisDMdb6bZZZZFl98cfsnrPKWkxtuuCHuG36OmRYGGAWfeeYZbyeffHKOYR7hnXfe2eHroYceMhJ+/TW6vizI5OBq6Msr8kbC5HORs+KKK2aZA6Ip7i1EaENZtokumWeENTcX0RRR6PRWLJHTVpuoEgOCI8TtjjOcwNWdMg0GzJCjtUrzuK492hZ72MweOOiOnbaMPPWWBh2xxCuWm2CnnXYafKSzzjrLDwC+28HLiy66KA6SYYC3HNFEc209OjuzU2SiH8hyb2mDMwKxhJF+vLKqPP300yR1bfV4/vnnYShcMQk45rlXHoOMAdIKhnFQv0AjmbBdi9uIqhnISayiDj8cVhUc3fHj2muv5ZJHdjgP+kGXZR45DA6hSJnRPAd3OOFsmA3ZiSeeqCxoHXzwwcSS+Bwo4ahGv3Ia1OOQXlITh4FisI20NKx9g38aAYTHNLNBpyx34IK4UWmgZoTZg2HAcTK1eIEFVqbl1ltvrV8bIOGZR27bbRUQJVCQUQAjkInxncHAJ2logBOcVWpiYj/77LN4Y6fvFRaio1daoQtnucwGeswrb8ko02AiETNeHtErBeW+SllcBIPcjJsEhkrHgraIyjgWS8aJ3erlkuit0tQxFcCXSjWag8nykW9X7C3sG9RjiehlLcglhRpNDLwYaQXksxhp+bMUIrEa9zqzzjorHCUwEaZBXrsUpuvaPKbqwoG/9jMsdsK6qlVde5zXGGN1ZiGzJZpZVdUWLbxSSbOcqhiAyraYfNcd0PK2tOUaApVHBQL0pFJZQ5Vzzz231QCwkaTcuLhSyersKzSD5VWEHQx9PuSRmNwWPq1ic2CMqanvo7wrpMegUGfLLbcUunRveyiKlMUr3YOPfWFSgMNCDpD3aI7ak9rgmwTErrjiCmtNhCFogGmuvLvTUKdABBNa22Q4dUrYYwyMRNUwsAEiNINYW8mjfusmpiKxfZ6FTwQNjQQPOr2S4pG2hWEU1trDYHrEiXSqFQMkBUp4p0lGSyW4Mmacos1aCQqjjtmBN53yV7905jGYFDNSmRmYSWUs7Cs08Wh/IpL5Ckhud0XMZtQM1zUNLPFBx6677soMH9bq3cGL19FDMyVe1QKbTkdg3nVOpi7cYpZ7BFcsCmjhbOKVMZYTY5NCcgXA8cRWLD+qqNFE4LWfsALaWKy22moBy6QBupOLgERMyrhmeORFZ94WgTL8GbkyZdOQWMGrNCyF+KUJViUApJfShP1FuFiipq49aVXaRnk4FCW0FS/CGBPJXcwZZ5zhXhS/qYVGkUkrCjN1eVp0piaSiGvK3XfffQKnLijhkfXUFMUtpytx/YYbboglcp5a79TQj9ZuH50olQEYEIoLMaDv8q6I1aPEMg7EPhBg1ZJLLhle8lwNjAhARMqAhV6WfwdGfRGQetRphNOKWo9g2mWXXcwB89JjTqYGI+NBEpS2iTbXajKoveixH5vAUIrLCnb9jzzyCNjVNEqsNaX/IRekPSYWrwJ3ZoBfvhBLfPaYKeVt+BQxx0wFYcxCWUJOXvUopzxxSyuT2I7HFtA3x4sttthSSy2lUqcS6MuiYyEwrb0K2yxARUOPuu5HYWgz3nS99NJL7VBN0aF8q5OZbxy37uMfgz0KnP3ob4+JxWhBO2EjcevBBx80hO76Epk4nahOMgK+L7B10wQ5Ett6N1TwjWZLjB4poRDJlK07WJvu1OslH/1ZLNKjV83QuncGN9OqihMY5usMO63Mn9pcX23zI3RdXEIprxTKuuPR/jTBTB6GqTTweObGT7TwmKFVWRigsvsJ1hpiEipffPHFb7zxRna4iHX88cfTkx9AFAYPHmzu2uRZQXKQLGGs+931u2TwBHKZEuWTwFrbHHqAjHCB2gzMJKyVbE1NbyKWoS3ziSeoo0ahWKwmZZUlRIUERaanBV2UJn4scoZ32DZH/XaJQ87ewRGBdGpy41b+jKJyBexfrIv93SwUkBFLgmqpaaShzFh0lP5WvpGe5uuH/Qht0nczCVSu4Nwy8FMTvHEMcb+Xi0qVxlVNtKk06obWwTB3qsrd7KhKTKdq9O6zkAUWWABqzjuucPxkpuxw5HLEFHdziFIOTa7U1TDAJaF6Mpq7FWwEWVV3/4THckforC1BNXfIjWyzUIRMBEwh9xH50aKRfN/WNwJ6OPX2Ot5mTbSu5QdENVjFsQRwjxgmmWpyjwpyKUEl5R7l0WCBg4iGupP7zcT9qnDord5Vuq12o2hXh1uIlUMG0JnBti6b6qUeWdIC4cq1G8hZ0BXq2d5VV2lShobLZSwq37am3OOIZVBFAnl+EzCofkAUt/hmSpklZVYZVI6ZagqhglysFlRS47H7KaqcMe+55x4/cmuI33K3NW5lXXAzQO/WRIdEe3aBypbLHssPbdjGTgKUdL/H/pWEEgagFzMEHveCuMWL4ViVhZ4AHOTud7g8HPm+fdUa/o6QXuwYUAQpy5WsZRE6joTRbx/mIhF3hS41dvfeup7OW4dTS6Qyairk2hb01JatSSQ7efMI9CZi9S3TG2vPngmxzF0LH9742t234bbwLkj9oYtY5XMxr3DFZs6Njs0fLpr3YlV+S/DoU0xfVfgEQMyjDYiJwY177rzpMQLtRKzskwQeyW7dL04+JvGZG6cteT6X22ijjfyG7bggPfXUUz4i8EGB7wgeffRRBPKpCTHBbMiQISKWvVdWFuHKItJj5DoNhotA13wdrsA/6CUGZPfgYkwoskm3+RBs4oIdnq2eSjfOiGWHEdPTSk7Y74ZOlMLVqquu6n988MmAk4fV8x/k5L/FlHYiFt7gR+4d4G9Rc1DAKtHIo6OQGnveDI3wJiBZASPz+OOP4xNh3wI4T1grL7vsMl+PYVtO5uXM8W8Z2X72o22I5aQtCFnI0MieyfeGqBOK2IB7lcikElcwLIdW23nssd/abrvtyCATApFHJm1hH7V41ucfvvXzQLe6+7YhFnKggqWwkgQhUzBzueCznJRFL6shkpGXBCqf52OY/ZbdlbfohWc2724lWg35/0d/bUMswyEOiTR2VwkzYRXSIJB4U0522WmRdzwkLMihkaStxTF55eBGW2VNp9w8Au1ErOa97WhoGQLtdN3QMlA6HTWPQIdYzWPY0VAHgQ6x6oDSqWoegQ6xmsewo6EOAh1i1QGlU9U8Ah1iNY9hR0MdBDrEqgNKp6p5BDrEah7DjoY6CHSIVQeUTlXzCPwP7vw3O8g4cW4AAAAASUVORK5CYII=\n", + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAAyAMgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiszV9YttGtEuLgO/mTxW8cceNzySOEUDJA6n16A0AadFYC+K9PbRZ9VCzm3juXtYwqhmnkWQxARgE53OCBnHqcDmtxCWRWKlSRyp7e1AD6KzLTVoLnVbvTSJI7u1COySDG6Ns7XU91JDD1BUg9s6dABRRWX4gjvpvDmqRaUxXUXtJVtWDAYlKHYcngc4oAwLbxs8mpWcVxp629td3sljGWnzcRyDeUMkW35FcRsRyeNvrxJeeL7n/hIBp2laJc6jbwXcVrfXccgVbd3APAwd+1SC3QDI5zXMaZoS+ZoN5F4aurW08P20k7rJCq3F5dlAoUDOW5LMWPViPerPg698SaJZnTr/whqH9qXt5JdT3Xnw/Zt0jkszOrEqFXgDBJ2jpmgD02iiigAooooAKKz9Y1iy0LTJtR1GVorSAbpZFjZ9o9SFBOK5/W/HNrZaZJJaRzm8kt/OtY7q0miSQZAzkqOm4Er1xQB2FFcpb+KhbX8unamVa4XUTZxSRAIHAt1uGdgzfKFUkHBPQeuKuJ4mtH8P2GsLFceVqHl/ZbfaDLKZOUAAOASOTk4AyTjBoA36KTPFZ1hq1vf3t7ZoskdzZSBJonGCAwyrDHVWHIPsQcEEUAaVFFFABRRRQAUUUUAcj45ku10+0S01K6s5bi6jtYktcK8kkjBQS+GwqLvcjHO0c44OTofh2PxT4dsbjUdS1WaIXrTyQ3Fw27dE0qIFYbWXDbWyOpQdq9EooA4K/0Ky0DVvCVnp9rDb6YdVlklUknMptpfLOWJPUYHphQO1c/4j1ZLvxZNYw+J9UiKm5W4jtDJC0TKiLDBEhwJJGZi+Qctg/w9PStY0qDWdPNtcNJGQ6yRSxEB4ZFOVdSQQCCO4I9citBU2qATkgckjqfWgDlysUXxC0mJZC9wNGuBMzH52USwbS2OOu/8Sab4gOsnUiLIeIhCEHOn/YfLJ7/AOu+fP6VtWekwWuqXmo5kkuroIjPIc7Y1ztRR2UEsfUliTWnQBz/AIZOpbbkagNY4K7Dqf2XPfO3yPwzu9sd6df/APCU/bZP7O/sf7JkbPtHm7+gznbx1zW9XD+K55NU8S6Z4etIZLqWNGvrq3afyYDFyiea4BY/OcqoHJXJ4FAGjjxt/wBS/wD+R6ppqPi6TU5tPVdF+0QxLKxaG5CbWJAw+ME8HgVk+GvFDaT8NLrWLxX8qO6uY9PhkkMjsnmssMe4ZLYxtzz8q56CrPwtv577TtcFxqX9oNFq8oFxtKbgyI5wp5VdzMAOwGKAOp0r+3/Nf+1/7N8vaNn2TzM5993asnxAdZOpEWQ8RCEIOdP+w+WT3/13z5/SutzRQBz3hk6ltuRqA1ngqUOp/Zc987fI/DO72x3pbz/hLPtk32L+xfs279353nb8e+OM/SugooA858ezXl14YsdC1KS2S61O/hhuWtdxSO3D7nf5ugwu054JOO/HRWvhpbi2u01501Rp5pirTJ/q4nCqEAHC/KozjHOT1JNdJRQByFx8PtEu57VpEna2gM0jQtcSFppZQql3kLbm+RSmCSCrY6AVWudMt9J8WeDrGzgWHToVvAiZJIlMYKnJ5JKmU5PPWu4rM1jSodXt4UkllgkgmWeCeIgPFIvQjII5BKkEchiO9AHmOoasmp+LZrO38UayMCYSCzLRt54mRIoI4mABKKHZj/Fnc3y4Fdbeaha6X8QLy6nkkWGLRY3udkbucCdghKqCSeXxgZ612eBWdY6TBYXl7eKXkub2QPNK55IUYVRjoqjgD3JOSSaALkEqTwJLGSVdQy5BBwRkcHkVNRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXOar4Vh1XV21JNQv7G4ktfscxtXQebDuLBTuUlSCzcrg89eldHRQBhR+GbC3utMktzPDBpcXl2tqsn7lPlKZ2922kjOc8+5zzvifwlOmk6smjC4ub7W7qAXRnlHl7VZdxbC5C7FKcA9ehrv6KAOZ8J6Rqulpqb6rLaPNe30l0Ps+44DYwCzAZwAqjjovvx01FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/2Q==\n" }, "metadata": {} }, @@ -1453,10 +1778,10 @@ " \n", "
\n", "
\n", - "
{ \\frac { ( \\det ( e ) ) ^ { \\prime \\prime } } { \\det ( e ) } } = f ( r ) = \\mathrm { r e g u l a r f u n c t i o n o f } r

\n", + "
\\pi ^ { \\mu } ( x ) = \\frac { \\partial { \\cal { L } } } { \\partial \\dot { A _ { \\mu } } } = - F ^ { 0 \\mu } ( x ) .

\n", "
\n", "
\n", - "
\\frac { ( \\mathrm { d e t } ( e ) ) ^ { \\prime \\prime } } { \\mathrm { d e t } ( e ) } = f ( r ) = \\mathrm { r e g u l a r f u n c t i o n o f r } \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\quad . \\

\n", + "
\\pi ^ { \\mu } ( x ) = \\frac { \\partial { \\cal L } } { \\partial \\dot { A } _ { \\mu } } = - F ^ { 0 \\mu } ( x ) .

\n", "
\n", "
\n", " \n", @@ -1470,10 +1795,10 @@ "output_type": "display_data", "data": { "text/plain": [ - "" + "" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMgAAAAyCAIAAACWMwO2AAAS10lEQVR4Ae3cZYykxRYG4LuwuLu7O8FtcXdLcHd3De5uwX/g7hAclgVCkCAhSJDg7i4Xv8/su6l0WpaZ6Z0emtv1o7a++k6dOuett05Jf7MD/vrrr/+0c/rzzz9HGmmkePDVV19NMMEEAwYM8MgvhV9++WW00UaLjPIoo4xShNvZ6TawfdiQtIGlDUxElI8++sjL3377bcIJJ8QnBY+///67/KeffpKTee+99zCswypotCYNaPeIBSbsGXPMMfFJQPIobo0++ujKXBt11FF//vnnMcYYQ/2XX3459thjo1drkP0/76XtiSUyDRw4EKvef/99ZBpvvPHGHXfcMqhZCj/88MOpppqqVHYKLUCg7ZdCrDrooIPmnXfeE044YdFFFx08ePB/hybY/frrr+LTY489tsUWW9hvrbLKKi0AtNPFMASsF22drrvuOp6ISV9//fXll18+44wzvvLKKzz6/vvv5ddcc43t/GabbYZzgpmdVls720bGt33Eevfdd6eddtoppphi/PHH33zzzd966627777bCmg79dlnn2211VabbLLJVVddteyyyy6//PKTTjppJ6K0BoGBremm73rZZptt5p9//j333FNk2nvvve3Wv/32Wyvgjz/+ePXVV//xxx/HHHOM3o844gi7sc7Ove8Gokpzw4iVQ7vtShoYp9IyJ3lhWY19jIKLoiJpLCOQt6UVAZLelpoeFdIwue7EJM2/+eab3XbbzeZp4oknnmSSSTbddFNmeyu397r11lutgDkSEh5nnHF61GMzwhAIgFHCcUCVsgIj5TBJwdE1j5WtHGNValvw5L5HlVVJJT3GKPgUJVFeJdyiRzY1SgYvr8IJo8jilO1gYOGto35lc46Rif+pJwYXZYEkNdpyuLJVN8v0fPfddwyIfrkNO5iee+65KD/00EM93nbbbRS++eabFr7DDjtMmWSszcarm931Toxr8TfN8anAGK+54BWUbAojE+O9jYAVPPXyIkNJypEpAilUVcbNH374oXRdJd+Cx64J0SgV0mRUKsVYHPi4pMwHb5XhGCcr6QW4zz//PM0LvSq1dafMhgJfwqR7UWFpmWWWUW+yUnLggQeKT7HhwgsvRLIHHnjAtZZXGc7udDQCZVgCwzLNTAmgFVR1BLq33377nXfeSaccMXtTjkfKrlFSQw9UyUipSV5q8MlAtGwKVdpQW25IrOJ/CJSBYXoilpyTGeAo5Xalw4VYBSmBPZKVrWoN+tsavRTbUOf000/3SCcCucc64IADaCCz0EIL2dRHWwaJSZ9++unf6m9SIHOsSgm4pFQik9jDZkfUddZZ58gjj9x9992vv/569fELYsG8xFcxzITMDKnCmU7OFu5Skl5oUC9VWdKyx4bEigVcLe4VyOI/AUNlfnCGYyZW8Up9XApAL774YvEnrKoNgUVgOAX9Gp4CFlWIddRRR2mio8MPP1y4CvpDhgzxat1117WptzJ6ayznm2++k08+eTj6R+wraHCTkWXU2VDAxJWjjz56ttlm0ynohN7EcqZKseSLL74oM1lZpVa0SQUEhdSI31GeEKDrMkwj1q9uamtILEPI4qIFQIsssojppWbhhRd2/lLgSTxceumlX3755bikppJhxAzzWmutpfDBBx/Iy1vl7idqK0E3DLBeY401GLPPPvtsv/32c80119lnn63eyqI80UQT4Zbk154U3Dh88skn3e+x15KZbGluNuK6GoaJl2x+6aWXsjFw7DAZxCdppplmUkly0KBBCAdJJxJzxhAUuG688cb1118/NIJGSanRHTRctSiU1bPXLjTfsCGxqMYtsYeTCq+//vr0009vYCQ3jXimkO5nmGEGe+SPP/44Kw6Hy5xTzlZU5HA5Tr7JacQeQMuZFG00Y7ncDVbsESA9MiYryEknnXTIIYfY1xvaCLQsN/HuvPPO9dZbb+SRR/ZDExoJmfPMM48D7C233IJYjrE4J5K5K0E7uwViLIeS38t5Csnk999/vxkCczWV3EpZJSWoKWY//PDDHIxa+LfM2aqOGhKLrSFKgvBxxx1n3nPynHPOcVeEbbhF1x133GE3Y84pc4Of6UCBhpSRQALZ7bffrgZqmJFX3c8T57VNF/piTJp7lcos1qGyVzGgiKlpAbdiCQeDnk6RCXR33XVXrMUAgUdYOvXUUxP4BfLpppvOW1du1kQGe+WCVwCjLfYvt9xyl1xyCRlOqZQgIKWsUtlbU2jOOedU6Pc07B4rA8bKrBpyk8wU4ZU1BUx+a8MnEJx33nkbb7zxEkssoVKyWV555ZXFME2wLd+lBAsaog2r3ExCMyc1nx6Az6uCCz2RTA6UWNKF3FC81AOakWakLgjEngCaxY6kt3IGy2mIAWTYwzZKkNtjemFVCnIK5WmlYZU96tPKK8ljGpaCR9rSKh+BcZBVWply2Exg9dVXx3sucF/E4oV7tZtuusm8ffLJJ4UrMsIMS5QBtdJKK6255pp2TmpcyL366qsbbLABGU7pSC8mtgI9GBxMdCcKai50kcRLeTFSgby8IOBt36WBAStjo+Obb775iSeeGGussYKCkeCDCeSnXB7aDnP4yiuv9BucJtw2Zg758NIWvUT4U045Zeqpp7Y+ul4SPJzaMA/ua6+9tgkKR8hqm7GUcxVG5rFcX2qMCorQBi9vWRgiauWRjAHwCii4rt+66KByqKM7wtHATgNDgybq5ZoDWnd68Vhrjx5jj5+MtA1c6Z2wQU1z2jyKnfkyJ6FRExaef/75KMIYJvnIAibmmF2g8muvvbbCCiu88MIL4NUEe7DNT0+wsvbtv//+kGTVvffe61bFWKCpk6/R2Xffff1IusMOO+gRO/fYY48dd9wRYihrXp155plu+HydZjrplI9BgDG0KTMm7nvsqwQOiQVyMwPEhl9nwhKft912Wxt2m0GYGhU/zBHLqqQgvBtsuytl+CIHc10dQYRX55577mSTTXbsscfiAU8MyTTTTIOIyuQNmGRDavcNKVcDM88885RTTknGD8niuRWWmJT4l9x0TKVc8+RDNVVnZX0kU1al0pYN3CmPRU+tPZkkc8wxx4ILLhix2F/ZVpn7HFTIcqyQxwQPXLngggvsMvfbbz/DnF1EDCBvsqkxS7HKycPVruZZ0L3luLORPaJKTlJoJs8+++x+d4f2oEGD9tprL+OFcwHE25122sljrZ1U6Z2eFqSuiMVDLtkYisDMdb6bZZZZFl98cfsnrPKWkxtuuCHuG36OmRYGGAWfeeYZbyeffHKOYR7hnXfe2eHroYceMhJ+/TW6vizI5OBq6Msr8kbC5HORs+KKK2aZA6Ip7i1EaENZtokumWeENTcX0RRR6PRWLJHTVpuoEgOCI8TtjjOcwNWdMg0GzJCjtUrzuK492hZ72MweOOiOnbaMPPWWBh2xxCuWm2CnnXYafKSzzjrLDwC+28HLiy66KA6SYYC3HNFEc209OjuzU2SiH8hyb2mDMwKxhJF+vLKqPP300yR1bfV4/vnnYShcMQk45rlXHoOMAdIKhnFQv0AjmbBdi9uIqhnISayiDj8cVhUc3fHj2muv5ZJHdjgP+kGXZR45DA6hSJnRPAd3OOFsmA3ZiSeeqCxoHXzwwcSS+Bwo4ahGv3Ia1OOQXlITh4FisI20NKx9g38aAYTHNLNBpyx34IK4UWmgZoTZg2HAcTK1eIEFVqbl1ltvrV8bIOGZR27bbRUQJVCQUQAjkInxncHAJ2logBOcVWpiYj/77LN4Y6fvFRaio1daoQtnucwGeswrb8ko02AiETNeHtErBeW+SllcBIPcjJsEhkrHgraIyjgWS8aJ3erlkuit0tQxFcCXSjWag8nykW9X7C3sG9RjiehlLcglhRpNDLwYaQXksxhp+bMUIrEa9zqzzjorHCUwEaZBXrsUpuvaPKbqwoG/9jMsdsK6qlVde5zXGGN1ZiGzJZpZVdUWLbxSSbOcqhiAyraYfNcd0PK2tOUaApVHBQL0pFJZQ5Vzzz231QCwkaTcuLhSyersKzSD5VWEHQx9PuSRmNwWPq1ic2CMqanvo7wrpMegUGfLLbcUunRveyiKlMUr3YOPfWFSgMNCDpD3aI7ak9rgmwTErrjiCmtNhCFogGmuvLvTUKdABBNa22Q4dUrYYwyMRNUwsAEiNINYW8mjfusmpiKxfZ6FTwQNjQQPOr2S4pG2hWEU1trDYHrEiXSqFQMkBUp4p0lGSyW4Mmacos1aCQqjjtmBN53yV7905jGYFDNSmRmYSWUs7Cs08Wh/IpL5Ckhud0XMZtQM1zUNLPFBx6677soMH9bq3cGL19FDMyVe1QKbTkdg3nVOpi7cYpZ7BFcsCmjhbOKVMZYTY5NCcgXA8cRWLD+qqNFE4LWfsALaWKy22moBy6QBupOLgERMyrhmeORFZ94WgTL8GbkyZdOQWMGrNCyF+KUJViUApJfShP1FuFiipq49aVXaRnk4FCW0FS/CGBPJXcwZZ5zhXhS/qYVGkUkrCjN1eVp0piaSiGvK3XfffQKnLijhkfXUFMUtpytx/YYbboglcp5a79TQj9ZuH50olQEYEIoLMaDv8q6I1aPEMg7EPhBg1ZJLLhle8lwNjAhARMqAhV6WfwdGfRGQetRphNOKWo9g2mWXXcwB89JjTqYGI+NBEpS2iTbXajKoveixH5vAUIrLCnb9jzzyCNjVNEqsNaX/IRekPSYWrwJ3ZoBfvhBLfPaYKeVt+BQxx0wFYcxCWUJOXvUopzxxSyuT2I7HFtA3x4sttthSSy2lUqcS6MuiYyEwrb0K2yxARUOPuu5HYWgz3nS99NJL7VBN0aF8q5OZbxy37uMfgz0KnP3ob4+JxWhBO2EjcevBBx80hO76Epk4nahOMgK+L7B10wQ5Ett6N1TwjWZLjB4poRDJlK07WJvu1OslH/1ZLNKjV83QuncGN9OqihMY5usMO63Mn9pcX23zI3RdXEIprxTKuuPR/jTBTB6GqTTweObGT7TwmKFVWRigsvsJ1hpiEipffPHFb7zxRna4iHX88cfTkx9AFAYPHmzu2uRZQXKQLGGs+931u2TwBHKZEuWTwFrbHHqAjHCB2gzMJKyVbE1NbyKWoS3ziSeoo0ahWKwmZZUlRIUERaanBV2UJn4scoZ32DZH/XaJQ87ewRGBdGpy41b+jKJyBexfrIv93SwUkBFLgmqpaaShzFh0lP5WvpGe5uuH/Qht0nczCVSu4Nwy8FMTvHEMcb+Xi0qVxlVNtKk06obWwTB3qsrd7KhKTKdq9O6zkAUWWABqzjuucPxkpuxw5HLEFHdziFIOTa7U1TDAJaF6Mpq7FWwEWVV3/4THckforC1BNXfIjWyzUIRMBEwh9xH50aKRfN/WNwJ6OPX2Ot5mTbSu5QdENVjFsQRwjxgmmWpyjwpyKUEl5R7l0WCBg4iGupP7zcT9qnDord5Vuq12o2hXh1uIlUMG0JnBti6b6qUeWdIC4cq1G8hZ0BXq2d5VV2lShobLZSwq37am3OOIZVBFAnl+EzCofkAUt/hmSpklZVYZVI6ZagqhglysFlRS47H7KaqcMe+55x4/cmuI33K3NW5lXXAzQO/WRIdEe3aBypbLHssPbdjGTgKUdL/H/pWEEgagFzMEHveCuMWL4ViVhZ4AHOTud7g8HPm+fdUa/o6QXuwYUAQpy5WsZRE6joTRbx/mIhF3hS41dvfeup7OW4dTS6Qyairk2hb01JatSSQ7efMI9CZi9S3TG2vPngmxzF0LH9742t234bbwLkj9oYtY5XMxr3DFZs6Njs0fLpr3YlV+S/DoU0xfVfgEQMyjDYiJwY177rzpMQLtRKzskwQeyW7dL04+JvGZG6cteT6X22ijjfyG7bggPfXUUz4i8EGB7wgeffRRBPKpCTHBbMiQISKWvVdWFuHKItJj5DoNhotA13wdrsA/6CUGZPfgYkwoskm3+RBs4oIdnq2eSjfOiGWHEdPTSk7Y74ZOlMLVqquu6n988MmAk4fV8x/k5L/FlHYiFt7gR+4d4G9Rc1DAKtHIo6OQGnveDI3wJiBZASPz+OOP4xNh3wI4T1grL7vsMl+PYVtO5uXM8W8Z2X72o22I5aQtCFnI0MieyfeGqBOK2IB7lcikElcwLIdW23nssd/abrvtyCATApFHJm1hH7V41ucfvvXzQLe6+7YhFnKggqWwkgQhUzBzueCznJRFL6shkpGXBCqf52OY/ZbdlbfohWc2724lWg35/0d/bUMswyEOiTR2VwkzYRXSIJB4U0522WmRdzwkLMihkaStxTF55eBGW2VNp9w8Au1ErOa97WhoGQLtdN3QMlA6HTWPQIdYzWPY0VAHgQ6x6oDSqWoegQ6xmsewo6EOAh1i1QGlU9U8Ah1iNY9hR0MdBDrEqgNKp6p5BDrEah7DjoY6CHSIVQeUTlXzCPwP7vw3O8g4cW4AAAAASUVORK5CYII=\n", - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAAyAMgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiszV9YttGtEuLgO/mTxW8cceNzySOEUDJA6n16A0AadFYC+K9PbRZ9VCzm3juXtYwqhmnkWQxARgE53OCBnHqcDmtxCWRWKlSRyp7e1AD6KzLTVoLnVbvTSJI7u1COySDG6Ns7XU91JDD1BUg9s6dABRRWX4gjvpvDmqRaUxXUXtJVtWDAYlKHYcngc4oAwLbxs8mpWcVxp629td3sljGWnzcRyDeUMkW35FcRsRyeNvrxJeeL7n/hIBp2laJc6jbwXcVrfXccgVbd3APAwd+1SC3QDI5zXMaZoS+ZoN5F4aurW08P20k7rJCq3F5dlAoUDOW5LMWPViPerPg698SaJZnTr/whqH9qXt5JdT3Xnw/Zt0jkszOrEqFXgDBJ2jpmgD02iiigAooooAKKz9Y1iy0LTJtR1GVorSAbpZFjZ9o9SFBOK5/W/HNrZaZJJaRzm8kt/OtY7q0miSQZAzkqOm4Er1xQB2FFcpb+KhbX8unamVa4XUTZxSRAIHAt1uGdgzfKFUkHBPQeuKuJ4mtH8P2GsLFceVqHl/ZbfaDLKZOUAAOASOTk4AyTjBoA36KTPFZ1hq1vf3t7ZoskdzZSBJonGCAwyrDHVWHIPsQcEEUAaVFFFABRRRQAUUUUAcj45ku10+0S01K6s5bi6jtYktcK8kkjBQS+GwqLvcjHO0c44OTofh2PxT4dsbjUdS1WaIXrTyQ3Fw27dE0qIFYbWXDbWyOpQdq9EooA4K/0Ky0DVvCVnp9rDb6YdVlklUknMptpfLOWJPUYHphQO1c/4j1ZLvxZNYw+J9UiKm5W4jtDJC0TKiLDBEhwJJGZi+Qctg/w9PStY0qDWdPNtcNJGQ6yRSxEB4ZFOVdSQQCCO4I9citBU2qATkgckjqfWgDlysUXxC0mJZC9wNGuBMzH52USwbS2OOu/8Sab4gOsnUiLIeIhCEHOn/YfLJ7/AOu+fP6VtWekwWuqXmo5kkuroIjPIc7Y1ztRR2UEsfUliTWnQBz/AIZOpbbkagNY4K7Dqf2XPfO3yPwzu9sd6df/APCU/bZP7O/sf7JkbPtHm7+gznbx1zW9XD+K55NU8S6Z4etIZLqWNGvrq3afyYDFyiea4BY/OcqoHJXJ4FAGjjxt/wBS/wD+R6ppqPi6TU5tPVdF+0QxLKxaG5CbWJAw+ME8HgVk+GvFDaT8NLrWLxX8qO6uY9PhkkMjsnmssMe4ZLYxtzz8q56CrPwtv577TtcFxqX9oNFq8oFxtKbgyI5wp5VdzMAOwGKAOp0r+3/Nf+1/7N8vaNn2TzM5993asnxAdZOpEWQ8RCEIOdP+w+WT3/13z5/SutzRQBz3hk6ltuRqA1ngqUOp/Zc987fI/DO72x3pbz/hLPtk32L+xfs279353nb8e+OM/SugooA858ezXl14YsdC1KS2S61O/hhuWtdxSO3D7nf5ugwu054JOO/HRWvhpbi2u01501Rp5pirTJ/q4nCqEAHC/KozjHOT1JNdJRQByFx8PtEu57VpEna2gM0jQtcSFppZQql3kLbm+RSmCSCrY6AVWudMt9J8WeDrGzgWHToVvAiZJIlMYKnJ5JKmU5PPWu4rM1jSodXt4UkllgkgmWeCeIgPFIvQjII5BKkEchiO9AHmOoasmp+LZrO38UayMCYSCzLRt54mRIoI4mABKKHZj/Fnc3y4Fdbeaha6X8QLy6nkkWGLRY3udkbucCdghKqCSeXxgZ612eBWdY6TBYXl7eKXkub2QPNK55IUYVRjoqjgD3JOSSaALkEqTwJLGSVdQy5BBwRkcHkVNRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXOar4Vh1XV21JNQv7G4ktfscxtXQebDuLBTuUlSCzcrg89eldHRQBhR+GbC3utMktzPDBpcXl2tqsn7lPlKZ2922kjOc8+5zzvifwlOmk6smjC4ub7W7qAXRnlHl7VZdxbC5C7FKcA9ehrv6KAOZ8J6Rqulpqb6rLaPNe30l0Ps+44DYwCzAZwAqjjovvx01FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/2Q==\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUAAAAAoCAIAAAAAIrR+AAAfbElEQVR4Ae3bdbhmVRUGcBnplFAQkO6QeChhRqTkke4WpENSBOmQLglppVPpRoEZ6W4QpEM6pFvwd+eF5Xm++92PGYZ/7vN8548z++y99lrvetfaa+9zvjvf+eKLL/773/9+8MEHH374oYbHXB9//PFXzf//S+Dzzz/3TLh6tT/55BP9mfLee+999tlnGdUfnTrTk+kReOedd9L5/vvvl7aySybChpqdkQyAMqSzhLW5E7HhutesTz/91MQ4BX+B145FQ31p/uijj+IyhNETqGk3Z6WnXIO/XIiVeowkzdWDsciY7qr+IqQwx2LTOpkgdE/DdJ1RRT6dzGVWwsRlPdFWVjKr6VTJNDtHsA1PYaYKknfffVcDvL7MkRHN8ppr5OlJo+bG07fffltPqcqslvubb75JJqHUcBXnlKCoOKGn7EYmcytnwnaUjPh9JPZGHXXUkUYa6TvtrnBnZOSRR/7ud7+roUcDEaONNhrc44wzDhADBgxIvzb0FJJ84403JpxwwtL64osvjjvuuGOPPbbccic2yiijcJtmMnks4WpQ2MTGikfmIhCCtNPQH201fbgalNAAEjBjjDGGubGuX4/HjGaog2bpRQYS081FV9MLgTQ3FJWSmCbGOiumiMvoo49OGEtcLg3YozyxeOutt773ve+VEg1ZazrhgPSoc8wxx4wML0yMQJPVpgY5aq6cHm+88dIv1jCY1RSrdpCLC6OUR206S2YEGzS7KOmAAVGswxn8nS0+/fTTE088cWhJ3kYetzjXI7f1vP766xNNNJFoSnKP4SRgyCSyHfJNKF0gJVg0xFYiG4sjfu/JjNKCBbDEgEnI2DNU5ktMIxEyNwGTGeZyvoStXnmAIzlEBvUhxZofa6yxiJnCNzuJu2wuVU0rOpNzpVaPfGKIWKVjTYGKAFtBVf3D0kgGxBAlCU/lLi8S71QuAp1NCBJ/yeDQxUGJxdPEO+xBxf3Q0iEPkkaEX3rppR/84AdFBSYVRGppQ4iGshhPo1/2aKRSAAwGZlwtbMRZUHNltFl8MVPlhk6PMNNDecDEXEzEkeaUFnPf+JGVXEOdGCAiVci4Bnxv1/RDYgjzRsWO9SzRIA+H//nPf3Sm5DFBUvgsZquXfPYbDcGSui34yXPcFA3kGA0DOtNInutnnVGdxDLUouobPoZ3ZlzafV2I4ADWiGl4JBn0GhzOxFdffVVDMkUYg6UWEZExC2Vp84rOtAnzLe3ed0MZ7a2wKZyYuTc7h7ENWPwin0OaRrlWzvJuWBRSFW3AtODhdWko/bwrefxo10Q7bWlgHZMeJV/YpiqQMp0e5BMoKxplhWQRHgyxW/p1ljA9HqO2QpZZ7qbEbiksACUz4g20N7F1VpjccC/fSz5KCmpR+sILL2Qovug3Bbfuttx4VKmrUw/J9HvsDU8PAE3MoTFKAqw5SsmIXANAUaKUhKoKtDOpHoAiujGmhtmCVCliGh5TVCQ6gWwjL7/88ve//30cLb/88vfddx9hysnroUqR22mnneaZZx7mHM/0SBSlnRhGaKNHJeNMShHT1SZpVh6Ds4wSJomyzKKBAOE8Du89JrBcG11co0doYdYoVH0p97JgCEUc1wDJpYGN4ISQy5xqekFtYBN2MDadnpVXXvnMM89El07CNKAxR5i7774b29RCFZBlRYBo88gKDMyVFzrjWtHLKFuZS1uyX8PFFj1G5UPO6mwlOxMsAsTIlF+xO3T2t3MDj1GO00xjSPAIv0ukajkZDYEcrCODuZFJjvElsCCn6pJLLvnd736XbBdfQ8lMozi86667yCNQ25I26hCkxygTNAdSqLPa4SETBtLJtJ70Z/c2S0/uGt/CxQaTLjHgiccgk14Mc1K/hk53LJAJfRzLxMiTNKq94IILbr311qY7+0XAnXvuNPzkJz/ZYYcdkEWYZp0kEx4aPEYbSf3ABACjhlxBa9TlsbYg7erskRv+SyUKSHZjDjw4adJTdwBIBnBbIwDHhZLxxpXpFBa9pVADk9jQcGmEWFbmnXfeXXbZhcIAMGobpFwtv/DCCx2Yn3vuuddee23ovC+/2yGh7Or3GFbZ5UuFLDRmYpjUNtHJOUPu6TeFhujUGW0w8EXbaIIIdtNuGIj+Eb8XgL5UMdfEFjGd4AFWmIMKzmC+9NJLvdzisNTWKQPh559/vvr4yCOPGG26ljWih0V3ymkrYgkX52nHKGI9muKxCNcz4td3YI2N3KOxAMFXuWWoMkk7i0cCVQ7pfOKJJ374wx8++eST0QMxh+0kHrMqHn300WmmmcajIffLL7/8qquuimm2soQw4ooGSGq0lGQUfX/4wx9y2olwdGo3fcnQsNyzXPGbgFlCZnkstVbOKaecYkE2OWnRnJMShNHG99tvv/2iiy6qKek3i/4mTkbLa6OvvPLKdNNN989//lObGGHkJMMSnY033niLLbaI9fBm9PTTT0e+o1BcCOdcKEMJaMVRP0mdGpJMvkprUD1GhubDDjuMAL+ihHyV5ssuu4xrwUBGI3ZLf4ZG5E5hdFLChHCHYY8aiVH0EyNQpoMnQyJIUsbGBQ7icLPNNsMhAQEN8xSKF7oyd5llljniiCMI0Ckc+++/P4oKTPqj0N0U/Fdw9TDqHvkbbrjhvPPOixX6g+pbuX95uKIrxw+xuemmm2699VabO0xcdRqZc845f/azn0055ZROYnLCYQAXJ554onPyzTffrFAtscQS++67r8PwcccdR9ISNZGwxbnpppvON998t9xyy1NPPUWnIS5xZqWVVvJ46qmnTjDBBKY4mXD4+eefNwUGpz5q9agOBGaZZRYmcjI0K4dAYuecc45taoYZZvB1R/+IXEz/6U9/wgMHOW5/E7Zf/OIXiy++OHOod/Hij3/8IzBTTTVVX7aANOQE5TB2wQUX0DPbbLNtsMEGdC699NJOX1giAPzVV1/97LPPSpopppgCJ9pqn7cP7rB1wAEHLLroojPPPLMk8LjqqqvSgPBNNtkE1eTHH3/8hx9+GM8SwtcsMkOGDAFvgQUW8ImVib/97W/33nsvd/wW4OAz66yzWp8XX3wxi7PPPvu6664LZOKe8x5saN97770t2nXWWYeGjDpkrrfeevlB4ZlnnhF3aepoMPnkk//73/+2U/30pz8Vo+QPczn/m/6tXHXotQKVMwzIPYBZsajkmOzisr00knpiF3gNzoqa9cNxix8J1u1yyy2nH/+33XYb9kTTfeDAgXy88847Zeyee+6J4bnmmuuss8761a9+JZT0//73v0d+rHDcMoFHdERchuCEkplmmmmppZYSR2yIl7WDUqrsW1J9lVVW0a7j/bfCT0+QahOTDbLT0rJiad98882VqARmxRVXTK5APHjwYN7iwn6r6lhjluWgQYOoIi/YGi61WbJeeeWVxxxzDG05RUhcDEpoAnLut7/97ZZbbmmhepQ3rl/+8pcyyauyBf/4448bld+11WTzARhZpuy6665SHDBtVxrU5jEy2qh0pT8a0uZLJO0kjAJvvU0//fRCKHj5CPn3v/89RV26GJUKQGZW23uMosUscV1//fWJIQED3AzVYfKxxx7bcMMN9T/00EPaf/nLX+aee27FMWV+m222kTrmSlwrX52yrxK2nMKku6yisNiTKyovp2QJBwFQT6vYUSUvadhjjz0cCjxW3OOgHqose1M4m06rxUIVNaO8mHTSSYVPjDT4yIoQKxyEI58QFLFoN9FjQGrrCUUVEUN6yLS9KqZGgVGSuLnRRhvJjX/961/CJD//8Y9/QAIP/Xx3dwWSQgPhn//8ZwuMvPMFBq6//nq+W2ZhEsNqpaKm0+h2220XDUzIvYRb5bIo5GSGAFZKCEub448/XmVkYrXVVlNW6Ex2Fb2Zojoodmm7h5nSlobyVwLD2OhZwCACJLOV0iWXXFLPoYceOskkk2AWfXiBDFYpZcgZw95o2WjnQo3qIurqGb6sSVwb8iYsIzUsP2olgbrlUQpaIRr006lM4Jo/HNY44YQTlKiYJiMe5557rtdmPUkjUEMQ2K5pp51WYDRIGnKZ5dJAh1mGkgSUJ2CJNBkNdr1PqujWsB5uHnzwwZkuJJaTiu6IpUcpsS9psB4A2m2vxAYJFj8B1iFxynAWBSZxNYo3W+Vee+1FngyoGgq8o5pZqrUhYkiDSr3XKQnOPvtsDRuIKXYGK82jiUj+9a9/naEAoNDjwgsvLKvUXPJOMc4+iU5ccEdU5JM9KLKhwZBHVWOyySZDFMmFFlpo2223lSfktbfaaiv6hW/11VePO0V+TNOQv2EgZrpHSyVtdzLBoN35ylIMbOmBDXPLlgW8/fbb0xBfNMjjh8zOO++sxlm0Tf3YkOeyxYkyi407dN54443EyKtHdqZM0e8ztTYeZpxxRnsVteSzDciN3/zmN4WEGFosdQ3OAgwJYYF2lz9OPYakcYvjcc3QN7gGyCcHMMtPkBZbbDGrRZKxAbFSl7OK/ZCA8MNt7Zni8MA3/giJ6c6ZMs8CVu2USewYJeyDlpOhtSHznM1wZ0guyipYTXEXAERgQTHTsGxsfTr5vMYaa+DL7mQhWdWUeDQFMOnIBNMwH3vssRr6AYPTRNo0THEZopawWU56GoLkjlx4oofXXngsBv2oN50S2yNzfHfEAtvbr0VFgMtUiUHbKwLu++yzD8ZksPA4ZSnwCjAwrKOag2RYlGqQ890jK3T6NKoNKuqI8V2RMv2ggw7S6eOzvVqn14dFFlnEoQBg8g57qqTYGRI1qrhA22677Ua/w7x66ps2F8gLHFRmcUSDvGDhChtMqNc+fUcAADJUuXtdwqoQk7f1HX300TTsvvvuzqjEVBOjelxUiQWvnfNh4KPpHs0FLJyTiQnKTcF5X5fwBRvkEo/LtLFFsxrHO5sN/DqHGu9RhYQ77rjDvmLNONOKI86NWrErrLCCRFWUtaml0yicNlh7KfclgxMvJU6OP//5z501sCpAFoW7KVzgiHc9puUGJGeccYatSz9IVDGEEJcGrhIR9c75nEDwE2ZCEmqQREJ4iAvDcQfCRYt7lgfq7bF5F6JUv7c4LGjwlrHshxHW6coh+bTTTpN8BJKUBKwu2eDkpopfe+21JK1GPlPLE4+8yr5Bs0cTQXcg976h2Htz08nJ7DPaqHR3xbohQbIDiF/2Z45ERhH1rih+jutOfTYo5y5J7DXm5JNPjpLm3URnS0nAVtiwQoAJ7AceeMBJkjzYbDUntm079KoI4h1hyxg8kcs3TyVAEvtAQn82JYTIJ3Ytg+TKNddcY5Qv5trJceJo4OCjVoZe1c1hJ9alNQEJ4ZG8kp/+WBc7apU5naE9o9aPRpwtYnU60aihgCEZbJr9fEJMpgo9qISPPPLIAq9M29ip4pS7/Il++SC4Kr5LNXSJqVh4vXfmjExmdaA0/JQwo7y2uzgJKojWtgWZ0EcJ/PGIUcKZGGDxyKfB9KtBwBDAmz0mDE899dTekMOMUeUpmcaElazwkdfDRMK39tpr21q9h6uqZBBFIAzkHjA65SqifGWMcj0tF5BZbi39nR8HcEZC5NWcarEXY0AtM8UGIFuQtL7iiiv4v99++1GnxhjKFGkHqGOG/JagnLdoHZLBJSMLffOwCVi3tgu2DjzwQNtvtgiPuGMuDfd77rmHciRaflyVrIxC5RsV1hiygxGz2llHjSF57LXtuuuuUzvTrzqSsQ5zFvAozMoK5KbgSIp7mcEXMT3urFCYILGlWjsIWPlerrhDQLl1lE2WU6h+E257sWJrotDbAZ1gmx7G3O0VGLYSrFLOOlOQoRY8rmUnlBP6+a4K7Ljjjmb5vqB4WzwWKmdVdIXA26DPDdxBiw2WRzlsi4LlyqjYhQr+YoZOqMTFFHfpTsZcAFDBuk5iLi9+dktxgQdUMcrmZqL3RhMJo9d0SMh7JRbWrB8yEaY5yx4GzrJCITZc4mIFyrqQb5SMRGp7cQc/CZascO6VUb6/2DCtGfueR64hhBIuYBJmJDsXyEA9cLIOHmBQUeLbpAy33zq2KATkVVuVGsNotAOD6gOhHuWeEvmAUpygwgUPL3Au5ZRUsO32NiowxJdFHqHaUUt+IgQALGmstdZaCh/lrnhkiEI5o2GW+3BfXKKOCibT8CWTFsctXCgtEjGxMWpj5C3hbAKmaBt1FjVFPDzyFh1OKfoDLvIQSz5+5k04Om2MOCJg1N1Sp0fD5T38r3/9q4Y3HKQM7etZgfSnjZQ0HAt9eEs7aoOk9m2PGMdmZJp3MlHIIwzOP//83gDlh0okP5Aj+1FvIQEWr9k19KM+Lh9IFDunTS+9c8wxBzymsygz1DiJG+vwWJlqvIYrnc4jOJcNfgoyEWDV0+trRumJdxLI4VwC6U+PPHZokrVFePiUW6p+PshJ3wibhc/ETptM9NdchICazcSoisZx1jHgMMU6eRY9Ji4+56CO9eipuwKXdqZoJy55q8wQH7mP5z7o/JGkJ5lYe6dlFL3kwWM9bhaBkCfKhkgCaSgylHDfotWvOnsUegnmXJCwct9cXlCuoXw7VlSO5YOWocB2p8f5Lh6ppEzbrqzPEii29QTh/fffrx4V8+Zi1VUIswBLw7A0Rs4LIdwWYdTZLW1Zqqyq7yuLWIYpnbJZnVPtFGlokM5t1dd06NU5QOnxSqCHZBDAp1Rz2MKwr6ZC1x1ZhmQAYWdFpU7SyGMnEzInnXSS3dXhlhUFD0ImHK0tM6XEI2yOfGonJeBFhiphVkHDOAD6wZNJpjgfOkpQDqRVpJ+Aiypi9n9/McZx+l3goZWn9DNNWCX20dKhWk/vi4y1BJLdG3LJ6uilivPL9kUbbAyJopDnDYqz9NgTkOO463W3irHPxXLIaFxDqWwTGsd79Z4eSjiCXtP1J2n0ZEXlxydbvbcJp8EHH3zQlxhIhNKPKJKSEvshVNaJQMcdFoPTI7rSyRb9WHLXAwkllqiXI1FTIxgloxMDPILEmR+qbOaYhFz6AkbM4cKJjBKSyGFFOsVQy10EyVOOMaZp8AnKXd7KPf1+7PDtXbnEto8FaiKdLnqAodwLLZAo8mg38mHVZVRhwo8SSYa/DEkG5BjCgLdrs5xBDEGOnCSbRzLWtij7wY+khD/qqKP0+8C27LLLKu52Lw0/XImvkzz9dIq7NeJtFGwX5LKRR0Zxkh6eco3wcFyyM1UE72xICEGVwdrZwagGPVUKAqqVYUTYqB1FvIIyb7tO6jSrDg0mVlGxWvS4yOiUCtpWqVdTzmtneVirNcVJ9cc//rGlwgq6pYKF51NNvuYFkm+MGDQdzuhJ4fdWgzu/DPGFFZf9zSdTr2G+HLJO3iyXzIBTwDiioSd6NITHHWCfFr07Gc0sCMm0vcgTU9cFzxeBnC90SuVUiphwvpBPAmYIM2qN7Vpd8JgKLSghM4/662I9wNKDNxu7khqGQ4tlaYXgKubcBc43UlPA9nlMBZQ6fjX0U5OkSfThIemI5KSahU2zPA6lfuR0EokVNVTqY8Plh7d8OY87elgB23nKCct3B4Hw24xYCIEF5sXYr3FkGI1dbXbbXoZcodpyknLcd8VN7xGQWJyqnk8bGgATlsZykl9eZ5IG6pefQoXYFAqTACR7tA+17g45DGn09H61c2pQqLhb5Ex75IsVmOnJZJuW8PHaG6JEdbTWY6k7KYQQmrGtkvboHfqbnBzwambUlTWYoeG69xQG893DPrpFumUdNjVaMKCTsTc6cGo48nk3E/VoIMzJ+BY6mtOrnQD4mVSu67Qh5N0Py0j3CVf9tgZsXzTb84kNHDgQWc5RQCaDhd9RR5bQkB4YdIblstVsgFRh0+8Rd2ZxRO3IaqmswkOYtQEKRn6Q6OAUhbEOpAUPsDpCgykiZ8EQgM33D2dg+4+Pfz5uC7kFI8Ms8kDtbCIy7hwhKXx02nzsADpBpd+iUi/sDHqcaJDp9cwRgBUnXqVZLbar+EXAXImeie4YPvzwwxWXBEgNdfogzy9/Gwwz5c479h/libwjBrXeJENdJSJsbS9ThutKLGzyPsJD4g9dpAcNvBYdl8zBnt+oOSJb3EO4mK655prCarFJJ8i9TRj1dmM6bOGtLzAEKgoklTxrUipS7iOczMSwqiR8HqWuXSRfiLwnaudnPyxByAS7VrJjnRCrAnp8J7L9SjltNTFuphb0Baltf89rjGm5gM6XQ/baSqfTWUVCwO2vC5RkNU+mKtgVPA5Hshq9taWQK8n5ww9bnFRQ6eWKdh7dATOXz0iRWDgVEtupqqHfn0858ToZRixWeKEBTNuLhghE2CMx9CkQDmMMGUV6BY8Y19xtHRIiad3cAKOn7kFCg6SxJ1SWOGR6JTOdLatCukt6yL2weLTGcE7YRBEpbZ0boMIZE/7qw/e8tDHpGwzY0o4GaNly6VEKNcyyDq1S8li1e/vdCICAB9V3h7AEDIYFSwNR/vTVvirtwgl526nvGsk/Uwo8bW2vzh71Hk0gbIAu364tId6F/yBUklIZ0asSea1lN3qwahsUCEc2zur04VoQgc/c3uaaPcipNBA4FdAoT6mFwYVMXytkqaRFUXLDvmoHJqmI+7Kt6PtsBrCzmBTSz3SsO1daxmXROqr2sDd6dmBXAeVbllb6e99BESR5xhNnacuJYxawjIwS4EobCnprSA8NGg602T8lR/rlREpUKrpOTBG27WOKUea8wwgMSWR5qSAT4aY5GNpeQ9n78uBkIhnxZt0LSWgNDJ15jE76Bw8e7B1J9hOoFIlwy90eqIdOyjOkNChA8KdHBtSUtqpqGZRYXw0gIXT5Aw87aky31VkaMiqn8+JjO4XNIiRgCFTrIW4KBMd5naMB8hki1qwyXrhMiXIZHAfdw3PveySH657cSHHJRPo9xnffwJ2r9Ss6GPAyn89vkYc/6yp/Vydd7dVlXVGodu9GwPNaQ9qbG53xseRxQiCPFDqxqxFkvKk50ius+YbndKBKxhc6LTSHpvxtlgzP9M6BK4vNRs//bPIcvTW/Gk3RapuS5ecQZTk5+utJaMkkeBFucbU0pMFbL6XKEnYyK64apTAYqA1rNnz9MmnIkCG+JaIAZl8R/BIQbeT1NN1Jf8udQGTSzy4T5W8zGKU2rjHtI/ygQYN8bmnR2fJYXifR1WmfWHK+BZswc5wSwjy6yzPCcapFW+dHvjAXizLGmSh/JplZTjRhz6OqwUr6EWUvdZLyaE/z7ZR1naD6+SofacEzag0rnfSnrBdRKTFOs87/pVYcoz9+pT2Cdw5GW1IuxT0wEkflw0cs25fi5W/dCmGBAVWm+Ryg1uR3DYBrtAO8xD3WKXdQxw95/VjV76I8Ykld1iWk83PocqhOjTjkkEPsOgkTDXyRwz5DaKe+FOwOeNoO9XxmhMC90HjUbiutk2Q5jwj4WmwXSsLNpdJboVElwM8hUscVgdBRp4AkB4tJRHxVRpL3t9DuCW3TLkiU93U1kZAx0UUtDBp6SiBtndXjpO0bYwd+SBqtKZD4XZGbYYnCYi+wycflmAAja6Msfm2DThclktsads6UTEmLtnNDdU4BtWPTQNj7m6NNZgWnfv/lK+3cTYn7PHI+zJsw62BHiemG9LS92kLq3Bm1RSnh9FQUitI0cl6ITrPAIM/rJFVmyasOFJlLLJKxK1j5S9gWqE1UFbhUmaak85ETnJ6y69Wp6IpkedGc+LXt/3/EKtGsmXrs3YhhQYqHBJqLqgVW7+npaXEyKzNcV2YnD1o04J3d1MIakrKxW3fMtr1qigbhupr91S4AcRA8Q8nLkmlpZOPSicbMSmb3pMNX2y+jxZhOucWQzlIVQ/U4LA3OEmtOtP1Sm7kwpF0e6Q8ebJuVe4SzaWg7iwZV9WRWZSoNpTCmDQVJEdvSiInhvVOLMSCj3PRgSBYx4RGAYIDKY7wjmc6a6LFWeEsSNlGlzOnJRPfM0oBEEjYFrD2PjBbhIDkU6EGddjRHlcc6aebzfuEJ1CaMr233/CEI87Hh7mK1w7SMEqtl1nbBE+igxFD8Z50kx5rQmfCIpjhMOMGoNCrlBMKFezREsgQ6YCDTFBMSHplOD7XNoZgAmEBeyDuozVACo52NriitRkhjrmlIPoFRXn+tlaZAUqfqQuVE9TQZZpRpQ7bTpjk93IwkJNFfGjTqQwsqKEkOxKnoKeEmthFptygEL1fMgZqNK7urdiCVxbgZknGeRriqWJRwsxH9bJnSQl2JkamhyDOXCl4rmXAZAgDCTCGZfK7R5peRMvG1jS934FKaCS2sNbWQdAUulAHq0RV2Itzy2NRQbfKZQmE6aauamk4Mlnx6EjCd5XmIiLbIR21N7N2IcIuYx7hDHv60S6bMGa3k7q0ZyGCoKpuJRWkUlloaCHCqejQKRm/9HXpKc0HlReRLoUYhSSe0kqmsk69ZRSaBcpmkR2IZrdhFbfTQrNH26oC/ryHmQAqfMUcz4VRJPS2LlnCwgeEiSabgNcNR4HubjnzuIaQSj3X6o9lEoynHJWAoAGpIVgdz7pEvo+SDpAJXQ1/bGImEz2vdq8tAl4H+yEDPf2boXl0Gugz0Uwa6C7ifBq4Lu8tADwPdBdzNgy4D/ZiB7gLux8HrQu8y0F3A3RzoMtCPGegu4H4cvC70LgPdBdzNgS4D/ZiB7gLux8HrQu8y0F3A3RzoMtCPGegu4H4cvC70LgPdBdzNgS4D/ZiB7gLux8HrQu8y0F3A3RzoMtCPGegu4H4cvC70LgPdBdzNgS4D/ZiB/wHMRQs6ey8NgwAAAABJRU5ErkJggg==\n", + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAAoAUADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3maeK2haaaRIo1GWd2CgfUmoLbVNPvZGjtL62ndRkrFMrkD6A1zPxGgs08J3up3cJuJLK3l+zW7ndG08g2ISnRmy2B6bjjmud0vwuY20PVodCk0tNAsWzI4SO61B1j2hGEecJwWO7kk42jmgD0S91vStNmjhv9Ss7WWXGxJ51QtnpgE89Kg/tkPr82mRxZS1t1nubguAse4nYnuSFZj0wMdc1wWiaromm/DK51bVLqzvdV1Oya7vgXDyXDyD5YsdcDeqBBgDPvk2NC8F6ofDjaTqhYR6ppFtDPKCC9vNEuNjjPzKVKjg/wsM8g0AdXc+KbFILa9spra/097pLW4ube5VhAz4CEgcEFmQHkEBgeRWvFf2slzc26ToZrYKZkzzHuGRn6jmuNbwde29leaf9pW7j1bUY7m6dYlhSCMFS+BkkkhAi+gx6Em3DfRab4g8Z6hcf6m1gt55Of4VhZj/KgDohrmksQq6nZEk7QBcJyfTrVi6uobO0muriQRwQoZJHPRVAyT+VeSeGtHuLXwnptp4jt7GPTdQjWdGt4B573U0gkywZflMabskcBQeflFejab4j0LxGJLfT76C9DRlmRckMhO09RyM8H8qANpWWRQyMGVhkEHIIp9cv4Hlb/hHFtclobC4msYZeoljikKKw/ABfqp69awLvx3fRXlxGmoaGsaSMqh4bssAD3IXGfpQB6PWcdb0pZvJOpWYlDFShnTdnOMYz1zVKyk/4STwsv2ifi6RkeWxeSIYyQdpYBl6Y9fSvMbHw7beI7fxVZ6d4XhMN9eta2l88EaW1rDEogEkZzuZgUdsLwTjJGTQB7FcXttazQRTTKklw/lxKTy7YJIA+gJq1XEaNbPB40vbWRLm4GjaPaQWkkzbmk3mQyNk/xMYkBOf4a1v+Eh1T/oUNZ/7+2n/x6gDVvL+106FpruZIY1UuSx6KOSfoByfSpXuoIrf7RJNGkOAfMZwFwehz0rjINTm1D4my6ff2th5VtZsYCyBpojJjC7s9XVJCygcKic8nOXeTzaf8Hr6xtWLzGefR7IHlublreIDHdVx0/u9OKAPQrfU7G7k8q2vbaaTbu2xyqxx64B6VmWviiylsbjUbyWCw05bh4ILi4nVRPsJBYZ4AJVscnIGeK5nxBp9vDr3gzRdEjjGoafdJM7xxqWhs442Rw5GNofcqgcAn6UN4Bur/AEgaXcXCW5s0vLOC4MQmWW3uOd4XcNsgHyEn/bx94EAHV2utrP4gn0t41XFul1azJIHW4iPBb2IbjHOQVIPJAurqVk/2nF1Hi1bZOxbAjbAOCegOCPzrnoNNv9P1AXsiGePStLa1tiFCm4kba7kKudq/u41APOc/Us8MXNjpnw006/1GVI4ZrJLu7ebnfJKN7k8fMWZjxjJJxQB0batp6wpM1/aiJ22q5mXax9Ac8mrbuqIzt91Rk4Ga8o+Hum2yazd6NqenS2y6YWvtGs7xUzFbTsx345+cEFTn7ucdSa77S/FWh63cm20zUobmUKzFYyTwpAbnGOCy5+o9aALo1WwOnw34u4jaztGsUobKsXYKgB92IH1NSy39pBI8UlzEsqRGVo9w3BB1bb1xXBTRLaWGtWMRIt4PE9kYk7J5kttKwHtvkc/jWJgRoNUCqNS/4TgwC42jzTEZzGUz1K+VkY9PpQB65b3EV1bRXEEiyQyqHjdTkMpGQR+FTVy/gplh0/UNMhUfZdN1Ca0t3BJBjBDBR/ubzH/wCsTU/G97aandW8WoaKiRSsgWaG6LjBxyVXGfpxQB6HRWN4c1STV9HS7lktpZCzKWtlcIcHsHANVv+Ei1P/oUNZ/7+2n/AMeoA2rm8tbRA11cQwKxwDK4UH86S2vbW8DG1uYZwhwxikDYPviuK8fTXGoHwxo1tZo9zf36XD2t1IEUxwL5rK5AbA3BAcBh27g1Da3On+HPGGo6v4i1PTbLUb60jC2NqSVSGPJ3s20F2yT8xAwo9BQB3800VvE0s0iRxqMs7sFAHuTWPdeKNLTRbjVbK6i1GOEhAllKsheRiFVBg43FiAM+tc7r9zaXnxJstO1i4gj0mx0/+0FjmkCpNcNLsQkHhggBOOxZTWTf2tz4n8eaxceH5IXhsbC1jaTP7m4u47hbhELDg4UYJHI8w+mKAPQv7Xs7ee2s728s7fUJ1BW2M43MxzwoOCwyDg45wap6Z4igvNLe5vVWzmhuvsVxE0m8Rz7wgUMByGLLg4GQw4HSsi78FSajrsespeG0L3kF/JDJbK8odITFs37sABSSMA4ZmPORiHULC5ttCuLy9TyrjUdes7losg+Wv2iCNFOOM7EXOO5PXrQB2FxqVjaOI7q8t4XYZCyyqpI+hNPtby2vYjLa3EU6A7S0Thhn0yK868VRaprPxGjGiW1jcXWhaXJMv2tSVE05wi5xw22PIzxz9a1dL8QeFPD7XkbalFBJcytPIGiCCQxqsTyIqDG3MZJPqGPQUAdfFeW815PaRyq08AUyxjqobJUn64P5GrVctqTLZ+PNDuIQGk1CCa0mUE5MaDzVf6K2V/7a10cNxDcxl4ZUlUEqSjBhkdRxQBNRRRQBSv8ATbPUkgW7gWZYJ0uIwxPyyIcq34HmrtFFAHEaz8N9OvdRtb3Spho86XEk1xJawqWlEi7X254RyP4wMiu1VQqhR0AwKdRQAVz6+GYJtV1i4v4re7tdQ8n9xLHuA8tCvzA8HrXQUUAZMXh7R4Z4riHS7NJoQRFIIV3RgjB2nHGRxx2rDsfBDaN5Uul6lOtzb6UbCISgGNpMs3muOuS7EnHXj0rsqKAM/RtMh0fR7TTYCWjtoljDsOXIHLH3JyT7k1fx9fzpaKAEIyMVU03TrPSdOhsLGBYLWBdkcS5wo9OauUUAYlzpEo8TWus2kqIxhNrdxuDiSLJZSCOjK2cZ4wze1bdFFAGPd6PB9rn1OxtbaPWXg8lLqRM4HbOOuP1xjNQWPhLSbTQ7DS5rSG8jsxlHuIw5MhO5pPZi2WyO5rfooAo2OlafpplNjZW9sZm3SmGMKXPqxHU/Wr1FFACEZrmdM8I2trp6abqFtaX9paTs+n+bDueFCdwBzxlSSARjgDvXT0UAZ7aLpj6n/aTafam+2hftJiHmY9N3XHtWHpXgyPSb6yvIL+6eS0huU8tyAkzTSeYzNxn7wHT+6vpiusooA5SLwnJFoRtDcK95PqMWpXc5TAkkWdJGAHYbUCL6ADNaUnh7TP7Rk1SHT7b+0jl0mdSR5m3aGx64AG4c44zWzRQBleH9J/sTRLWwMpmljUtNMessrEs7n6sWP41qY/zmlooAKKKKAKE2k6dcahHfTWNvJdxf6udowXT6HqOg/KsfxD4Qt/ENxczS3lxC02nyWA8rHyK7BmYe52hT7ZHeunooAx77w5puq2lrBqcAvGtf9VNN/rAcYLblwQSOuMVn+DPCsnhLSFsZNTkvyoCIxiWJI41ztVUXjPJJY5LEkk11FFABWXrmmvq2nxW8cixsl3bXGWGRiOZJCPxC4/GtSigDJfw5oklxPcPpNkZpzmaQwruk/wB49/xrI1bwNYamsscUj2MR02TToorVFRYUdgzFR052gEemR3rraKAMKz0WWHXm1K4umuBFZpaWwfllGd0jsem5iE6YGEFSaBoiaHYywBkYzXEtw/lRCJAXbOFUdABge+CT1rZooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//2Q==\n" }, "metadata": {} }, @@ -1514,10 +1839,10 @@ " \n", "
\n", "
\n", - "
\\pi ^ { \\mu } ( x ) = \\frac { \\partial { \\cal { L } } } { \\partial \\dot { A _ { \\mu } } } = - F ^ { 0 \\mu } ( x ) .

\n", + "
{ \\cal P } Q ^ { ( a ) } | E _ { n } \\rangle = { \\cal P } ( - i ) D ^ { ( a ) } ( X _ { n } ) | 0 \\rangle = - P _ { n } Q ^ { ( a ) } | E _ { n } \\rangle ,

\n", "
\n", "
\n", - "
\\pi ^ { \\mu } ( x ) = \\frac { \\partial { \\cal L } } { \\partial A _ { \\mu } } = - F ^ { 0 \\mu } ( x ) . \\qquad \\mathrm { c . c . } . \\qquad \\mathrm { c . c . } . \\qquad \\mathrm { c . c . } . \\qquad \\mathrm { c . c . } . \\qquad \\mathrm { c . c . } . \\qquad \\mathrm { c . c . } . \\qquad \\mathrm { c . c . } . \\qquad \\mathrm { c . c . } . \\qquad \\mathrm { c . c . } . \\qquad \\mathrm { c . c . } . \\qquad \\mathrm { c . c . } . \\qquad \\mathrm { c . c . } . \\qquad \\mathrm { c . c . } . \\qquad \\mathrm { c . c . } . \\qquad \\mathrm { c . c . } . \\qquad \\mathrm { c . c . } . \\qquad \\mathrm { c . c . } . \\qquad \\mathrm { c . c . } . \\qquad \\mathrm { c . c . } . \\

\n", + "
P Q ^ { ( s ) } | E _ { n } \\rangle = P ( - i ) D ^ { ( s ) } ( X _ { n } ) | 0 \\rangle = - P \\ Q ^ { ( s ) } | E _ { n } \\rangle ,

\n", "
\n", "
\n", " \n", @@ -1531,10 +1856,10 @@ "output_type": "display_data", "data": { "text/plain": [ - "" + "" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMgAAAAoCAIAAAA0fiJLAAAWlUlEQVR4Ae3cZZBexRIG4BsI7u7u7h4gWOEuhbu7u7u7FV64uxQW3P3i7u7ucJ/kha7DLhu47G7BFjs/hj493T1t0yPfhh4///zzf7pI+/bbbwcZZBDKFkD577//fuCBB/7uu+9++OGHwQcfPKb4hPzxxx99DjjggD/99NMAAwzwwQcfjDjiiGAskdNF7O6Sag7QVbROMn3yyScUlhaff/657JE6EghmoIEGklVy6+uvv5ZtkO+++66UAn/11VcyCY2sIkSGwX/44YcoIQ1JNUB361gP9OhCFUsmyYMhhhiCC6SU/JA08kmSDTXUUJDyRoZJnfgohSowRiyDDjrol19+GQnBf/PNN9LUUM+ePYPp7jvEA13Gm8khpejTTz+VClJEGsmqKlpSR6olq8CAjz/+WA2D7NGjh3waZ5xxPvrooxC89dZbo402Grzk03dnVYckU1NIV6pYkkB6SanKAzuj8qNKMalK0RdffDHkkENef/31m222mbRLYqlqiAcbbLAxxhjjyiuvHHfccdUqLMMNN5xUq5rXdE033B4PdJnESsV65513Rh11VAYXkHN6TmDwyKSdwjbttNMuuOCCG264oSSTecMOO6zRzz77TDEbYYQRHAAUKphshYF9dreO8kCX2QptapLpmGOOUV323HNP6fXee++NPPLIcYTKFMAuqURdddVVzz333D333ONTnbv99tsvuuiiNdZYY+aZZ5ZSshC96iWfEHRnVUclU1NOl7kVPvDAAzJDvenTp8/4449/xx13yCpZkm0xyWETlFWK0L777rvRRhux04Fsyy23vPzyy6XRbLPNttRSSyGw9zmcYZGsYVT2mk7phjvAA2LTn2Zn4X3r27pHJgDCFnpwC0a1BMbBRS/GLUb/5KeJ0kIPNhE17GjnnnsupFxhdq9evRQeoz5DGX3Mft9999n7XnvtNfhNN910hhlmwA7eeeedMd52223RM1xMA+AlKhi5y8bgg/ndvggwYtFKgiFOa8EV9Yom/sGFrEwIC5oSDgijIVqB69NzCbgE1nQxthTIFBWO0JeQ4upw4D9tSUx+GI1mISv9aF8E8Uv5AmVgNjRD2NZErfEYtcLzkRxSaYYffvhnn30WPo8LFIv7nJyS7nnEmmWWWdZdd92wH3bYYUra/vvvz5UHHnigxNpnn30oTL6nrNA0DaxJA5S9LfA+cTWVLAK2N/E+C4PFtbQoQ1bERlHGmSxiclHWYg4GZTMzfCKGCTJ9PGMIS00BpkCQJbyTgDYTy3wxL6ZKoyiUBeEz/kosEbvA699///0A/QnJH1rCERUMxPlUabx5+nzjjTecxHv37k0H7jvqqKP0GvVMisauF+c6k7300ks33XSTdweM66yzzjDDDHP11VeDNdbpCXdbxG5GplWO9iP5TUiCqd50zYAVnpyCAUVT8TZX9JENmRcZW4pSxsfVCKxMeL8ZYEccrwK02NvMuXBl9kjTo0yO5vHFJ4IoE8pO6ttMrLKzlKA3+33ahq699loKiaIT9Ouvv07dQw45ZMopp4yWcRniv6y08LSIkIlIE/sDDjhA4fGagEB6gXfffXdDUty8G2ywwS677IJMutTsCaSEm3vuuYOseMTMuL7omZONBqb8UKMtkAhogiWt6CELbvKCM10MxFWjtUqDKSV5PlEgsKlqJCAOpVHSgmxOHUyTsWbsPKB/zw3C45zr3Qigp6ttZckll/T2c8YZZ8w111wMXmKJJWw08mz66ad3Ol5ooYV22mkn6tq2hJydOVyD/69mLvR5zCxGuXLrrbcuvfTSN9xwg+Qm+bLLLjv99NP/2685VzmSTzbZZHLO6R4Xh4oHwOvDFFNMMfbYY2PkXwd28llEf4CLIYXB8GTmOA8Paf/VB1NqAAoJQIkgrWhIi+15YwusHJpLQ0ax6FAsPsFqkkJr107d5WqrghqAzTff3KMuGtI0AOGGwuUMShl4yKjkMw6UdgBOQMl8beihhwZ3bjN9Wy3eMaoga4A333yT6xlvbQHc4SHZlmTiOBpHmnqehZLP/6vnF7z6cOWTy2TVKKOM4mwu0Q866CDTGXrooYc46IgjjlAg119//U022URgMDbr5aKLLjr//PMj7tOnz8UXXxzFElpeTjHAgsAn08yVqcuE6NDUqggMBW7R816xm6JmQQbOAaNqkkkZZQiL24ZnEZdZtmy88carrrqqK4iqbEOsKUqyWGjwpXPBFNMyhelaKFCiOglocyukbipz+kzvvXGHHXYAW0YeilzTmO0t29EKMn8+IPzxEUzTmEj4M308UpRcJt6eDCSQunjSSSdtscUWCyywwFNPPRUaeHWUnlbt22+/DUm9qG0DnWaaaZzJDj/88K222kolO+uss7JIyKwpKCxN67PCVoGHkSjNXEHcWk/0yip8iQqAPaKeeeYZmBILLhcxk86XXnqp91tw8EkaZFGJ5slImFI4hpQcs9e9BFm1thQogo4F2kws14dtttnGirnwwgs51LsRq7KMKm9UbAT2lGuuuQYNzVZcccXVV18dwCPNNfTnlU60KjYALjPjWGONJW9sEKaTSY50ZHKuYLjowVjlntopGRdzN14HspFGGgkXAj0huKgammhIVVu5jeaKK65I2OBLgWieSONqGtWkMZ2UUiyffPJJaR2uSsTkpY3YAqjMoGrIFNcSNfXUU1s2GFNxX3zxRTQ0DEGR2Sv8YOUdOBL4J3kDoMPjjz9OeKlaE5maAtRIsMLbSf0viVXBMI18X3jhhW3ndhbPjPPNN5864cxkiM1ySyzpevDBB3vRhpx88smRAQhxcF5hhRXA8UsZnFF+KWth2moVDwQpPABOkUbmJTlixVIzJJD5xebhhx9OCCEzFwLEAqOF0RBMGPXiMeecc84666zrrbeedwobJQKUVQ8IxIvS5iuno0/YE2bEQdpnnYTsWfSHiUspnGvEjTfeKLlffvll8rXmu4PP5KJEca4A47VWl1tuOT8wqM1uspFGc8Ip7IDrmgI477zzsEcfgFFF0TswuDIYrCXzaOvXVcdQGHalEDIkJmSWfuTt7fqeFjViYv8tt9xiic8xxxw2EU6hqKEZZ5zR4cmsEmillVaCoQc3nXrqqRQFqBm5tTm/UzrqNlUjKp8YK65NgoKjhvxrhpbjaAKptRBOIJd5/JQZXiLoE7IITHrhDTveigGVGI5xvPHGM4pe9V177bXj4rBTNfHwqaQJs602+ST8NRRi0ixFQvLZ7NmimrrxQIJrCgBpCSe1Z599disTRu0EeyuhgGuHUi1LEGAnf7rppgPQf++996YwGp8IEkevKs5kQaoRpAVGA8a12267+SHVp0YmZGB9OacwfxnoW7FqYnZaChIl4oI3mXPV1ltvrcZed911jKSc+NllJphgAr5W3pJVTl0OMTIj+iEDxB2lcfm0/xrX0jFR/ykzatLo0JqY4+RT032qRXKC35mARWJ5NLEN7bfffj4TIT0TfNaRhRyUUopn4pxkKqNipogKPGPdcmiORq/51bK8mlNg6RlN6G9Ju7tRwxAhbrjSC3z88cfj3XXXXcGvvvqq/QHgUGtSGbb99ttTKYuQEPBee+11/vnnozGvnoZ6zaieH0zhhfnpp5/OZ4XGZxGD29l6Mszhw6yEOiDb3fJQZPWPOeaYouUnOXqz043Ma8Kkk05KdVm/4447yjYWOryznJyjjz56mWWWoXputlIQXooo7zAUZXZOSASCjbZubuMYeQ0XR/sEI84tnZAWLC6nCLx8whtNgE2ae368Y+jXB4EeNAGTJupuGzaU7bbbznIHc7eLGP2zWXjI4A2Zh9015bTTTrPVKtL+EtU9wPak2gmhWu5Y6UUNe4IE6ZwAKeqy0P6Iy5GIHIszu/YFF1xAE08nscuMxx57LJfyOTLvbX5joImgsM5xPn6jpG2OKAuYSs4ngsVLWe3eimlo8c8zzzyCMvHEE/NhHCjE1Iv36O/F0d8OEUIH7GY0xMk+wR3T4vqsP3s2A0Qlq79SnneYh1L+8Z0DoNNuVjNtkEkUR8Lll1/ecrTQRRcefZZjpoibwObyjO5V6XebX5pzOECGRQt7f3qUzaXW4rMFYxTzSyKLBF6NkVhKsh3HbmXqJIcdf7XVVsPrEMPRipz6AZAZVJJz4F69enGULRKsqtFBwQOfc845Dt0yO0dPAh1SpWz8SSYCozIyVURPvpSiEgVamOz1gUxcRm2UclpCU89lxTqHx67JRadhpdGRwBrAInWM8oaDnQiCKR/r6LzmmmvGw3GIUfL1HdX6/tmMqiOdAa5+nCUtHLO8qitRkJIji4weCgPvKGwSSDJZKAoGevVspplmUqXtjFg06ZXRuMnSUSe4nhlWjyi6uYSyRS+teZzMlCKSzevG0FxMjC8uESIZV1aeBSo2JOBCY6goA6gNyq3roU9TrLXWWqJOIMPlNNdb6IYY4m1s9NFHt1qcx1UdOz4kfQQA5bbbbuv1jqNiGgeyDrtT5rLLLksNZiLOMnvsscesRp/Rjfmqi3rvbuucxKsKp4cbq9pypTwFuBcgg5944gnpgpEHyFxllVVsGuyykq0EGalu+WsOa1X2HHnkkXpG3X///fZWKrm520YkuvUz4YQTxgmCwg+kCW78oGcIen1o2tn3LYNqI5NkDEsWWWQRoZJqsso0loLLjtWGTDw8TlKIZ90ZNUg7Jl6B4R3ld4899vAazpsnnHCCU7xgE1J5UHpjYUBbTVZhoYZexghS5Wus5VaS0yQQMvlKGsXQY7QuI/xXqr7/xaVliLGKliIkSNjzKSSyivKiJZ9cxwTexcXZEVfWjwCjV59kkiMwfRgOE8UETJpSmN+SGVaX4JkdOxrJQYfco11FyecT0twZpSnlZSoyCmC026pPlnFkEuv4j8AslHzkkUfQyCqG+K1dbgkf/Morr2zqE0880bLxYzyxCjOBp5xyCl/ZTOUuNXjJRETRh/fAPKbvqNaTy2hMtMmsY2mehVh+sV4dqsx3ySWX0MmdXFrwhY0fMmcCnuU7o2effbbdwdHh0EMPVagtqRiQCmQiLOKHzEr6XRs4jg4qBGmCx3KS5Sv7Qx+gPiNZSll/8kPeI2NO5m0xRTIAr3BKESub93GJ0JlnnuksTBpGn/fee69NkDTvvczhJWogphIkrZAByJFYZjEqMGCAT7BZkAVWxoScEErCALAvtthitggrU5mxi/GqEBBISeki1VS+4447jhvt1ESpkfYvVUD+0dBZylGJpdazPE5WeV916uJAoqSjE4upzYiLmUqmeTW5norOIpR0o63WkbnFDHbSTyDvuusulivLKpbNzlqhlkxHo6lYqrcNG7204wLpj9GQBeGTrhaH6y4b3GLyMGFIQ0P7vlL6NezS63dblPmVsO9/TQHJm7/bENCc3wGJCmJJw3daGEnQwo5MGPQWjES33N3g3MK41Y5DAjKjMAqS9eMOJSowriZC4u8NETiMgx1leMDeJMxcx2qVVc3jPc+kCDwXk4+XT7wLpNr5tAz0DhvWjy3Y1NIopRde8ygNKSFkagAsuR66GHqGUMlksEkR+3MSqS+NvGDZT1Uv+SHtDMm2HJcdvCQlDDkw7v5U4rSkl8VsSOOlAO3vexItkdnAO95O/GCinHjakcjOg862Sit3I0DphxHusM5sjnLIikHgRAlwhmC57JGaBPK434MpavGpBJYOpwszUVpKEZmtG2vjyhrymXpQmBaAEKo0fidggsWNnkPNAkgrev6SFrSCcXB0guFxpz3xsMplEjkYTcd2cVItHAkoT3Oi5NCjjz7qNM0JrmaQDk8ygyjBxqsEymYCBZuLUFqf1LOxOsjTyhrgH/L5x3XbVmU39DvmvPPOCynqZPI8B1rDKiKZtHV9U8+kuFO/m6NNUGYoTuKFxZnE71TOanZta8C2I6vs43ZwMHMYqzKZLjd9okTQ0yOLGKJe+MsiC4B6OUyXu9oFJDdNr4pYcz5TjVjIKsVGnyWuxjqhI+AsU955553iwX14ZZVHeUPWgVBZ6Fa8jOQ4F5BXXnmFu5sVqz8rQ2JpRFVrjakhAG09Cgih3zFt09x38803w7cQ0mQBUynPjGC6EZJCFbJSj98tJ9kAHyS35BMGHCQXsc5n2PVO8YEJj2RrKa/k8LKhRh3kVT6fTQVKFCukoFFZ5UyW2iybw049zg+s52r/JqA+aa4ke9ewQvDKSEP0TDFOJQuxn1PLkGJvJ9D3HUsK04/l7JExzAZLKTVGrTakIPtkmzOT0Ryl3VacfOUQAldfBJqVoURpGF1bxE8Z8w/6cFl/tOcm7CLR1nZuGbVYKK0xTQJVysbhbxwefPBBeMTm9cuBOsE1PrUmffKb0y0GYWO+8pDcRQYQYLohwChNIdGkV0tyKDGKRthMwTQOZB0YL0pkHAiw9+UEJiHcMU8++WSlCz2dk3CKhNtcTqt8QmcuwqgPQGyqiGJj8WA06iFXL1iUUef4H6+5+MFGSQdDGA3JKlXZ3uI+6FcBXHSDVO1sf+oIQxZffHFrjBCMOQQj64CWxGQ50YH1VrAehnnpfSrOUkSRp5a8EUvl1Kb5wgsvTDXVVPYRhc15036vCHse9FOXWwwVPeXxJhsiP3Ux8J/vE/vWPQmOGo50VAWbTiozh681ymOBL8bMaC+IVvmsPiUhn0IlQhHrOBikLQ9ArDAwKvLBmQVGM68eWZkcIfY7lQM+o9ZkuGDUHr1WdR1LuCA5lrdVYiwaTA2RECV5VbmymZgdAUP0GgIBCozXjSHv8jChcVzLaNmYz3b2fe9HUjsZShb9sixgasGZUiY5YPpl1H5sgdr4vB8yw6nC9mzRc64rrirt6OrJ5+6778buBYU7EFgWvXv3ZonpLEGzWFKZtJ09mSkPnkXcNIl1yna24NB+1eo35armEj86M1zMLNNc1mqU5pDMhOGT1DwGWu6hkTHYhVDNgBFmNIFLCICxmjqEl0C9JKAt+eiVKxjyU6gQgA3xD4GQJKCHB2RjAdQQDH3QC00ho6Q0dTRkY85z5iIHvfIpp6kkxEYr0MKR6cpAE7W3MYZzzQpIo8Sv4C+/SmYRxAtqckbDQie7NRbqhgwmQ2wuObV2syLrswj+MmBevP4uwAnGZqEqRBR81YOm8FhRNDGWu+kc3QyVemxJdYlpCFIwSI58AIF49aKrNb0X3Wp2DqkpDFmBhkrJAiAzKaAKDwyCONY6p1jEFoFP6zxIapirKTB4dpV6EUVOJGTGGg19e/q+KzIbH0CG6fmOTuUCGLO28FFZaFRLtHg/zoIJO0ZDybAaah4b+3H/pmvtDsOQbbUwc5nZaWV1qo5m9FmxD00kRFV9LIIMJjS46lN4gtRDVrY5SsJktElT5wcyE6FMEa+WP2sZIyPHjJklAQ4yYmuoeGteAGQIIj8RYXhSBEFFrZl88AlHCPRaye/AxOpBbnuL3t/KL+R+LRAJZ1KbgpsBzPPPP+/XmL9Vr3/75F0+sRQSZ4VJJpnE34FYeU4w7qTunkrXvz22f6v9Xeb/3dCWlxyxVSynVD/rOmlNNNFEngrtQa2P0m1J6MZ3hge6fMVyzpBDzhPeJKWXi0+LK15neK1b5h96oMsnFgtzbpVPCpV3S6dGmO70+sPYdypBl08sR/W8vrQGOtVx3cL774Ffnkb7T/RPHlWinNnd0qVXHh068pXvn2z5P1u3Lp9Ybn9uhR5gVCyv4c5b3g//2T7/V2j3P9oyXR9GWv4zAAAAAElFTkSuQmCC\n", - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAAoAMgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiqD6rYpBczfa4nS2DedscMU2gkggc5wDx14oAv0VwFz461TTbTTLm+0iDZqIgaLbc7eZZQoiHBBZEZWZiVUk4FdFoWqXN5c6nYX3ki80+58pzCCFdGUPG4B5GVbB5PzK2OKAN2iiigArItPEWkX2pzaba6jBLeRDc0Kv8ANjoSPUA8HGcHrWscYOeleOaFe+H9T8Y6TZ+HL9BFoMV1badE7yTNLI6fPI+TkQLgAc8k8YABIB67cXEVpbS3NxIscMSF5HY4CqBkk+wFcS3jnUEtbS5nstGsorxVkt0v9VeKTY33C4ELBCeOp68ZzVG01ufxhYweFtQEf9opdSQ6ykXyr5MDjcQM5Cy5jAHdXfHSs/4lah4bs7m/0eS+S01HWbaNL6Z3YpDbocgiMcNIRlVUc85JAHIB6pbmdoI2uESOYqDIiOWVWxyASBkZ74H0qeqloI4NOhx5kcSRL/rj8ygD+LPf1qWCeK5hWaCVJYnGVdGDAj2IoAmopM84pCQoySAB3NADqKarBlDKQVIyCD1qGK4hneRYZUkMT7JArA7GwDg+hwRx70AWKKydf1lNE09ZxA9xPNMlvbW6MFaaVzgKCeB3JJ6AE9qrafqmu3N8kV34e+y25zvm+2xybeMj5QMnt+dAG/RVcXMDXD26zRmdFDNGGG5QehI6gVLvXeF3DcRkDPOP8mgB9FV5biGB41mlSMyvsjDMBvbBOB6nAPHtVigAooooAKKKKAOI8aPc6hrvh3w0kskVnqUs0t40blWkhhUMYsg5w5YA452g1DrOg+FLbVrGeb7Hpv2C3k8xIIPLzHOPIXLLwBliBnPU46E11WraLp+twRRX8PmCKQSRMrtG8bjjcrqQynkjIPesTXvCqHwbqmmaNA32m7UEs9w3mSsCvJlYls4HBJOKAK8fgX7ZZWlvq1/cubeKG1lS3cLFdxwvvjLqVJRsgFtpGemSMVb0u8sNO1jVPt9/bDU7y/jhaJST5ZMf7mLJHJKKW+rNXOXGl+LkS4uLSDUfs0j3Edvp51IefDHJbqoZnLkHEqlh8xKBuPSo7jw54ruYzPFClvfvJYSiaaVJfLeKIq5YZ+Yhjnrz1oA9MnkEMDykqAiliXbaBgdz2FcP/wALCf8A5/PBv/hRf/aa6Pw1b3Nn4es7a9imjuY0Cyia6NyxbufMJywJzjP0wK2fLT+4v5UAUo77fpK3yqJwYBMFtW80P8ucIeN2ex4zWOPFwHTw3r//AIAf/ZV02BjHajA9BQBxdtrGn2mq3up2/hTXUvr0ILiYWJzIEGFz83YGrp8XZOT4b8Qf+AH/ANlWNqlzrOm+NdMWbV5hFfaiYljeMJaC28osIiSOZy4yCDyMjtivQABjoKAOQ8Rx3OvjS9Pt7aPEwN7LBfB1Qqm3akqqOfmdTtzyU5yMiuf0TWL7Svh1Fqem2iz3N5qU2+O3gMqRqZXVmhiUqWUBMhQQSMmuwvvDFpqurzXmoK0iGBIIvKleNlXLM4JUglWJXKkkHaOKtXXh7S7vS7fTHtFSztijQRws0XlFPulSpBUjtigDktD1O61jWdO1N4bBr6402/jjuESZNnlXCKFaNjwDlSwI3AqRmqkHifVdc0g6frNlY7NS8NzaliFWOzG1dp3E7s7w3bHTnrXZr4Y0eKWKRLMCSOGSBX8x92yQlnBOeSzHJJ5J5zmol8GeH0jRF01AiWzWagO+BC3WPr90+lAHKaf4s1XTdHurO6toGlsvDcWqw+VklTtZRG2fvHKZ3DHXGO9X5NUl8F+ANJ1C2sVurOJIZdQkL4dUfBlmAA+dyzlj0710MHhXRbaQyRWKKxthZ5Lsf3IGBHyfu8nj3qLSNGmh8M/2Fqwiu4I42tAwYnz7fG1S4wMMV4OMjIznngAovb/8JH4puLhJ2W10mJ7a3kTBxdSJ88g9SiFVHu7jtXKaTFHo3iSW/wBPvEltdO0qa2vLgAIdUuk+Y4QZ3sgHzOMnJ28847/Q/Dlh4f8AD0WiWaObSNWUmRsu+7JZmIxkkk1jn4b+HLWCSLS9Is7Q3GyK5IQnzIA6u8fOeG2gGgDmrCE+F/FMbautqo0/SLrU5p7QM00x3KHadmGWJyxAHGQegAAD4xvrHXIde1i3gjtGiS0aCIu8luHja5bBBIdlRY93C9RgnAz31l4c0qwN0YrQO92uy4e4dpmlXnCszkkqMkAdOaxLL4f6ZBpWp2jJ+/vkuLcXCsztBBJ8qom8naAgQY6Hb6YFAD9av7fxH4W16yeC5tLm1tvNKSgb4n2ebE4KkjIIB68Fa6PSbt77R7K6lCiSe3jlYL0yygnH51zM/hHUprDVoJdUiluNYaOG5uEh8oR26rsIRctlyuRkkYLZHTB1IfD0UHiqLV4kgjSHThYxqiEOV3hsMc42qFGAB1Zs9qAOgooooAKKKKACiiigAooooAKKKKACiiigDjz8PtLe9SaS6vXiTVjrAt2ddpuT0JO3dtGeFzj612FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMgAAAAyCAIAAACWMwO2AAAZo0lEQVR4Ae3bdYxlxbYHYOzh7q4JHtwZnIu7OwR3dxjcLQS3EJzg7oTBPbjbw93deV/3b+7KuT3dM+f09MB9k64/qtdetbxWrara+/Swf/311zBDafvzzz+HG264n376aZRRRgH//vvvI4444t/j6x9//EHRsO0NQPvwww+vF204VpUZXcUfWdE0D5Cmld7mGRspf/75ZxaKVQLYONQ8PCw7mqf+f0T55ZdfjjvuuDH4iy++GG+88cCffPLJhBNOOES9SDw7TG0mW6+VdjQeG5OshgCNlI34ruDffvtN7mohaNPUrqvVBO1AnwVJ1EgjjdSV6k7xQ21i8fbHH3/8n/YG/vTTT4d0SiW+g7PKO52hJpFqZGVVkyydkkXOL7/88uuvv44xxhid0jSDHGoTS1aNOuqoWXAibs299dZbE000kZXdTFy6TUORImTdU22SUjZgCg/QyIdkWFf2dFXJujLMCopGfcnvUH664m3EY0l1rwB+9913ytXII4/cSDZIeKhNLJ5/9dVX44wzDuCDDz5YYoklfvjhhzHHHNMBYpBBGRwCE9OeOf07oqSI5oQXsRlAlpYkGFBjq+UHPRXRAqaRZEnWqpwjjjhCrCaddNKyFsDUAS0cOGaoTSyVwCLOSWuvvfb6/PPPDz30UAFq9aww8PANOEqF6dQAJrXmNfg61GNMhg0oIRj0XQ11iq8EpXGEEUbATlcs6ZS+KyQ56rpRvLJTGG2LDvJaVyyd4kfoFDsUIGXV999/P9ZYY/Hlvffem2mmmaaccsq/zS/T05gZyXJIFcXEm7AhZwkt1NEuAt3WorqT4CxBSPfkDLUVy3o1f6LjJrj44ov369fPJdGyE/duh7sZRhplj+XeVqzaXzE4o5gnqs03q5TM0Ucf3ZEFDcqukkzVaUZd0cQvG/3XX3/97bffEuuoVPfiIhskwEg0qU9kKlcSK5EcJG8jQY8tnUSzUXTBNSSUDIXPjuAN04ILLrj77rvDxB89Gi2P8KpOyfHWIHAjskY7AIKSOabFGcthK9MMOUSby5ScaE+q4b/55htTwv2bb755u+22m2qqqQ4++OCrrrrK3LOBm5JM2i266KKS4JBDDpl11lmPOuooE5m9rCU7KeIy7ddcc8188813zjnnjDbaaAmCpdUoSvQ8mgi9iRBqAGPYCZBSySrx9GgB8AXQIbyDfOyxxBILvrGPrWlgLYflDOlzxEneCOIrr7wy2WSTWWGiiVJvCBnACwJyLG4OC5DTkugLnAbJMWVgIO6xx/zpr7zySoH+7LPPBIiogbD0yFDmgAtsthHTyOzVVlttxhln5Noee+yx/fbbjz/++EkCGp988sk999zzzjvvlGErr7yyUV67kbVqDHYOjj322JtssonIyCqPzLCuJp54YuoQkAmwwcmtTIT4JI1C3KrSgdHT1INN7JIHjTKFSbA+/vhjQ4GNXnbZZUsuuSSv9tlnH48mPlkIlkN6xLgAWCJTr1lqkNJL+ABdNZSG5NZOO+207rrrgtWProh7Fh+z3UlFw7xuuOGGCvOcc85pLq0lWXX44YdbS5TyWh+PUIYRRihaNQk7Fj5efvnl7nQc96jGR45oBCOYJTlaaC+9DK7RwQT6300GUwp2M91pOMTXqCW7yCKLJBVYL6Crr776pZdeakm538afO+64Y7fddjvggAN22GGHLbbYYuedd95///2JNQfHHHPMPPPMU5mUGA3cZsZoQrbAAgtce+21iFXEgbP01KitJ6LMmUyyrO+7774TTzxRqbBmHnvsMRh7orKBzHX1kUcesQkus8wyIvDhhx9224wkq4VKPiHbbrutWkWm8Eosl2J49mShXnfddWoYvLAIVNZht1UPyNhjiVWWsVJANTmRuVx22WVTja2qRNMi3nrrrVmjFDt8AM466yzVeJtttlHDFBgsMmzzzTfPJH300Udzzz330ksvLXZJNSyAAf1pxCBmwAQTTMCYv61cZSExg+Vm1NnO+2uP1o95NamabwC2KilVeBtizppxKuWn0ZdmYLy0q45yy8qMwL333pvvri9zzDFHcu5/29tKK62UehnJDh7NqGiepscSSz5FK/caa8PVV18toC+++GLKkrBatZw32eizhsRRSZNzVvO555770EMP9e3bl5zQJBdDbKFHS0JPWh477ZnkpLzYYospdVqlfqfEPYvkLO051vCRcJZLJnhOSSwFWN6bYksux/nDDjvM+1uUVfBaMimxwuKLO42nnnoqWFnitWI511xzJWJ0/etf/7IVWLcIarIqyC0pHQhxjyVW7dON82filRmL1bzKttRq75McAux0VpUQ2AIcC5iIeLrppnP+QK+e2e8SLNOD11p88MEHHeqz0ONSo64OTrIH+y677GJjNVSFpAPZkHhUIWK5/u6775YuTpN2efu+N2pKLy8efvhhqrNRxgbVWjQEymMWYUu2JTPuuusuG65VOvnkk+cAkLKdpZ4jlwpqo0iJgm88V3RDb1dG9titsG6kdjQB0lRalz6RVY2pd3TlEn9M9qabbopgkkkmsfHxzV2GS2KqmB144IGWrDlwpdJLHXdAvGgWXnhhk+RaTpq8sQRLV7vC/+gIxP7SSy+pDQbyPZW0/yAaAg8KFV25arFzqaWWuvDCC53zXE6FaIUVVrDRv/baa2o2ynfeecdNUCIy5KKLLnIMRaOKmPhWTQvLjTfeyGsaRYyWe+6558gjj5THHmW511qC5hyy2WabOSGYC3hxFnnqRKwberu00wzxpPKOt1k0MKZBFWnM4sBZjkZTXYs3k51HQozOP//8XtLAdKi0hhDffvvtzNp3333lFr0AZZxYADzVaPDW8YhMdc5QVJTZATDC49LHQrXNuwyqy87gw66Xx1GB15DdKr5HFAJACEomDFM9VihKZnysx9RIttEO6bzI8gsuuIBVeGMzjNviu+++G9/vv/9+kl2fS35ph9ESqMAZ0lcciCWNKEXIbrvjjjvaDbzQCn1KlPjYQ66//nqMcfaWW27x6is0Qs27tGC63bdVLBmt9/Ffz3S1FKCpB2Y6WcwImMBsyqh8p1jUPOqtFe/T1F6hJATZ008/bckadbzwCC8KfEPmuOq14ZlnnqkgqWpWqquTtzgEOmZuvPHGKDW8OTTEMEdO1/UrrriC8+JoVJ+6pYdELF0UDMF9/fXXzS7V1EkIhsGzM0cfZjhZw8MIqOuCBc1sGA0x4Rog/hLukRaPlAZJYCyBSXBgvI/lqRKLXmypO//88+3+Rx999JtvvuncgxdeNZ1lllkWWmghNeyJJ5447bTTVCwsPtWRSRoy0YgiWQsp4AIFEBk9YjEnivZkiRLo45UidPbZZ+eAsdVWW/GUECUKjfjYhVMaOStKctGl+5JLLpHxNgQye6YxXVhjliDmMftuSoUoQ2rvv/8+BwBmQg/OYwgioY3ur7+E1ZBEYaLsaTwVGY3wCBH0do62ro5BRLkGBl+6hAYsRoKb1xAIYgBA2unLVMRC71XhlltuySlwpDHMUGA9gWF0XZLNMJKyZOKiDjIs+kZ/8XosjZFpsgGFrDpNbwhyEeMpSnMvPvAvvPBCqYipoS85aGInoMwARx0gzXxlyjwKMl8A6MlESQKMWpU9hPE13WZKkoUeZVp/od39M0wFPWrIiT/pmVV4+owyKFGAT6D1ySoswSATweOPPz6Bi22lqFIQgIU/mb9EU59kCjJmkBCk6FigLtIwCQSgXgMSGK7kqBc5UhABY7DHfo/xyNYQRgtGVWOeCmcUGckckRZRWmKNsqdEMaacgtTKWpRZPwgSEzIrkjDwjtgua7hCECTtSQ6OVEAaxZKc+AMQIEvqeExLeGNYaUSjIXCkc42IwDKeHIUz730YkPZved3827aFYa3KwX+zsvbaa2ffzSiCmGgIEIcTDubGk+gHCzfLPPbt21diCRNKLMGXwGRAuPSNZiQEGCExaiE200T5DUw2XFyG9CRHThgjyknFTvfGG29kSC+OF1988a233srHMCqlAIcSN/AyDJBKwwCnrhxNqIA3H/GaNHB5yusqTgiS1jEmk4eg5CfU2Al/4IEHiJLfuNAnbmVwAJRhYU8IiBKQDsSciqjozUREQmxIlFwV3RKoy0mOqRFuBXovExUkdxDewaRmHts+FTEiX9/o5qpzj1uMa7/HDTbYgBT7eu4azz33HMBk4HIIMCTPnB7WWWed6aef3vnDPsVojPZyYr2kQZYmyZiL3aiqQyaMlkDAkyZj9LGncb8XXCGQKEbRxx5m0GJG9a45K6644nLLLZecQ6kI0eL9BTIsHFx++eUd7MTOO2h3T2903n77bctXPXMu4RHhiHmB19HEqdZP3lwqTznllFVXXTXWpjcZFHE2j/aRAKaQnJyuTD8aPTNCwC8ASwBUuN7iQlC/QZDEDt2Q5DCDqYYAmZ0KGhVRp2ewgIsVl92m81MqeMQaO8G5EVMK9sEDvRlBSXVMNSMOA1NPPXVNCsrBbG2HdwG1aACqtwj26dPHt1ITmeO8xWFIIBwMEbDVXJoMR1Qr3iP/LZfIEQXRJJD1yFxA2AoWKQ3MJboSDo45SwkHXdyWo2iokwfEEq7eRDuBDNCTgMuMUiSfSBZ0l2oXbOdfEUTgdG9UYRNEVoXGEcqQ1x8+91o5lFq4a621FnsABDKJYcmAe++997zzznMcMeTK9vLLLyc4aACmnzEmg83WvThgJFBvyuOaoSS92UVvVMTw8tEjN3kHkNkpSLRgxM53ZAAu0AJ23qeFBATib+OOkCQNLVQg00SeTGYwyRpGKVbkmCB4Sxfy1VdfNS94TRkXWIKROpIlWRxsFza43QiJu+kxbQrM+uuvb0Gr0nLLamZK3BOpgw46iNsCkZWaCaY/NgFIYCgrTSFvAVZS4ps1Z1QOyV0BRezywhNTi1dviG/cFiC85CNwAHei8ogGgXU57bTT0iheKIk1YfLDo7fYpAmfXGQhG4zGNpQ2u5z5IJVhLGROMcUUtIgARZQyFS/AO1Uv22abbTaj6CUB7QBG+panLuoRCw5egFGuyWP3PqLEStAY4whlCuMUf0mT9KSRA0mId8UmuJxF7H2K136MJ5N8o2ussQbH8Xp1Iv8SHHq9SjBN+fUi4Vh8e80HQVrkoinIAjCE3ppJxDxKKb0zgFcSYDIRa6JHb4+0th/60UoocW7F4qJQuana9cwKlQKkEggcO4QMMaTeXGrCJB3FWmM3SskHL0Z2EO8FnnrqKXHEzhNaMBKoZcKo4xjVar7YkZAJi4fyAyCVK7kBQn/66aezhFjNcrQKvX70EYNYiphHzgwzzOC2RX4Fi6KwOGatssoq/fr1c2JlKsN837BsUCJAZtY564z46KOPqt+u4kpvCqHMY08mUm/uNfbj1YiyloJHpomGBmNexSqRZCFMkhgvLr1GAnvkGTM8YhSuyKEFSztVW5dgio+Qgg1Fl7AAMmtEJb/DiBgQa8lHhoA9SSxx8z7ChwF2lnbESQzEQZYBgwTaHCBU448PKV7UymL7iG8CkKafbjTmj7kw7MsKYxYM56mUgmhCGRqw1SZHZRgYsYaGb0KvgbEHCVbA/W4pEjxq5CCmi8ZghIDbygCHMdILkDpqmNqDXmKRKUFVfpbDpHohIwS9JvTyydnLuxwwFQpzFNmXfQzwVcRUKdi4JLF88hEmZxcC5b3ROIULjZ55kEmswG3etqeIxxCgFFIuMFhklF5BYHAyI8mBuISASYBnM1gDpxGVR8TtI/1TU6wyIxhpsbqEKyzwqbsAkTGbHElgYZhhw2VeEsh5S0ZaaRSZ35gRRS303NaIMLX2Hc1uaJm6JkgXk2RuQhNAcBGDDcFnOgFs0rND7BgKtpuwI5OHBcb6MwrII8BjFiVYFuobW1TARCClAMdqORF1MYmdTk4CpPCEXbHhSKOoCKELYDS/0HIW8Wir9bEohskYjpuV9dZbz3cnddT+El167JGQvoP8PHKtvGskwBJrg5RbjaMFN/KCxVNrRBZlI4DGY8lXeDLqNBZAkXbKVDJks0sMZGKLQJJ5tL2oWGATmioVCz12ZWokd9W3racYRARlssH0OLgIcXhidGDRQQZGWSmCXdDjfJBGkfmdgjUU3+JGiQoyeuVKZq5RRWauYlrGoLTgLKYoijFhlMTueoHdEP0sk5boDRIxsVyTMShrGqQ+3qQ1jeqTUw7jle3YiV0xi/GxNs7WxBvSCgmoliE9IYxntlqoWiiEboXEMimjCHCh0YLxCAgmSJj4UvIDINMMOeOHwGIL4HwG8MVCUQd43cDZ/OqLauwJkR/ZZimKT6YPccgA3Wht95SwCTQ1HBA7Kk0DjKBDIsgU1iNMPAlQMPZIkwpO06qIWgKTWaxR0lLJwqhYxowgix7AEj2yZJJeXE466SRGwmtkJnY2F/kEtg9OM8003iYkk2I/CSj1VHi5gMZOkSEr0iL2QwNIAsk/44wzAAj0ZQBYC0uQhQkyj131AsIAE+yAyIybbrqJInWCkR674mpUQctAFGWCQp+AgNlJr/7ZZ591I+GRrzfOG9Eo7Ggwqmf2O0CpAGuRViswj032bRWLmkRKDx7QeilcttYoIPSNmjIKr8HbU/wapCxLyhZ9VlVKMWTmNQlUlaZqVTLPazbz4RV55JcxRnfddVdD5IAdF0JfuoQprnlpMvvss6c+Qcoz8y3ijjK+4nnR4PLlwMEM5hkqA4hCXxpLcvMALSx0y4kxjPTIU1oGFEJR2oBDhUFQ8yUgVaWyPnlRlAlyfht33HHHMSAr0ysJQwLimsUMArEAWJWJCGVNRwkcJDBMeZUqylA8tMaUzB9MAeDQBNkBzzICq5z4hYZ/TUnGoGdruZR64CWkqmb52iC8G/TF2k8eUBKCElD5EZk+TvuvBHijdNHuTOpR80bX4cAllExvNbNSaZHWDG600wYUlsQObNSHcDssrsYjRXkKSHDLO9q1yEkfDFFoNCwdCLwCWHPNNe3R8Mq53dDCIxYL4rQwxqSIgm+U47GUIhYHfRFIKc3yO+yww9yLVSlXkyxsXx0UdZn0zDPPZLXEfb9d9puLaNSTVvK7kU/F23b5apTVaDcii4B7oS41WEKGMaORAB/KIPUKgEXpdYD8KMnxxyi8zHMPVS34r5bYwlxJkkwJViSDsZtyWXjyySdT1EhTYXJLOvbYY0844YSNNtqIJVhiSazScyEJjSXWlu95DD1G04Pe6opwcImqZVNimwEqOISzge8iI5U9Fjs3tXrsFCiDM1r0ZWeKuoNyXmX16dPHHcXLXsd212d13e/rpXXYUz7IjBmMjPysrsC1dDu1pyvkCLkCcDKtbrB5tKT+PdL/nxg9FouNOaMBCp8bsn6xxRabd955XQgUYZIZwXSx0DvXWyhOlI8//rh3feqNK648NoTR5Dnhml1IKuSiR0lDgqRB4BYNrxcRx3mwIZLF19tX33c9Gi0LYyelGjgsgCKI8bGcqS7qRvNaJLwZAkvuYFrqyZeaevWD9kUXXdSL4lSvmJr3AoOUWQaHMnEAxyPRc8kVNIklYjSaAt/cRMYs6GWSbSEfjnDFwZJZM6i2GQ3ea6Doaq3n1ZBuDPICkxbpkrLMQ4+5FbvS+w8tj7YwlPfcc0/s6VAY+vXr572lI3lGs8Jy8tMTK2Q2GhIEy9WGirTQ/+M9g6vYWEjepTFJ6TL3KRisHRwjs2IJFIH99tuPKF+i1AW/KS2xopTtojafGupxoMde4fOn0yZqfFNm/COhtW4RyIOsM6dXJypV14/cxd1mb6nJJ2+S9MoGJJk5/Dld+TTuVpWZSGWtukKyfPKbNfRqpONLp8b8g8gYzCNZJQK33Xbb888/v/jii/eUSTJDVGUngcIo7I4EAPi+ffsKMjwb5JahlO2eUt2pnCGeWPLAb4BcaB3PferikjLLf0uHh6lSAAmnmPvc5gjlM7syjjJZ6K23T2AzzzzzDTfcIIESu/RoyBEvMQWo+VLNLkNpp97+g0i1hDvuX97s+17ubaSfvatbLK82OOYJhXzNSnOo8p9OPtDJKj9MdaKwLcitBF+gBkdRk7z9Pxc0Sd0NMililbimuYthF18J5CRkO3dqkVLeRnLbRibovsp5Tefdeg5bdvccHXxrkpfiQoJgYZQ6yS2plqOY3hdAvFgIR9YNa4ccC6vcjl1WpJebBxcEwfuzATXGctk24NBAMIJsxcotX0i90fCuwYbo/CA+7kMYRS8yWZJZGIi0Hhjixt/WcgeRAdFoDdny6jrTlRn1Yz3XE4cDKYUyvdwCO14Ur2u2G7VHQ2k19I8DjC/7885J8bA5akyNebEZphvWEo5LlKzh3JrJD1Ax9yiruiG8VZa2D+M9kJ5dixAjqePcXSQpMDKj7iCimY0fpQpnNcs5ZcyjU4KdjhArsj5Ri5cPqFl/ogk2ahcIF0VihzEaW136ZWfPArYnr17ZqWLxPYWcR3yPhekzHfqcyVq1wRpTmQRTDKssCaO6lTDWaKuSW6Uf4mcsBskqmcFncLIKLL4epYJeTDlsSKAFHUZWCa5H4ZBGCMAiZUgTNRjhA9cEYMclz1wJs4G20/63dLKKYbJfJjGP+8mh5FP62Bp8N+zOjQdjJKQXz4SRRkGW2aInSt2Q3xLLEK9YLVnTSzzURODvqFhDTbB6HWk+Ar2J1XyseilbiEBvYrUQrF7S5iPQm1jNx6qXsoUI9CZWC8HqJW0+Ar2J1XyseilbiEBvYrUQrF7S5iPQm1jNx6qXsoUI9CZWC8HqJW0+Av8HTpCvH35kpa8AAAAASUVORK5CYII=\n", + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAAyAMgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooprMEUsxAUDJJOAKAHUVx8Hiy5HhfUPE11bAafgvp0EaM0s0fRHYjP+sJBAA+VSCSeccd4Z8RXNndeM7yC6h1C5SWC5muJ98cUcYtw0jY27iqnKqoGTx0GTQB7DRXI+F9X8Q6yl1JfR6bCIS0O2FZSyTAKcENjIG4g9DxWh4b1mbVIbm2voY7fVNPm+z3kMbZXdgMrpnnY6kMM884PINAG9WFrOr3lne2Gn6dZR3d7d+YwWacxIkaAbmLBWPVlA46nr67tcxbKL74hX1wGYpp1jHbL6B5WMj/APjqRfn7CgCb7Z4v/wCgJo3/AINZP/jFH2zxf/0BNG/8Gsn/AMYroaKAOe+2eL/+gJo3/g1k/wDjFH2zxf8A9ATRv/BrJ/8AGK6GigDnDe+LgCTouigDqTqsn/xikW/8WsTt0bRDjrjVpP8A4xVfx7qOpadoVu9jEximvIYL2dIhKba2ZsSSBCDuwMDoeuccVwPw41Z9PFgmnSC60111CbVnEK4tQkzmJ/MVRlmH8BJ4wQAOoB6P9t8X/wDQE0X/AMGsn/xinfbPF/8A0BNG/wDBrJ/8Yrk/CNxbXHjW3lbQ7C0n1DS31SN4i5miR5FUeYScF3ByTgEbSvzYzXptAHPfbPF//QE0b/wayf8AximHUPFgcIdH0QMegOrSZP8A5ArpK8s8V6xPD8ULWPTorV76101orea6DCFLiYllWRl5yUhbAPHzE5GMEA7L7Z4v/wCgJo3/AINZP/jFH2zxf/0BNG/8Gsn/AMYrK1PxNrekR/2vdada/wBgQhFmMDtLPLuAxLEF42b2AwfmIy3GMHrLKSeWzge6iWK4aNTLGpyEbHIB74PFAEsZcxKXAVyBuVTkA98HjNS0UUAFFFFAGD4m8R2nhjTkvLs/62UQRb3EabyCRudvlReD8x/U4FTW2uLdeGodaSxvdssSyi2WLM3Pbb3/AMOar+IfDY1+W0kN5JAYN6snlrLHIj43Ao4Kk/KMEg4545q1HoGnjw7BoTwmSwhhjgVGcg7UA25IwewoAoQ+LRNPHF/YOuxl2C73sSFXJ6k56VF8RZJ4vh9rgtf9fJatCnuXwn4H5utSx+A/DUUqSJpwDowZT50nBH/AqPHunTap4D1yztt3nvZyNGFHJZRuAHuSMfjQBqGTT9B0ePz7iK0sbWNI/MmkCKijCgEnA9BXKy3fw5nh1CGXWdHdNRKtdg6kP3xBBG47+egH046cV1mlahBrGjWWowcw3cCTJnnhlBGfzrK1Lxf4e0m8mtLy8WO4hTzJI0gdyF6k/KpyAOW/uggnGRQA7RNU8LSXtzDoup6bPc3krXU0dvcq7SPgAtgE9lX8qzYs2nxfmSMYTUNEWWUDjLwzbQT6nEuPbHfNdbBJFPDHPAVaORQyOo4IIyDXK2mL/wCKuoXMeDHpmlx2jN3EszmVl98KkZ9t3vQBsaX4j03WtQ1OxsZvNl0yYQXBGNocjOAc845B9wRWDo2qiw0a91hbe5vp9W1SZra3t13PLg+XGMnAUeXCGJbAA689cvxBfP4X8aa3dwDyxqPh9pocjh7mB2AA464mXj657V3ejaeNK0Ox04EEWtvHDkZx8qgd/pQBymp+PI28M6jc2UUkGoW8SxvFOATazyS+SivgnJ3ZOBwQAc4IrXuL+HwtZadpdvFd6he3BaO3i3gyzMAWeR2YgAd2Y92GByBWdJ4WudS8OeIreVY4L7U7yW4iLBSqshUQM2M5GIo29eT35qpc6Lq/irXbfUZjd6LbR6YYBxGZVklc+eq5ztIVEw49eMigDpdO8T6Xf+GLbxA1wtpp88ayCS6YR7ATgBiTgHPHWktvF3hu7uY7a21/S555GCpHHdozMewAB5NXtM0u00jSrXTbOMJa20SxRL1woGBk9z71b8tM52L+VAGdqusaRpcapqmp2tks4YJ59wIi2Ou0kg8ZHTpmuM1G48GDwlqWh6J4l0SwF/G0bE3quihzhyFLHkgt9Sea9FKq3UA/UVwfirxXq+gf2lfR6XH/AGdp01vGUlgYvfCUqCYXDAAqWxgqckdRmgDS8Mt4Nt7uSDw/f6dNdzIAwivBPIUT7qjLEhVB4A4Fa2oeI9E0m4W31LV7GzmZd4juLhYyVyRnBPTg/lWmqqMEKAfpSlFY5Kg/UUAUNO1vS9YV20zUrS9CEBzbzLJtz0zg8VzGtL4Anub+31i/0xLqa4SW5jlv9kgkRNi/xAr8vGBjIJz1NdsFVfuqBn0FZGsa/pGhlDqV0kLMjSBQhdti43PhQTtXOS3QDrQBg614h8LalaWlnD4n0SKCO6gllQ3ceGjjcPsGDxyq+2MjvVvXboY0bxBpl2ksX2yGCQxSbo7iCZxGRxwcMysD/sn1IOHq/iK5HinTYdN1+2MN69pNFaqsaqtsWxK0hcbiX3KECkNntgE10viGzvNUvNK023jZLVbuO7u5yBtVIWDqg9WZwn0AY+mQDoxRWfp9i9gbrff3V359w0w+0Mp8oNj92mAMIOwOTz1rQoAKKKKACiiigAooooAxdF0MaG91DbXGdOllMsFoUAFszElwp/uEnIXHy84OMAc9rXgm61K48T3FvLawPqVgllbbMoVBLNMXIB5csBnBOAPpXd0UAZmm2t5ZaLBaySwvdRxBd6R4jB7ALx8o4HXJA9ai8PaHHoWmm3Ez3FxNI091dSAB55m+85x07ADsAB2rYooA4/xf4Wk8Qaz4bvImAXTr7zLgFyu6EjcV9wWSP5e/4V2AoooAKKKKACiiigArhPEfh7xRrPiS3vbXUtLj0+1wbaCe3d2ikIwZuu0yDLBdwIXPTOTXd0UAIOBS0UUAFef+MvB2ta1qt/d6Vc2Uf2/Sf7Lka53ZiXzCzbcA53htp6YwDz0HoFFAGHpehpDYWR1O3srjUIFUGZIFAUjoFJGcKMAHrxmtyiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//Z\n" }, "metadata": {} }, @@ -1575,10 +1900,10 @@ " \n", "
\n", "
\n", - "
C _ { \\mathrm { b u l k } } ^ { ( 3 ) } = \\frac { 2 \\sqrt { 2 } } { 3 } \\beta \\sinh ( \\sqrt { 2 } \\beta \\phi _ { 0 } ) ,

\n", + "
s = \\Big ( { \\frac { 4 \\pi } { n } } \\Big ) \\sqrt { \\gamma ( \\rho - { \\frac { \\Phi \\tilde { \\rho } } { 2 } } - { \\frac { k \\gamma } { a ^ { 2 } } } ) } .

\n", "
\n", "
\n", - "
C _ { b u l k } ^ { ( 3 ) } = \\frac { 2 \\sqrt { 2 } } { 3 } \\beta \\sinh ( \\sqrt { 2 } \\beta \\phi _ { 0 } ) , \\, }

\n", + "
s = \\left( { \\frac { 4 \\pi } { n } } \\right) \\sqrt { \\gamma ( \\rho - { \\frac { \\Phi \\tilde { \\rho } } { 2 } } - { \\frac { k \\gamma } { a ^ { 2 } } } } \\right) .

\n", "
\n", "
\n", " \n", @@ -1594,8 +1919,8 @@ "text/plain": [ "" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMgAAAAyCAIAAACWMwO2AAAWO0lEQVR4Ae3cdYxlxRIG8Le4u7tDgluwLAmyuLsT3N0DC8EJ7iFY8ODuGlgcAsHd3d3t/S4fW7nZmZ2ZBwPMvW/7j7N1uqurS76ulnt2+v3222//acfy66+/DjfccD/99BNi5JFHZuIPP/wQolfM/f7770cZZZTvvvuOTAORmRF//PHHkUYaybgjjjhiani4X79+vTJoCwlpeKQti2D//PPPoluoQveipVAFW6OOOmpQ9fHHH4eAKgg21jfffKPm008/hSo1vTh0S4jq164ZSy755ZdfRh99dHFFQ4B4JJ30VmCkJYgZY4wxIpYnDWQ4mAumM1DyVm8N2ipy2hZYFYDmuH799ddwUE1/hYBawIIhQgxBMmARPvzww6vxqqDHHXdcnL24BP8Vnf/Jvm27FCbeX331laijgQDdW6giEGhGGGEEYHrvvfeWWmqpmWeeecoppzzwwAPVnHvuubPOOmv//v332msv8IIqCeyfDGpfGKttgZUtzphjjinSiu3OaKON1oseJ9Mey8L35JNPylsvvPDCFVdccfDBB6+wwgrXX3+9ykcffdQSueeee+KUtHpx6JYQ1bbAsrv68ssvhdY+WlwlGOXzzz/vraiQmfx39tlnb7jhhmONNdbss89+6qmnPvDAA5988onRwe6UU06ZYYYZQHzYUthbbv/35bz11lv77rvv8ccfbxG0ZokuncYZZ5ze0oxMy5zN+6abbnrkkUd+8cUXDz74oEVwvfXWGzRo0EorrQTTyyyzzBRTTAF/6N4at2XkNNaJzooDjt2JljzDYpo2v6ZSjbDZRtRraMyCmsqeP0lL6XmXGlqk9bKXEul11113xhln3HHHHdVQL9LgoOdim7t8++23zFGD6CjBIjjxxBMvu+yyF110EQzde++9iy++uG37YYcdFg9kXC7VN09sBCqM7Siw08qObH25pptTIQuz8TRBzRWOsKvIhU2MV69Gk1f1gmpbU7MqlfXaE4Kzwhax3XYROZxRz+qTY9qLL7449dRTH3TQQZY/TyaU/mq6lTkEAzBlf8Z83T2BQw174YNwtC38pJNOqiNwS1Gs0Msq7For0oA7r7pQBgNR6GIYYtBWf23ApYvCfl4IkrAVEVor6CRUaQoauH6Ijl0M0WlTD1GlL/UwG86TDkLuymqmmWbSJMZeFUoKv7j+CVSRQ7hnWQrKoMNGlWARZEwyySSGsIebYIIJYIgytlk4M7UK8boEVZHZ7E9N7VSGunnnkUzQGM8R8UWz8YllXJz6OnlxHwkduzR375QmU+m0qdPKMAc9ibFwWnrEUlEDZ2Kcpk4ldF0JLoEIaeG0nULAqPSMYKMRk4egytDGKj/EA/IofoWe/IlIPS91PXrrtg4VWALG/jKM47iPOxQ098GN1mY2M5XX+D0d0ThLwt9E0CRqRB8wkploJZYKbVNPGaV5DvRQH2kPZ1Yxpnm1nfLMuIDiDOj3HGBS+dJLL8EfR/kl58MPP2S+V73CRk65NPOhhzq0Ilv3M0YweKH5wJzZz31iljknfnjMbC4Ye+yxk+q0Nvf6094hXN+hRUJGMQo8NYOGhgKvC0BgEGA8VK249lwZB0mSrXHjjz8+03R03nT/iWAg7Nqkf/TRR2xXjAVnSVfBN3jB1kQTTbTNNtvss88+cQjdQsRvRCEUBJ0VRMuXmNTxGdx4mm3Vymt1wuJWAUsTthBvvPEGwr7VMiEe1fFPE0ZJGZqE5lHENdqKpV677rrr7rvvPrSOPawv0/ADUF4dAwUeAlyHfvDBB5pee+21119/PTQwvf322xKVHf0111yz8sorY55mmmninAA9o6NDsIJkpdmcNLXo84+50lF7oBEbz0ISN91+++1ua/g3/BwRIg4SzkMPPVRN1VffjvJ7WPMHrDo7k5cEwaiBEpjPPvvs+eefn3POOaeffvrHH39cvsFMFA2rVw+JCLTMhWAaWl83VUkt1157bbMo2aiuJGBLE+fccMMNsPXII49owhD+IigWtPE2wmuzwBalG18ssTnx4zu0wrzrrrvOj18OO7fddhvbVF599dX777//eOONZ4vqlX/tWtKULtI7Xy+//PLSRnJG7WE5FI+S8CB0TJh/r/7jYVyU7p5RzPOOO+6wtNHk/PPPV29D45lxw08NS1L40RisVldddZWLpdVWW+3+++93+wB5dLMUlo2EpLC9CGxFhwi/ZS5s1lPK0PDCCy9ceuml8bgRNURa6aCVDlGMVmw06HLLLXfxxRdLn9GB8lCFU15H33nnndZThaWYwZHYGBgdwh8DU9MCT0rzghJCMje/4SCX1H6pMCN5R253M2TmYVMyF5mq8A6Gmqauc/bee288QsJ977777u89Go9aOpsnKzZCBCZs8XWY1WfLYr8sJLfcckuNUimqRKV7nkkq6DKtuZXM9PKbT8aFxWYGrWqiSRgoaUT6NLPBLv/YS80xxxwUiw/ZqGNppbv6vFordTeoJ34FESjDq/u/Sn54sqYbN2JxElUO9NrHSyMxUJEBpSgD3B3DRzwbBvuVNddcEw8fVVBxglQ6Bh9Aeffdd9urckF5ARshpHElf6nXy2rlNYFXqeDBWWpEJZpwevYuasrjOjp5YY56iChQ3Wt0NYajM83JL+XDWWELf6Ku6fDDD99ll10QlIwm4ff0SluEoX3OkAPBJptsor7wFOb4Kt2hOV0yosqg32+LIEVDChBoxjY7QZfgLwIjKnQffzZSbgoDOILLnn76aRiSbJ955pmayq4ErYmBGo8wHrPCI++//754AEqiolKSl955MFFXY4gK4eABO/k3TtQLMydSwFpG2nPPPWe6p7WyUdhKii6UN5aOCkIRLXTxIPJK7dopimWzbnpJzw5xfgREx1Jy8CT8kYbWRJn1118f9Lnr8ssv18RjaapBjVhYIVB9YYVRa621liOtnSvEx10YdCmVVOa1akpyXyYaHqEx1zCPom+++aZM8M4778w999y26rPNNpufvcwqW5yFF17YnolTbDj0WnLJJV955RW5xCHcZmLCCSe0VJl8cLDRRhuddNJJiy22GMlCogbhK4Bnn32W001xT724jDQ7Oduy+eefn0ycmkiDYFAGLMo429NkgQUWsBYLmx0ePTFYhrTamlgl9c1OC5FCFEJEB1c0ppAIsdQE0DdoUIPGA5Q8gKDe5JNPPu2007IOD+Ekh1kTfnKYg1OTcuaZZ1oTGb7lllvylVsJTTE8W0w8nEACbXlJawaySfCBDTzNM888Dz30EAXmmmuu7EDgL5rU0AwhJNlRU98vjfvxaMlfXCB4bEOsscYa8BE7L7vsMmmJkXg4C/hkfhPdyctx2uSW5Ozc7eudtMWJ+/wAzHGTTTYZ4YIBQ6DA3QrhvCxhwJbwawUv/oVXjovvxAknKJ911lmSluF0AS83kKA8cODAxMyI5CQfUE9fT6/6IlLySg0Scs/JCsrQ36cHaAzQTCAkQS0eMn1QRVqgD4jgyy5smHHiIRAU0HguueQSv3nLXptttpkvZ0xCYzVM/d1YQ+TWKqgCL9aRwDnbbbedQwAz/VieKBhC3yBPDeFGjCHxTNha4MnsFNBhFZofxfuAAw6wLchS6GMBlgh/GOw/GGkCpeNUU02Va8C8cgREWke88jXc5LQPZ9wUHs/QWrN/UqNjgiFgXvM0rm/ljGWhASNQPv300x335FQ8NPHBk+zilihPysg3YuYpF5onCHs+iQRoHAKCezFeaKGFwJSQFNbZg6cXZEAM2MG6vvPOO+9xxx1XeuKnW1yRowm1nVcS7JNPPtlHf4OlNnJkdnXwFJPZkkojYjMQVGV9JydivcZpGNQ0+60k93GikbHYaQLxtZnBBgabMRYggUTzF4RhYKGJm1e+ZhhHWP64wOJlUgYWaHnOpCRKJZl8R84JJ5wAf1rVBLsWu0zfVVZZZdFFF8UMr2JmdDkDDiQVPMYyugPpiiuu6Atg8QZ62mrdY489tthiC5rIggpbFPLJMe/ZRVtiKwHQMPUYbAqZwygqpf7mm28GO8ZKpW7JaSsVgYUaiGQFNrBA6GJQwnPEYSyVrP6cts4662Q1lBTVU4byOI2le4bzSggJrgatesyHYJKdCl20mhsQD9ADBgwwW+JYXRQW0Tx0H382vlwQXa5kv1AhzjjjDETOgOw3e3baaSefsOGMMdKYyS2rcbqP6eabbz4e1CRmeLhPJGJ/Akay1VNshEr4E0gMfIo2Ip8GhWoCAriBV9sykVh11VU5VBaRpYwis9IKLPCQJop68X45migjwi586y6FqKGbGvwInBhg3ZfEahgIvnTIdy/i7ZVAoWWOsaBNF7YAfSxFqyFKXzWU2WqrrYxyyCGHMEcThXVEKCwN9OkJQKAfYw1tf4bTZhQbkMmLDz/8MHS68dphhx1c2dMquwUSDNcqqGqYbWJRWkmq5ztHaNHNIpgm4THhbOGFVnjuuusuN9qrr776EkssYU/NNRh4jZd112WWWWbZbbfd0pcTS4ixuNWrLqn01EWc8qqVK4VcIfCoo46iIVqr05PdMcJYIh21MacjIaEjKmpokoRqPugllgQmPF6znkbDKBZpnlZzG7u8GrE0TE2YTT+v9Bw0aBCxueQre9VHJcypjJDQpodXq3zQz6vMvOeee+DSRt5Uz/6P/AoENTJ6SzwbZyX2R2mZhoWwwqfMBhSt2SJIYM5uXuOmV1991WJhU68mMS6suD7mZSd2nsUc2Il0GDx5lnC9qovRjdJA0+DvMxH6Opk6GSQ8W2+9tTDg9ItbjodkVhSpETrBJlnkVPow64gjjiBBvVVGDa10JIelXo0bFOLRRDF9VW6++eaSELaIValJ4ZPYq69CzxtvvJG9uduUujDQPK1DPElLDTkxymZx4403Vmnp9zzmmGOkcGw2tXLbeeedR2B5Sa9meyOqzz4bGT7KiYRlZe2112aSX29UWrk8hQSPa0+tfiqJbRWGdE84MXM0NEjjkVmzTa+4W0dFqxoeDPjCXE+LgvXFCUuC8csSz+p75ZVXmtyCvcgiizhGRUKekRx85JkaOktOMrEJE+EBk2fYSI45zVhJk1SXnxwkj/SNzNCeoMB2qJLdbR/VRDgiAA0nOshA+CE1MwdwYVEC9jRQunjan/E/BVxHy1gWxNK8PByxff/ZyFjspDf77SJtZSSJzC1eCG7MQjy+8bWPFid0DONr/gotQvj9vxS/zuLPFMSpkBY55Y4KEpDF7xiIIgS/3ZV11uLrDK8LsRlF5HbeeWfqpTJd0IarJ4LMgMOVR35cUkmsp9J8uPNaikUNNYm91wiJqtVdvZIwIyQYO6TMQH0DUx1T4DXyEeaqoysTTGDSHESmm246MNKEWV+VllT5Hs17tgGuhdGF7FJVZd8vjT+VES3pDQH8zl9MTbTQSTCJuiOYO+LUlK95gffD6RYnKw4XB51DuCCckVbwwtNMexW5ZJHKeSo7Ckwgqy8dlCDj1ltvtbuX/HTE5vcZKXC//fYDNbRsISElohjYgodWSqzzDKE1DJ5ac7+ApoxThYNLo3kwcHWJ2qmMwjzp7Cw5PfbYY/GqmUNUdnjpS20EzUt+6RZzIjBsofv4sx/9GJkzbU5MYumoL1rZ9vKCNYhfqsjPOVHzQq5AgVJf0zEHqHDyQp1ijOKVTKubExkGMXDeCWeQUfJtLCjgNZog4MyulovpmdXNq2xBiFZyrNFurYLmHNzcYrsHP/bYY19++WWnWnGintEd/UiAOemwf//+tCKzjI0OKomKnmrwq/FUyScIGrpAfuqpp1xZ6c52OoCU1hhFoE8qHHfsCJ944ombbrrJuPadeDDn5Esy5LGCcIbkwBTDWepQacayBUNxsqL6RtW+++QsUecI4GBhJorKvHpqFRJP0eWIJKqaT0CpySsJuofWKx0zZXkto2hV0hRaffrmlYRw8mwk65umPCtNRrJBFZzuFAQbT4Q7W7gscJOOzU+c2267LWL77bcXZpfdkVlGpQs5pWSNgjPMnhhitZRs+bMTFVQgA6yKrqgXHINvTUGGW9BoGCWlrhiYQQmvVBeiVsDoSUk8cUJLPBsZq/zSigS423Vdeumltl9HH310kpwjpBnvXl56EHtR9B/eHWxdlLhwtz4Kv9QigQm2zVzXhkNA0JPk7dUFGNxAvwI3EpVKAkOogQb3dp5ocHQx5ltT1/rGMmiGgxXqdT10C7e2BPy7UBKwHMudE11SS0g4XVu7ZYCeZFA18s0GG2yQ/7zqBs7vQiqbE0DS0tBGAZokSFBAY/OKqAxXHZNdvFbqTRP51ZQEqb5ZgZLQNsRQ/5dOq8wVuzp/OuHEE0+0QvmPyNR2MvXnX2zCkj/EWFAvuOACB3ixtD76GEGmyXqHHz5q/epodVJRUovkRyaBEpj8RIhWMuUkUFMvjXmVBZONbJLsR8nUq1ZGDBmlUlfHQdugpuWBlSxi5y547oSgxAcX/n6Q7Y4mUYQGnw77MUDSwmPPLrdZKLMLxtN1FBN+T5JxQhgaKMEItiCMzGytjEWalGO9A2XMjggqzznnHDdYNRD+jJik1fXoLdzaNrnXH0oQcj8PuC5ilGzhKfwx0NkQMoRZmkn480xrVrrQHZ+EZNtuRSMkDCFIqy25+gAOkYXPcuwL2IEDB8KH1JUR6RAJpVte2+zZ8pt3MRMwOy1RX3DBBf3afd9999lyqRddC1AWKdtnNWIpgSEARe6xAqbGitZ8uMPQXGAoayVRNuOevuFxzwnBLlx8pucrRYcGEoBD9nKgk7QATh6Fder5C0eyplsbr0aUtHAaorJX83DtQbf8qUTOsK7lXs2fDXL6gypZwUkwl2oWLGASTsd4OAMpsVfEL0mi6wCHP8yBlzszqy1s5eM+A/nO0SchzozA7dVSK3UBjf95Boi+P9YEUgo5IQxNyTYGVjtkLOGUfgSpbm6hQUSFUIBdOEGVNJObJ6FVkqKSgcQ4IU9Tp09Ji5BcKECJb1l9L+TLaeDAb2ifu/gFCaqM4ko9W3UfIaqhni+8XZPKWM2nBPXGba7pdOgWrWz5jMXv4h3vJ2+hk5AQdY3ZjCr1WfiAD901quBJwhN+2IUSBHy4VZeHdARK+PCx2mmnnSZ3pgbOcPoEw7WZJRitr1NqMFR4onZwSYf2K+0ArL81KllGs81KHrKf8+OMC09NkKHSbb4flWEXpORCGJIydbFGO6haKNEuRGwBXc9mGth4QSEJf6vy/6LwdlgK/wH3wYFRJB5IUvyAjfYdR7410jTEipY852lTHyT5dd/PhTCHGfg8uzguaG31MgxY3USwDozwZBWz9mWdDXTSWX3WNfgLjPRKPstrjYFBR5VZf7PJq9Z2IoYBq5towpMFrhlGOngNdOQtAMoRIYeAym3VBaeCU1bDDFJBVeS062o4bI/VDbCgCge4QECgIz95tX+ycwoskpbABQMAYdAFmOQ2OclziFVPRwwBZTfDt2zzsIz1P4TOtj2bpPSRzBBBXtV4hRugSVoCQbRnwCRpeQ2zlAaCWVhT007PYRmr+2jCRPbmyU/SEkjBTTOkwqMy+y1CsVVHrwUg9Ulp0lhVdq9Eq3EMy1itFrEW0bflv25oET//36n5X2nv2xjERLasAAAAAElFTkSuQmCC\n", - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAAyAMgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iimO6RozswVVGSScACgB9FMVldQykMpGQQcgimrKjvIquGKNtYA52nAOD6cEH8aAJaKKKACiiigAqvDcw3KuYJo5QjlGKMG2sOoOO49KfLGk0TxyqrRspVlYZBBHINcv4G+ypFrkFp5CxRavcKI4doVB8vGB0oA62iiigArl/Enie40ScxWthDdGK1e8m827EGI1YLhMqQzc9CQBxkjIreup3trSaZIJJ2jQuIosb3IGdq5IGT0GSK4fTPG2m+ObMXln4R1HUYrScqDMlruhlA/uvLlTg9cUAaXh7xsviC6tjBaxLZXZlWFhcgzo0f3hLFgbPwLYyucZFdhXFXGvDRmudXbwFq6TOuJ57aG1kldR67JSzAfjXUaVqNtq+lWmo2jFre6hWaMnrtYZGffmgC7RSZGcUtABRRRQAUUUUAFFFFABRRRQBkeJdQl0nw1qeowbPMtLWScb84+VSe3Xp0rgNN0S20nR/C+gPCUk166E2pyCWST7SY4DK27ecjeyrkDjGR3rrPGeh6r4hsI9JtJbOLTbo+XqBmDGXy9yn93jjJAYHPqDnirfiXTbu9tbS5sCpv9PuVu4EZtolwGVoy3bcjsuexINAGRqfjO9t7i5TStHhura1vodOlnuLz7PmeRlXaihGLKu9MnjqcA4NWJhNZeONHuSixTalaSwXsUblkLRhXRgcDJXLrkgEhvYCrqeFNKOqjU2hmMpm+1CB5maFJ8YMoTO3fjv+I55p0mlXV54vi1S4KraWEDxWkYbJeSTG+RvYBQoHux9KAIdf8AEsui3kdvDaW0+6PeTNqMVuRyR0fk9OtSeHvEUutyzRyWtvAY1BHlX8VxnPqE6Vp3Wk6dfSiW7sLW4kA2hpYVcgemSKW10uwsWZrOytrdmGGMMKoSPfAoA5b4jCe70zS9HiCGHVNRhtZ1LupePmRkyvIDKjAn0PvV7w5q2jRWFtpmlxSxW0Nu5thsdlkjibY+wnLMAxA55O4EZzTZ9G1a/wDHFnqV7JZDStNEj2aRB/OaR4wh8zPGADJjHXcOOM1F4e8K32j6pA9xe281pY289vaCOJlkYSyLIxkJJGRsAGOuSeOlAFxvGGlMpVrTWCpGCDo10c/+Q6gtfEGg2ZZrTSNThLfeMOg3K5+uIq6USozOFdSUOHAP3TjPPpwQa8rvX0XWAdf8QQavdi/kxptrYyTqY7RSER2WNlHzsd3PP7xQOlAHo2m6vb6r5ogivo/Lxn7VZTW+c56eYq56dulc74l8aRadc2MFsupI/wDaMcM5GlzsrpkhgrbMNnHG3JPap/BFlo0FrcXOj6fqlmk+wn7fLK/mAAlSnmO3HJ5GM1t6tpKar9h3yvH9ku47pdoHzFM8H25oAm0/UIdTtRcQJcKhJXFxbvC3H+y4B/SvMfFtncfDvxivjnSo5H0m+kWHW7RBn7xAWVR65P58fxHHqk88VtA888iRxRqWeR2CqqgZJJPQV5rD4s8M+K9a+36p4g0eHRrGbOn2k93GjzzLwZ5EY5AByEU/7xH3cAHpcUgliSRQwDAMNylTz6g8iokt47S0aOzgijA3MqAbE3EknOBxkkk8d65y/wDib4L02AyzeJNOlAUnbbziZjjthM80l3P4i8SeCoZdLisLO51BGLLeFz5cEitt+7/y0AZCRyMhh6GgDJ+HUFlBpD+KNQaCHUdcZ7iS4kuHBlTezINrnChVIA29gK9BjkSaNZI2V0YAqynII9Qa5G/8DwXMXhy3jeEQ6JEyRGaESHIh8uM89gcNjuQPStnwxpk+i+GtO0y5nSeW0t0hMiJtBCjAwPoBz3oA2aKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzTW/D2pWXjGWDRrVxpfiWIR6hJGSBbOjZklJ5wXiZkHT5sV2GqaEmpDSYRIILOxukuGt1jBEoRTsT2Aba3T+EdK26KAMvw/pR0Pw/YaUbhrn7HAsKysgUsFGBwOnGBWpRRQBUv5YINPuJbmMywpEzSIE3llxyNvfPpXKW2reFrrTo9QHh+dbeYK0THRnYyBl3AgKhOMd6667to7y1mtpd2yaNo22nBwRg4PbrVBvDWjzaXZ6dc6ba3NpZxrHBHcRLIECqFGMj0FAHOajf6OvhzVtT0rQ7ZpNPgadkvtNe3VgFJwN0YJPynp04zXbx7REu0BVwMAdBWMfCegrp93Y2+l29rbXibLhLRfI81cEYYpgkYJ/OtaGIQQpGGdgowC7FmP1J5NAE1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMgAAAAyCAIAAACWMwO2AAAac0lEQVR4Ae3bZbitVbUHcA6Il5BGuXSnIijdndIpXSJII0h3d4cP8dDopaXzHEopBRRQaSSlpLvub+//cZzXtffZrHW+3PNw1/zw7vGOOeboOWa8aw/66quvRum2//QAn3z55ZeDBg0addRR0/PFF1+MNtpo4I8//niMMcZAoPc/B/0fv3366ac0jJJUoX+Ub1HV6+eff/6tb32L/gD0ZakuZnoaGD6ffPLJ6KOPXk7oyMKhjutozDeVmE811nE6z5ZDk1UfffSRLlkltz777LORzQnf/va3qU23mNBUnqrw7777bkyTKyjlE2Qsfe+99+QlGIHet956SxeY4fi888474E7boOjR6bBvJH1PWvXO17LOqxwSs7fffnv88cfnfcBYY431ne98p2hGEuBf//rXhBNOGGVSvcDyY+yxx25qKEukC0p2yaHYheDDDz9UxnT985//nHbaaYNhacpbk0ObcDexWh3FuVCZ8aa1AKhSMH/9619nm222UL/xxhsTTzxx68iR4N3ipf1Xb4s6ksz0YNSYY46ZmpRV8oMPPpBziPVKKQnEzKSRIeYSvFd+ULxHIL26S+HQdODuSgx+9JplIlk111xz7bbbbsKA5rXXXhs5s0rVod64444rryzcUscrK7yqPYpTFjW5wjpZJYEQMDCT54UXXph88slPP/10WfXKK68YqKQhsIbKPEBnTWJ2Gw9wbvxgchcMI1qLL7743HPPnV4BAwhMXkeeZ+lsVkQrmBdffNESaSYosaVqqpRXpgWJJsMvueQSeXbVVVfBp9SxNEANbxMYpU26bzxZxaOShq/ffPPN/fbbz3yN+c3wjGwOqXQJ8P777x9//PFTTDHF97///XHGGWe66aY78sgjo3+loCmkjHmyBdIWHjB48GCV6c9//rPX0Mu/ck77Vnf3WK0FnqNz2Ob0l19+WWDuuOOOH//4x7Vht6CMN954rcNGgves4BYyuiQVrGUvvfSShZtFEk41imkhyAKnIFkcwQzXzKulllpKnt13333ZkyGGzKazAyuNSeubjESSBO9w4ZlVAGA2GEJ2equi9uUwMIapNXtQxhfhhnNeFXNdxA3Mani9xQcH+qeq1+Q2ii32EBkeKcgi2uucc85pd1VKBs8bTQ7DE90vXlLCb7XVVhNMMMHdd999wQUX2LrZDEGGeTQM3C+HgZEGljmU3HvvvQlShH7729/uscceGTswc9b98Y9/lEC33347SrPLqPLAwNKbvT3JmNbEgjFNPoHxjTbMLmRoRtjFESfweGJSqoehV0BSuTyVIe0/DU/qFxCdPZtqM182e4ZYL+leb775Ztte4YcRe0tDCBJ7yI6aDA79JptsYtO27777Kh4qyvXXXw9PXNjG5I44F3E5SvraV+2zzz7TTDONp527NfGGG24gQqI0ba+xBbAd2RZbbDHLLLNAUswzqV807QBDE6svaUU6KUUb3vfkXJjq5S+pFvF9mbSJwTAcIstVioHJ4GBGLJaRXulCVSZkJ2G7irNINDUvSl3gzTbbzNEJ3KTB04mpBdOmmSG77bbbkmTSSyFJSajUH+HESrpEW0+ybrzxRk/2WtoIYnLp2YQLWQBvm07Wwcsvv7x8Ur1tAgNt3l999dVE1x62ya4ZcvgsXk2CdmCTgBMrQZtDwh8GEH+NQCAxj3+bnPvCHMePmq7QR5bYO3tvuummNEwuIghZXyZtYspRV155pVr1u9/9zkA2klgmxyEjIKglIx955BHML7744u9973unnnpqNGRscnoAhTk8Pletd9llF8VvBMoV/gMllm42MzK+BnBNJRmRVXtbrBpA75auSixBjTdhwo0sjiC6nfxoYZvXOAhsXUhQg7GfJYWLS3ro8xo/PvDAA/YZv//979OViWt4XDFix8PYdc0119gpW2dxO+CAA15//fXyHubhX5hIb/+Z1InH3BrYrV933XWGb7fddn//+98BcXJ5pl/O/IBg991354EQ+MjTL+UAyH4uSEOdLYV48IKqKDZ0+sMf/vDUU0+RSnUXcc6xKnnEe3bUcOM+jsgoGw5SsCXODHMcg3ESQQPg7o6YI6ak85EsEbnvfve77p2xwlyXjzMAy1xvHHs4x+SIyPFHPOhj5x4N88SQhuEQ4k6fVvk11liDOBvkHXbYQbCJyz0kVnQmFBA9O2JunqDHmV08xoGrr7661wcffND5wPKtAIdhWd0vfzqQTiVOm2SSSfhB+eCxfokHQLbeqFIl1Pfff/8666xDzJlnnrnaaqupqFdffbWTxU033cTL6iRLFPCIFLYBZPTbxYMZJcNMEe5gD5vBngRJr+DFMu7ul8/wkMkPSjrdPPfcc5Z1pk0//fQ5ZhLngkqiJGNIRJ8hZrnpdO2119qaIGAjPREQhJjHbVDqq9zwpPfFm6jm4fnnn3/WWWfNOuusG2+8MbYHH3wwpDxAT0QA8AgkltsQjjKRchVCkJxg5s9//nOGE8o60RQ4/NnYV8NgEKSabLjhhrvuuus999yz6KKLDo94IDypzca8NAlrmCsQWwEaCwyRNp6CncJowu28887GcpnkaDJpH37yySePPvpoB6VtttnmV7/61bbbbptVYKKJJvJK7ghzpkNW7SFDhjCEK3/zm988+uij55577gYbbCBjLIhoWvhnxVSeEbhRZGwRcAtYbu211160bd/Goqy9WqQIc3VhTlZeS2L1tgPUcMTSC8NcbVC4ZTjKJnFLb4bnKRdNP7Cq35dsYMyojOR3RJ5mZ/RwBqYWy+VTEtbxWAovueSSNDYPPM844wxDtJb0l3aQVDezAeHcBKRLBBHtGMyPJpkJpxi4dInN9gc+WpnBkNQw3ChPcjFUnMHBYwXOxqiQAM1MwNzhS8EzDdZdd92ZZ55ZEsstErFCw3dM7iXvMT9FVBWB9Fq1BEGqprw//PDDJ5tsMhiJkoGQATyLWwz3pAOjdPEbwCspzKn6pAvzqlJMDjdjtcC0Lc7B5Jm5pyveCI37Bb61V2FCynBzCEFa6OnTl63h6BV701spQVkVmvLl9r4Dm1KGbi9SJ2LJQw89pFqoWLfccksmGV5e7Tq90tjW9fHHH8fll7/8ZTAG0sOTJYgBifSee+7JI5jnBGRDRrNIyROZRLQPUEssWM8//zyGmOBmT+D+MIrF/hroFSz1i1swkAWki3QrAlUt6HiqXjQx/zbaaKPoGbUN5CZP0j1VLEm53nrrgfERPMQAGxdfanH76U9/ardkrC40Gj0Dhxh9i86MCqVnRAOIQ99vS71Bw+HRrQbSBLLJUFc1xKxuvsL0bQiiYUzGsIZENItMQjPQWJR0xrY4Byhv19gChu6xVH7+Cke/D/ERw09EHFnNqgUXXNC+BKOVVloJjVSwftvFg828v/zlL8qAoiUSHGTmYSVXJMqyyy7LePtTTZBWXnllZQnGjJRhZhLmJoc9pv0czP7773/YYYepc2SZ3Msttxwp66+/PoleiVM+VbInnniCIKJRYmi9w0rlI4LO5iKP4EwNRqK0SzB2kUUWkS62sZtvvrn1/ZxzzkHT3C1lZtNH2K644gpD5p9/fk+zaNJJJ0VMunsdt9iQ88wzz9NPP73AAguwl9+NBaAhjgLkeiLjd8pzjl7+oRhKAP+ozTSkP7J+m3oDrzYHwBMszHhyoKY3uYU5mBThQyADSEcgY/gtdvUrApl8ogMT+NM88WSFBoPhj370o/POOw8Hr5A8Q3ms8kolyH45Q/awZmEcQS2oFVdc0Xbkhz/8oS8PqYo+eosfFwsJ79haMdL29pBDDikZ4WA4eXR1O3fcccf94he/4MF5553XMhrXh2GdMvDkKRksEWWelMWB9mxwJEkkGJzEMlacaIKGT2nOEfE1b8qbmWaaiRRIBKkKmD/22GNKOm19/HKJIIn14u+ZCs8Eo7gPwyTW3/72Nykip0mRVTlXqtk2wooW5d2dUjIRRQnWMIQxK1Q1LkVGW67XhU9UEu/kFsW0ZIauvk2XlArbTABeTbAQs07eEAfpCc8iSKMoAGYUJN289mUeDMdS0gzhaoKwMtAQ3hZf+wEiUNKTzgzx9BqeYOIk3/CYD1sK0eFLM0xRW+akiEmA0U477eRUmL0wJEoEdl0OsV41GoA9EQdDacCOO+6oQsgPsC7MPXUxm9OJM0TXXXfdtfDCC+fjBhoY7nA5uf322+eVRAUD3lwvETjgA6lxIprAnnzhib8nVeU3HTRFVP6l16teieKJVXO4XZRRdEiXZ1gZy+muDWGC5KvwoSf/ILP6q2TW8ammmkpSTj311L6ryHV5OcMMM0AKifk55ZRTqrJi+d/DaX6P4AzroMBd0SRCoyeFHfTUVKGVHDPOOKMA+eWnFCGaXHPJKym2g/02qT/77LMj0Hxod4sU/rGUUBYp8BKOz9PlqTcRCdxUrGgC9HzTZqqZVGWN36mr2nOuOgTPdj6tSmCILpPbjJcTP/jBD5QlPoLElGAEAiBX6OGO0ZxgPCZYpQsZbqaawOCgRvrmsMIKK9jGqVtSR6LwrJ1cCiEDOA7xKaecwgWYMJhrPK2huFFglVVWyT7dq1F5XnrppbxsLGJ7OLcYAoyPYnDsscfCb7nlltSOMoB0VVGEz6SUPVxkrIiSJcvvvffeVVddFZK9BtJEA1jNbb+YYCw9EeAgG7iC+RSDoYxX9DD0NKpvy5CsgyJCLoeTpZAgFjL28htWmPCPxsnChL/Gt2q5nKBtX+bB/OMf/xBBkUKs0TnqEQdJVlYD+NATAaC26DCNJhnSL/+eHYmcoJxuvJQQOwyA/SmM8SwH2/xmPL6KkGkhSADuc1/glpZmjqb48KNR8803n+2XlU4ZP/TQQw888EDayCEr0RJLLGHfhpshDz/8sH206DqyudRhT4Tyu2LJlRhKHS6jhqizhLWe8IZbpExWFwf8LhI8ouEQZ8E4FiilLrghVQ7JCpBtdDDWdk26M3bttdeG5zjmECSBvFqgTWUhZLIAIwsfPxnYeuutYZyRHY0Fz94g8e4J75df4ml4GkNwwDavmFP7pJNOohUDdWXm/Jt82F8GMpOIn/zkJxLFjKJGrmDi5GR8BrAaW6xULAqgh7e1tUnl4WFMG5AYKZxEsEsOnHbaaYaLEZ9TEqFXgnArQYbgTBb9DfR5e3jKGz4oXOSTYLATyvrlOGbDTgzZnpRWlo466qg111wTwa233rrMMss4Mpia9lKZfKaOHMKESJ+ocDBX5CiMpMndhCX117/+tc8LxxxzDGMMxHCOOeawh7MkqdjKm8rco1Zvs9oedNBBsRZbZqSiGEhtjkapaKdYSqNgIBnPC+xXlkxKE0OEXKPjYKBEp7a8J4QhvuQ7l4Cx5UQEdKO2zYDh8Q9unOPT7GKLLcZwlCeeeKL8M0rSSH3mo/RKuiZaaCgWlwqP1Jd8kslWT644stgRqnwVtgysJ25i7K5HGWYa52BlJvCPrjQ+oRjR7AJABpAQpo142XqvtdZaxbMFSE2hGxMUhVRHrwSRKIfUCx6IFK9M4BaF33GNOFtJq0ELz2GvtMlGByAzRM4ByuYUO9yrV3JoXhNUgXGZKajIID1VZv6VBDRzO09p+P/pbQBs+Rog5yQuAJkVx20+mFxJ4LIUrBEhw1iiGBgIwyQi+m0sTMNQ62XQ86AbfSwNaoOniEZzxHrpFT8SnSFRL2oTyrn777+/LvSMAkhWT4cApRoGZVhxVxwVsnBA2dJCrNfOJoUHw1I4vdGBmfD0xyF4sC5fAmgbmmLOKPT1WubYVEhZisXqoomS/GlI0yFlTpB04wRpuvTSS6MsoQGwtQpzaeFLgQKGHlnFgDCZ6yhkouTaqWSzUyapQACmViIiiIo+v/AXbRjgqVUXID4CkOIE62JJxkSnPBljhiFIg1TSVVqvkRgA3LfRJy1dQ1n0/oHBOc5Fky55BuaXCy+88OSTT7Y/RUB6lAQjM8ri64MGuHwHqTUxgqF4O/Nai8nSFSnxCYa8keFxiI2BO0LREl1dRplj6iLKtBA7xKiydv2iIHjYaiakihsvRclIEf5KGmRRgDgbXNUhGHcrTuVSzaYKgYEaibbRNvh2iuLSI6P3WNZU2K7DxTJ82JYyF110ka0O/XsH9f/o2W6HAndzwrHFhRA3EayL0qkZYDsJH7nkBFivesNBKK1iSuJll10G32yZHDDR1esRRxyBf4UngGe5hgFgN+NWnAjio/ixybkJU6BaEz8ATEoixAq6Rc/EvnQzT5Zffnmc8dHFpxSLf2GiEozKbx8DE22lWviU9IwiKG60iDjo6XWhI7mFTbqonUOGDMkQ+z/hNPdUNYc+SDNBaNRvVdwrVlG4whyk2U4WWO+dd96pRtioCI07I5PHHhcmkU1VYx3RzlXWa/XbQNkW82OCrYJF1sZXF0yEmhuaLYdCA1+5AW5pPYlF12ApF5dVTYpn9UYbu2xK8280gKeNZ8iYGtdXQY6ji95rBJk6AGrpKhERygAXYIkTmtiTUf0+a3hLL3yzEcTvHJQsL01ie72yC41Xs8j+0uQJ23IRnYOsWS5+LaIZwhU8GWfqpQnOdlcqsf9ToIMwq0yRJZP8BjrmO1VIPkMklqxtZg+Jca/eAPREUJpEEFVty+ST13333ddGEMCfLFIsBw8e7JVozJ1suJcmdjWQ8QwgMfW/GGikOCWTskWAhgKVA177tlGafik/9qUrz+oiIEwTrcQeHD+WvAB8Gm6yDYaWLWmeeIcGMeaRZWPUV40RwJQCNTZ6ikr8lWfIqBe1c1/vlxGV2YklJk3/JgaQmPBeOBcBS8sbaBylFQ+AUcIp5JyvdioMcgvSwqp62aHi4+zpLgpxgoJnyYKscFDYazWvPsTZIMokNLbkVlVf0znfuVKi2GDgYyHLmQA9pBMVDuilKbdE55/97Gc2P/B5jfm8QbfcKeqKvSW9CfRULE3Wx4NI45dSvbLNhzxdCBIDcHWZbRQKqwynh5oZjGdFpbyT9ILXKrdKKGQFnvF9k6M4fy3QMrYiTYGmzi0RYgW3ci7+ZWZVYr6iIVbxLBElJQBfOTZmYKqvHLJtyjTmBAdhMydChdaqRJDlCSzVXP3nd3Z8iGFSP441lmjE8eTZZ5+tqCDQUrpcBDp9I8CcOMUpajuLYO53YDkYWZF9u3v22WchXUSjd8rz1LjFWNub/OQGxmvFKwbyQJTvHdHPY5SYrSfKAeIyQCzJoPANjKBoYKpc45AhFTC9gSOlglpDCoNhmHs2M5L2WpEVzdcCvTr2PDgirYYISWYRDIJEqHoBscLmN+tI0w/JJCoZWEO8JhgEQcoMYwXMvYbXDJGjtupmYGgyll1qGEq3TRgCbC7dCzpVKGnqTRHH/3mWe52pFSSUyWCCbJcdj+QTSlqVhoaEOYw0AmN+wgkn+BThmCI68Xlcgfjmm29GY9uTwMWEyoEyv9xYggroqVjFDlxKg0uzWpU4Iqa25BABwScD6JGxea0hfFc1Cf/gESdIXgHRVeb1zVFD2m80DNsMwRyGVvFRulr8QmLwUdIvRjg3mxL+jUXNDQ3OLa9EMJkPHeJUDiF/5plniOZA33NqwuAfj/mqbR30ZZ1oioHlGQ6u9e2H3AISESWjtte4NMq4bXa2paSb2ygvd22Y0muIZjit3EgvtNBCcYVPUo4Cca8v/SmWKNMb29Uq/0qZZMjmL72eLZSFbwGGLoUt2P+HrwlGXJmCCuN+kt8FhkPyDNkA/qmUddATPwuige6EhVxOVCKC1QNXTb5G4ObwJX7Kj5O8V+XNbWqWMHkJk2ekKwSljCridlcGo3GnbbV1gRkdIguxCwW/ASbRHs6lgzqqqqXISUpHdWPL5KQR6XXMb5l+iNtp3cQa6qVMxBRvqETO/+KpHLbwXnWl1zNlY3j+TVzR2JLbNqG3Da9yBS+o9liC6nLV7xldOrjoscXx7VLBcL2uy70D/l5xk0/N6Ca94DU01k30qpetlY9s0SoFSaGVVXoVQh8xpZ2TgS8N7ngxMW18kHAlIWuxMqlioJs5iuEAnwI2sL39+qGbWEPdkkxKPKAEMvGzcAhM+a4ORIVpAQzEJBHKBtwXC5+txA9l7s8APtHU9xCHOAc3SJ9f/FpJOfEZI2yzrRH1VCwAPQMTFEChkrhuO+WlXZf8SBaizIbdtyPTgxWEUuxPf/oTWHqR60NCBOWJoTR1s2WNhiGuFr4mWTvwMJe1Q/2Np+HZ2lJksvKs74kmMdtr4mbFHMAbCb/UFHJRtGdCnGwDWHdSJwCkBB/YLYOgEiQ7kx9NKQlzMp6qWsaqRj5T+vyCgOiUnwyMqjb14Zbl1fWmpE+XvIxu6qgK7Tt9imVlVand1ORr4W5iDXNR8sZTwILlev4FKzlWK4BXm5hhY/pASUdotU0G+C2kgRgmrgl8BuXglhpZwUuwERRgSPSptJY64UCZIB0O1D/LHLyJkbEGItDCPBMGDIOMPkRngU4uQrphcTsNIFEr0TCdtm5iDfNY5USFUF9tt+tgOGzA10ECJsY5safMGJFtsq4qSOIXmigALk3QBza8NIEUdZikSAiSTO7PSqnwDI2xpOgi19iiCWAsPLgu6qIkTEaV8i0DB3gdpE+t7ramBwRDbjmy1c9gTHS/GEGjNtjKNIlb4IRN0qC3iUmv8IiNvYsk8LTTckOmi/NFFJkfuqgfJAZJboUf4BqCPpCOmYZEKwMBBkoLA/FHBmk7RbpfEmBFru96QXqNCDpAYgWjySGHDIAKml98RMnezp4H0TjXa5vAUMvbpP4GkwkG64SNH0XLAV7YhAQyWeUpMLIKgWAPzxWyRK/jesIvSCgFWz7h4Gl4sgoeTXIFMlkVNXQl2wxMduKJUvYYklqQ/Tg8VdGLvd4Qo6QqZCjJBeslQhrRgYFyLgTJKhssWUUNQxDo0qSaZwT1Ijp4dCtWB87qkrbvgW7Fat9XXcoOPNBNrA6c1SVt3wPdxGrfV13KDjzQTawOnNUlbd8D3cRq31ddyg480E2sDpzVJW3fA93Eat9XXcoOPNBNrA6c1SVt3wPdxGrfV13KDjzwvyMCmNMT1O39AAAAAElFTkSuQmCC\n", + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAAyAMgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiuatPHHh7UNLvdRstRW4tbKbyJXjjbmQkAKuR85JIA25ySMUAdLRVVLuFp1t/MRbgx+b5JYbwucZI9M8Z9atUAFFFUbnVtOspRFd39rbykbgksyoSPXBNAF6is+x1O11C4u7eFz59nL5U0bDDIcZU49CpBB7g/WtCgAoorH1HxJpWlX9tY3t2Irq6z5EWxmaTHXaADnHf0oA2KazBFLMQFAySe1UNK1iw1uGaWwuVnSGUxSYBBRwAcEEAg4IP41hfESeVvDS6TbyNHcazdRaajr1VZG/eH8Iw5oA09B1p/EEE19DbmLTmk22c7v81yo4Mm3HyoT93nLDngEVt1TJs9L09AWhtbSBFRdxCIijAUc8AdBVygAoorzfx7ayalrtlCNE1a4giTBvLRpAVcniOPaw2Fhw8pBAX5ep4APSKKht4Ut7eKGNAiRoFVB0UAYAqagAqtc3K2drJcSLKyRjJWGJpHP0VQST7AVZrA8XNOPDV2ltp9zqE8q+WlrBKYmlJ7FwRtX1OemQOSKAL2m6rBqyO9vHdoqEA/aLSWAn6CRRke4qxdPcR2sz20SzTqjGON32B2xwC2DgE98HFcv8PdNWw0SVhZ3ls0kn/L0rxkgDgJG5JjjUkqqkngZ712NAGToOtQa5p32mFZI5I5GhuIJPvwSqcOjY4yD6cEYI4Na1cWrnRvikYEG211yxaYqOn2iAhWb2zG6gn/AGB17dpQAUUUUAc744vf7O8D61eCZ4mhs5GRk4O7b8o6HGTgfjWDJps2k/8ACA6TId9pBdbJTI4O10tZPLUEYyAwOOvKiuh13wzbeIpbM3l1epBbvva2hm2xT/MrASLj5gCg9D19TVrXNIj1mwFuZXgnjkSe3nQAtDKhyrgHg4PUHggkd6AOK03U7KH4k+JtSvtQlAs4VtEVgMRwxJ50ruAuVQNKACeuOC2eNfxl4jtLbwjBfQatLbJfGP7PNa7N8qsMja8g2xjByZGGFGT1xXSz2SywXCq7QXE8XlvcwKqyDggEEg8jJIzkCltNPtrLT7exijBhghECB/mOwADBJ68AZ9aAMDw7rUEOj6aNV8QxaheajM6Q3AQJHO44KxADBUY4Pfr3rmfG97aXHjG209dYjtrgRKrK1tBIBk/dXepaSVt67UXAXG5sg4Pf3ukw3stizPIkdnL5yQx4COwUhdwxkhc5ABHIHpV028RYMYkLK28EqMhsYz9ccZoA5qMrF8TZ442w0mjxtMoP3tszBCR/wJwD9fSqHiDUtdh1maKzm1dIFC4FtpCTp0BOHLAn8q6XT9Iis9R1DUGkaa6vnUySN/CighI1HZQCT7lmPetXAoA53wpdahc2c/8AaMl88iyYVruxW2bGOwUkEe9cprMl5r/xGvYdE1C2iu9H0h4oWfDBbmducDcOQsa5POM8jpn03FMCIDuCqD64oA5ix8ReHLPxHLokF4japORJNl9zSSKBF83fdhF7AY5qp4zG/wAUeCopnZLQ6q7swHHmrBIYxn3ORjvzXQLoOmrrjayttjUWTyzcb23FMAbOv3eAcdM89eaw/iKpttCstZUFho2oQX7qBkmNTsk/JHY/hQBR+J0kbWGi6fc3klvbXmoxi4IwB5UQM7HJH3v3QAAIJJ4B6V1enazY39xPZ21xvu7RImuIXBEkXmLuXeMcEjnFXHjhuUQukcqhg6bgGAI5BHv3BqC301LfVLzUPNlkmuRGhDsNsaIDhVAHAyzNzk5Y84wAAZr3fisSuI9H0hkBO0tqkgJHbI8g4rJ1Xxdq+iSwx6lZ6FBJMrNGh1WZmYDGThbYnAyOfeugi8QafL4huNCWZhfwQidkZCoKE4ypPDYyM46ZFcpDa6vrDTeIbOeOBNRulh81pPLeLTIw+GjYqcM7HzOnRgMjAIAG/wDCx7j/AJ5aH/4HXX/yLXQad4stJdKtbvUbiztjd3QtIBFK7q8h+6oLohycHt+NcLZ+J9Zu9N03Sp7y8MOo6ndC31GNT50umQYO/KgEM+VUOADg7veun8HQTeIvAui3GpXV1IFuDcoS/M8aSuYd5OWI2iNuoJKjPcEA6LU59ailjGmWFlcoR85ubxoSD7ARvn9Kyr7WfEem2Ut3e6ZoVvbRLueWTVpAqj/wH/CtPWtfsNAS0fUJZI47m4S3RxGWVWY4BYjhRkgZPHIrH1xLjXfEtvpttsMGloL+befle55FujY7AgyH/dT1oAyv+Fkz/wDPPQ//AAOuv/kWtfwz4tl17UXtnTTlCxGT/RbmaRuCB0eFBjn1z7enKzeI9c8L6leS390+oJZ6KbvVYQ++KC6JAjVGCjbv5+TsvPudHwPdaqfE99Z3d7fXZj022lvhc7gI7yR5GYIrfcXZjAUYwB36gGl4nUD4geCJNo3/AGm7Td32m2ckfTIB/AV0tzq1haanZ6dPdRx3l7v+zRMfml2DLY+grmZ0/tX4s2e3Bh0TTZHdgucS3DBVXP8AuRk/iPWukutMju9RsryWaf8A0Mu8cQYBC7Lt3MMZJALAc4+Y8HjABo0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBPbxXVvLbzxrJDKhR0YZDKRgg+xFT0UAYPhvTL7RLFtKnnjuLO1YJYzFj5vk9kkGMZT7oYH5gBnBzneoooA5Dxn4RuPEc2nXFje/YrmBngnlHV7WVdsyDj72ACp7EVoeIfDNv4i0H+xWu7uxtDtDiyKoWQDGw5Ujb0yMc4x0yK36KAOJm+HsUtvHH/beqtLiaKa5kaNpZYpVRXQHaAnEaAFQCAD6111rbQ2NpDa20SxQQosccaDCooGAAPQAVYooAyvEOi2/iLw/faPc5EV3C0ZYDlSejD3Bwfwqj4X0S+0nQmi1O9+0arcs015dxgfNKQBlcjoqhQMj+HpXR0UAcFb/DCxgtr23k1zWbqO6SQEXM0bhZHILS4CDc+VH3sjGRjFb2maG+hWF+9tL9t1S7Zp5Li6bb50u3CglR8qAAKAAdqjvW/RQBieHdEbRrSY3NwbrULuY3F5cEY8yQgDCjsigBVHYAVt0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//Z\n" }, "metadata": {} }, @@ -1636,10 +1961,10 @@ " \n", "
\n", "
\n", - "
f ( \\sigma ) = f _ { 0 } \\frac { 1 } { \\sqrt { \\pi } } + \\sum _ { r = 1 } ^ { \\infty } f _ { n }

\n", + "
f ( t , z , \\bar { z } ) = F _ { \\star } \\left( t , \\frac { z } { \\sqrt { 2 \\theta } } , \\frac { \\bar { z } } { \\sqrt { 2 \\theta } } \\right) ,

\n", "
\n", "
\n", - "
f ( \\sigma ) = f _ { 0 } \\frac { 1 } { \\sqrt { \\pi } } + \\sum _ { r = 1 } ^ { \\infty } f _ { n } , \\qquad f ( \\sigma ) = f _ { 0 } \\frac { 1 } { \\sqrt { \\pi } } + \\infty \\sum _ { r = 1 } ^ { \\infty } f _ { n } , \\qquad f ( \\sigma ) = f _ { 0 } \\frac { 1 } { \\sqrt { \\pi } } + \\infty \\sum _ { r = 1 } ^ { \\infty } f _ { n } , \\qquad f ( \\sigma ) = f _ { 0 } \\frac { 1 } { \\sqrt { \\pi } } + \\infty \\sum _ { r = 1 } ^ { \\infty } f _ { n } , \\qquad f ( \\sigma ) = f _ { 0 } \\frac { 1 } { \\sqrt { \\pi } } + \\infty \\sum _ { r = 1 } ^ { \\infty } f _ { n } , \\qquad f ( \\

\n", + "
f ( t , z , \\bar { z } ) = F _ { * } \\left( t , \\frac { z } { \\sqrt { 2 \\theta } } , \\frac { \\bar { z } } { \\sqrt { 2 \\theta } } \\right) ,

\n", "
\n", "
\n", " \n", @@ -1649,19 +1974,49 @@ }, "metadata": {} } + ], + "source": [ + "# @title Suffix vs. generated text\n", + "\n", + "for i in range (10):\n", + " image, label = test_dataset[i]\n", + " prefix = \"\" + label[\"prefix\"]\n", + " suffix = label[\"suffix\"]\n", + "\n", + " inputs = processor(\n", + " text=prefix,\n", + " images=image,\n", + " return_tensors=\"pt\"\n", + " ).to(TORCH_DTYPE).to(DEVICE)\n", + "\n", + " prefix_length = inputs[\"input_ids\"].shape[-1]\n", + "\n", + " with torch.inference_mode():\n", + " generation = model.generate(**inputs, max_new_tokens=256, do_sample=False, num_beams=3)\n", + " generation = generation[0][prefix_length:]\n", + " generated_text = processor.decode(generation, skip_special_tokens=True)\n", + "\n", + " html_diff = side_by_side_diff_divs(suffix, generated_text)\n", + " display(image)\n", + " display(HTML(html_diff))" ] }, { "cell_type": "markdown", - "source": [ - "### Evaluate fine-tuned PaliGemma2 model" - ], "metadata": { "id": "5cU-C88_IfAQ" - } + }, + "source": [ + "### Evaluate fine-tuned PaliGemma2 model" + ] }, { "cell_type": "code", + "execution_count": 21, + "metadata": { + "id": "6zUxJufnIVMK" + }, + "outputs": [], "source": [ "import numpy as np\n", "\n", @@ -1688,109 +2043,94 @@ "\n", " targets.append(suffix)\n", " predictions.append(generated_text)" - ], - "metadata": { - "id": "6zUxJufnIVMK" - }, - "execution_count": 29, - "outputs": [] + ] }, { "cell_type": "markdown", - "source": [ - "**NOTE:** BLEU (Bilingual Evaluation Understudy) is a metric used to measure the similarity between a VLM's generated text (like a caption for an image) and a human-written reference text. It works by calculating the overlap of words and phrases, giving a score between 0 and 1. A higher BLEU score indicates better agreement between the generated text and the reference, meaning the VLM is doing a better job of producing expected output." - ], "metadata": { "id": "ulb7SNacJua5" - } + }, + "source": [ + "**NOTE:** BLEU (Bilingual Evaluation Understudy) is a metric used to measure the similarity between a VLM's generated text (like a caption for an image) and a human-written reference text. It works by calculating the overlap of words and phrases, giving a score between 0 and 1. A higher BLEU score indicates better agreement between the generated text and the reference, meaning the VLM is doing a better job of producing expected output." + ] }, { "cell_type": "code", - "source": [ - "!pip install -q evaluate" - ], + "execution_count": 22, "metadata": { - "id": "3c2S5avCKiDM", "colab": { "base_uri": "https://localhost:8080/" }, - "outputId": "b74e19e8-cd01-46b3-909c-3fe24a264aa6" + "id": "3c2S5avCKiDM", + "outputId": "d15c19b8-7d85-4c45-a1a2-bf491816caa2" }, - "execution_count": 31, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/84.0 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m84.0/84.0 kB\u001b[0m \u001b[31m7.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/480.6 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m480.6/480.6 kB\u001b[0m \u001b[31m31.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/116.3 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m11.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/179.3 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m179.3/179.3 kB\u001b[0m \u001b[31m17.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/134.8 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m13.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/194.1 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m18.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/84.0 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m84.0/84.0 kB\u001b[0m \u001b[31m7.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/480.6 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.6/480.6 kB\u001b[0m \u001b[31m10.6 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━\u001b[0m \u001b[32m440.3/480.6 kB\u001b[0m \u001b[31m6.5 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m480.6/480.6 kB\u001b[0m \u001b[31m5.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/116.3 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m9.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/179.3 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m179.3/179.3 kB\u001b[0m \u001b[31m15.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/134.8 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m12.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/194.1 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m17.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", "gcsfs 2024.10.0 requires fsspec==2024.10.0, but you have fsspec 2024.9.0 which is incompatible.\u001b[0m\u001b[31m\n", "\u001b[0m" ] } + ], + "source": [ + "!pip install -q evaluate" ] }, { "cell_type": "code", - "source": [ - "# @title Calculate BLEU\n", - "\n", - "from evaluate import load\n", - "\n", - "bleu = load(\"bleu\")\n", - "\n", - "results = bleu.compute(predictions=predictions, references=targets)\n", - "print(results)" - ], + "execution_count": 23, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 151, + "height": 130, "referenced_widgets": [ - "ca7aebc964004606bc4bb2ded7845dba", - "1f72cb4fabc34524afbc492d35941834", - "910afed62aef457eb2de11ef0ba2f846", - "c3fb5a3f8659432690e74b9839d1beba", - "fc4626bd7d154d1b9077bb8e3b1a1ca8", - "6891878df8e94fad94d1b0043e211477", - "0c624ee250244606a6333fb04448c611", - "6e6def764f3e4be2aa694e7e46ed9f79", - "e5ef21ef83804f1b9bbd1287a12c8c2b", - "cce52c92b61b49a790c43748ba3df469", - "48521394be8e46199701bf86bc9ce45b", - "c3e9a08a931547b68a9a4027e288443a", - "32cf287379c540dea0fa6bae096a606b", - "d333b0fb43184394b88178a93c0a8c9c", - "5900a96b6eec4efaa7334b7885385f4d", - "26e8841f88244287a77fa381dc9e68c5", - "988f41845d21476ba76ea017e109cd49", - "5de998d0e21e47a7a5fc1fed9c379b8f", - "b2eb2780ff6c49879141760d2ddec932", - "e12b6026469f4329b09eb8d9a4f94db3", - "65ee27bae1044d16acd443ad4db25614", - "d7fbd5c089ce48218df82079ae667e60", - "171e4e3012e346d08a4d11cdf571fc35", - "5e2ee6332e214d6b9c3be718d0b41665", - "a3ab6e6436ff47e8ad7284253e18f399", - "4cb23557c6214a16a3ad46810118108e", - "4be42740a20640a5b44dd14bfe782400", - "02b4e70706274c619d3c226bca79e090", - "b13129bbd7674bb783ca8cd1d47c5575", - "470a106c3bee4c658271c595fb842a61", - "5fa51694da274034b17fbfda7fc26027", - "0eca508f03c9424aa34b8216e02b4f0e", - "e73d62976231495384b1fba212969acf" + "65de82823814445c90eccec2b8202db1", + "94f0b6a012ab4178b53ea6332e2eb50c", + "9981cd15dec94796810e1e141576765f", + "a1b3684587c949aca3055369f790d5a7", + "e8048c541d5a42ba9aa7736fb9b6859c", + "7a357ce1b9c14872b6ccb9730faa961b", + "147584d42e8d4c63b1614a995d9408a9", + "8a30e2c843484cc186865e33020104ff", + "b031598a947f4b2c94156d81854a8813", + "8866699020a54ef89b459a39dc18e2df", + "d136ecf468a74980baf3ea71adcecde7", + "88810a621c9d41449d7dbd0234f22904", + "ef5e154e32334abc9103f98602a89c37", + "b6cb53fd090c41f0bc0f3d947b7f4102", + "1320a30ebc1d4ea8aad5263d67267995", + "2448c9f029c44ff6a8079ddf45d1b651", + "566b4d04baf542099388a850bec050e0", + "f3e8cc24eaf0468d8393b28a9e586a0e", + "c65b95f237ea4f79abc106cb8f1fd79d", + "21bce2ffb0c64643acf1705c1d9cf7f1", + "0c82d7e13a4245e7bdf47d1839e660ae", + "61d1d81f980941bba3c647eab8a67ae7", + "4760b69b8e204119ba1df519d810c3cd", + "288e9c53ae4f40b4b910c228c2d68dab", + "34eb2d74cf704ceb95abbf2ab8ad7e45", + "e26ab30e13594a62929c52aa903378d9", + "5f42f1c9e9ac4e2c96d12f06165d57d4", + "d8507df327cb459aa954ae500181cb47", + "77ca22841d7348788dd710f57ba2f7c5", + "7c248573664740d8aaba2c94ff0acae3", + "e79f982a893046ed8d73dff3cb696bc7", + "63797809b54248b28850c9dcb042db53", + "6b9efce422524b958ca542f24311624c" ] }, "id": "ATtWcyjFH9EC", - "outputId": "d9b4d23b-ec9b-491a-fd4d-714d08695f43" + "outputId": "1fe5cc3d-46ef-4ac3-cf38-2da28a273575" }, - "execution_count": 32, "outputs": [ { "output_type": "display_data", @@ -1801,7 +2141,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "ca7aebc964004606bc4bb2ded7845dba" + "model_id": "65de82823814445c90eccec2b8202db1" } }, "metadata": {} @@ -1815,7 +2155,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "c3e9a08a931547b68a9a4027e288443a" + "model_id": "88810a621c9d41449d7dbd0234f22904" } }, "metadata": {} @@ -1829,7 +2169,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "171e4e3012e346d08a4d11cdf571fc35" + "model_id": "4760b69b8e204119ba1df519d810c3cd" } }, "metadata": {} @@ -1838,78 +2178,79 @@ "output_type": "stream", "name": "stdout", "text": [ - "{'bleu': 0.2701860980264998, 'precisions': [0.3021834061135371, 0.2802631578947368, 0.25903083700440527, 0.24292035398230089], 'brevity_penalty': 1.0, 'length_ratio': 3.1586206896551725, 'translation_length': 2290, 'reference_length': 725}\n" + "{'bleu': 0.7391661684279524, 'precisions': [0.9650455927051672, 0.8796296296296297, 0.7915360501567398, 0.7181528662420382], 'brevity_penalty': 0.886866522219942, 'length_ratio': 0.89280868385346, 'translation_length': 658, 'reference_length': 737}\n" ] } + ], + "source": [ + "# @title Calculate BLEU\n", + "\n", + "from evaluate import load\n", + "\n", + "bleu = load(\"bleu\")\n", + "\n", + "results = bleu.compute(predictions=predictions, references=targets)\n", + "print(results)" ] }, { "cell_type": "code", - "source": [ - "!pip install -q sacrebleu" - ], + "execution_count": 24, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "LdWWIf4kKWqs", - "outputId": "70da191d-1ad5-4cdc-fced-8e764682d6e3" + "outputId": "8140f93e-11c1-481b-8a2f-1875260137d6" }, - "execution_count": 33, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/51.8 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m51.8/51.8 kB\u001b[0m \u001b[31m4.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/104.0 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m104.0/104.0 kB\u001b[0m \u001b[31m10.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m51.8/51.8 kB\u001b[0m \u001b[31m4.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m104.0/104.0 kB\u001b[0m \u001b[31m9.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h" ] } + ], + "source": [ + "!pip install -q sacrebleu" ] }, { "cell_type": "markdown", - "source": [ - "**NOTE:** Translation Error Rate (TER) is another metric used to evaluate machine translation, often applied to VLMs that generate text. Unlike BLEU, which focuses on overlap, TER calculates the number of edits (insertions, deletions, substitutions, shifts) needed to change the generated text into a human-written reference." - ], "metadata": { "id": "07DPD2UPKyBR" - } + }, + "source": [ + "**NOTE:** Translation Error Rate (TER) is another metric used to evaluate machine translation, often applied to VLMs that generate text. Unlike BLEU, which focuses on overlap, TER calculates the number of edits (insertions, deletions, substitutions, shifts) needed to change the generated text into a human-written reference." + ] }, { "cell_type": "code", - "source": [ - "# @title Calculate TER\n", - "\n", - "from evaluate import load\n", - "\n", - "ter = load(\"ter\")\n", - "results = ter.compute(predictions=predictions, references=targets, case_sensitive=True)\n", - "print(results)" - ], + "execution_count": 25, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 67, + "height": 66, "referenced_widgets": [ - "9a735f3919644616bcc4c585d06d645d", - "da3a78de860e4df4aab822fc7388750d", - "4a2c90148c83403baeadffebbf73854e", - "e332d8fe724a4c16a67c6dbef23c9099", - "548dbc5e9eac4177b9150489241c237f", - "1b55a8487b2746aca029af2b375c3d03", - "d50707e73bda435b89a03e473b069400", - "d8ee58c5fbd14b32b1bd5daac8a87684", - "9cb3c0a3b66d4425b97e5f584e92198f", - "009197970ff64569b3e2e70af7be0efa", - "67a200b28ed04777ad7e29303b483dad" + "a245eeb765664b5fb97e3156f67e4090", + "d987d6a207874063b4c6cbb1bac85af9", + "fb0d7db1b96b4ec996863a7ace7b83ec", + "e166f9df8e914b22ab9fabbf20e613e4", + "38a5f0ead86b45cba812c2151b8e3c89", + "766f330ae4934cc889664a663861a00d", + "58040ae1bf5f4a5bb1d94cf2e67dbb59", + "2a4ed96361d14a8fbf4e32eba3280ada", + "18e9b7c41f83466fb76eb96222dfb01f", + "aee8117c5c5142de8ada83734f74a719", + "1e061226a8e845ec94420a185bab40a6" ] }, "id": "ykKFf808JwfK", - "outputId": "f926d0c5-dc6a-47cf-a565-3899f0b882c0" + "outputId": "bec63ba6-6e3b-4c68-f25f-921091f93368" }, - "execution_count": 34, "outputs": [ { "output_type": "display_data", @@ -1920,7 +2261,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "9a735f3919644616bcc4c585d06d645d" + "model_id": "a245eeb765664b5fb97e3156f67e4090" } }, "metadata": {} @@ -1929,9 +2270,18 @@ "output_type": "stream", "name": "stdout", "text": [ - "{'score': 204.27892234548338, 'num_edits': 1289, 'ref_length': 631.0}\n" + "{'score': 17.472698907956318, 'num_edits': 112, 'ref_length': 641.0}\n" ] } + ], + "source": [ + "# @title Calculate TER\n", + "\n", + "from evaluate import load\n", + "\n", + "ter = load(\"ter\")\n", + "results = ter.compute(predictions=predictions, references=targets, case_sensitive=True)\n", + "print(results)" ] } ], @@ -1951,7 +2301,7 @@ }, "widgets": { "application/vnd.jupyter.widget-state+json": { - "d14f91af605b4ddaa6a04a936afb6726": { + "f84389f96f5b4f0083393a909405d361": { "model_module": "@jupyter-widgets/controls", "model_name": "VBoxModel", "model_module_version": "1.5.0", @@ -1965,99 +2315,581 @@ "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", - "children": [], - "layout": "IPY_MODEL_315af73ed83744b099320c20dc59508f" + "children": [ + "IPY_MODEL_0a2efe8e7cc0441bb245a16143fccacd", + "IPY_MODEL_8efc673032d94642803c17bca21be187", + "IPY_MODEL_94d4353a335d4b27b0279db0ee02949a", + "IPY_MODEL_2ee0184baa3e4dc9affce75c4b14e586", + "IPY_MODEL_b17882b8b6424f29a9b5839478bc2e01" + ], + "layout": "IPY_MODEL_b9915f38865247269dce618c67db0d9f" + } + }, + "0a2efe8e7cc0441bb245a16143fccacd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_39348d6db7dc4047bf142604b63596b2", + "placeholder": "​", + "style": "IPY_MODEL_af937e8993534b949629dbffeaea4826", + "value": "

Copy a token from your Hugging Face\ntokens page and paste it below.
Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file.
" + } + }, + "8efc673032d94642803c17bca21be187": { + "model_module": "@jupyter-widgets/controls", + "model_name": "PasswordModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "PasswordModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "PasswordView", + "continuous_update": true, + "description": "Token:", + "description_tooltip": null, + "disabled": false, + "layout": "IPY_MODEL_918b7742e2044bbcae74a9fde46a23f1", + "placeholder": "​", + "style": "IPY_MODEL_3e218b0a4a34445080a5a2ed3eef511b", + "value": "" + } + }, + "94d4353a335d4b27b0279db0ee02949a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "CheckboxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "CheckboxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "CheckboxView", + "description": "Add token as git credential?", + "description_tooltip": null, + "disabled": false, + "indent": true, + "layout": "IPY_MODEL_60e707662cdd4337a611ec62a7c0903d", + "style": "IPY_MODEL_f6372b23105b49ab8ade7802c5c8064a", + "value": true + } + }, + "2ee0184baa3e4dc9affce75c4b14e586": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ButtonView", + "button_style": "", + "description": "Login", + "disabled": false, + "icon": "", + "layout": "IPY_MODEL_508746f3b1174f9c97c8234230ba75bc", + "style": "IPY_MODEL_40941a70fc354c63aaeb084d523e0e76", + "tooltip": "" + } + }, + "b17882b8b6424f29a9b5839478bc2e01": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_654e31910dbb47cfb9a544dc6c5f000c", + "placeholder": "​", + "style": "IPY_MODEL_ae5f08a1ac7f421f91ca2e64a44a6b2b", + "value": "\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. " + } + }, + "b9915f38865247269dce618c67db0d9f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": "center", + "align_self": null, + "border": null, + "bottom": null, + "display": "flex", + "flex": null, + "flex_flow": "column", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "50%" + } + }, + "39348d6db7dc4047bf142604b63596b2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "af937e8993534b949629dbffeaea4826": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "918b7742e2044bbcae74a9fde46a23f1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3e218b0a4a34445080a5a2ed3eef511b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "60e707662cdd4337a611ec62a7c0903d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f6372b23105b49ab8ade7802c5c8064a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "508746f3b1174f9c97c8234230ba75bc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "40941a70fc354c63aaeb084d523e0e76": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "button_color": null, + "font_weight": "" + } + }, + "654e31910dbb47cfb9a544dc6c5f000c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c85a9d2063204a92a64f11b066b14098": { + "ae5f08a1ac7f421f91ca2e64a44a6b2b": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2341d14200204994888759f7a1be98ed", - "placeholder": "​", - "style": "IPY_MODEL_e67c7eaf6aac481e82b568671c4e08cc", - "value": "

Copy a token from your Hugging Face\ntokens page and paste it below.
Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file.
" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "230f750695f848b580fae9e7e5fc6cd2": { + "5d3b1476587a4643b6d89525f79f84d3": { "model_module": "@jupyter-widgets/controls", - "model_name": "PasswordModel", + "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "PasswordModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "PasswordView", - "continuous_update": true, - "description": "Token:", - "description_tooltip": null, - "disabled": false, - "layout": "IPY_MODEL_24e433a74d6b4bd194848f97999c333c", - "placeholder": "​", - "style": "IPY_MODEL_ac0b9d70d3ba41b49cd75488bf0aea8d", - "value": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bef02e81428d4cf692f1cd6e0ba814ac", + "IPY_MODEL_c604aed144224913a0c6ae5002cb688c", + "IPY_MODEL_1496a1539b86488e91481ae971d18b3e" + ], + "layout": "IPY_MODEL_8e3d181d47d741b0949678e0f02eba53" } }, - "6e4a11669c8e40299882ed8c94d68d2b": { + "bef02e81428d4cf692f1cd6e0ba814ac": { "model_module": "@jupyter-widgets/controls", - "model_name": "CheckboxModel", + "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "CheckboxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "CheckboxView", - "description": "Add token as git credential?", + "_view_name": "HTMLView", + "description": "", "description_tooltip": null, - "disabled": false, - "indent": true, - "layout": "IPY_MODEL_93228f56864747c482827fe18a6a3653", - "style": "IPY_MODEL_dbefa99013a1487eafe4b42261f8a3bc", - "value": true + "layout": "IPY_MODEL_3aa1fae13f9a478cac2ad96fb56844a7", + "placeholder": "​", + "style": "IPY_MODEL_cde77f0c227b4afda2c2175aea49e339", + "value": "preprocessor_config.json: 100%" } }, - "e4c01ad80f65417a83d89a6fe456a53e": { + "c604aed144224913a0c6ae5002cb688c": { "model_module": "@jupyter-widgets/controls", - "model_name": "ButtonModel", + "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ButtonModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ButtonView", - "button_style": "", - "description": "Login", - "disabled": false, - "icon": "", - "layout": "IPY_MODEL_ae50c0206be34c1399d2f6c4c065a4bb", - "style": "IPY_MODEL_1f77b30eeb9a4e56bd0ec0a306cb7219", - "tooltip": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_24b0220fa4a747df95df46f453a28108", + "max": 424, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6b972e333b9742ef8d2c8c0fc4e74e23", + "value": 424 } }, - "ba55831dc72a471e893dbd76c5b8c77c": { + "1496a1539b86488e91481ae971d18b3e": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -2072,13 +2904,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d20cae74f2964ec7a643bb0089bb2d43", + "layout": "IPY_MODEL_480c0fcb041d44c0898d47e726576159", "placeholder": "​", - "style": "IPY_MODEL_9a45a471f91744b68b022188177dc09c", - "value": "\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. " + "style": "IPY_MODEL_84fa2487fed04ef6b990e4b1bdd583c0", + "value": " 424/424 [00:00<00:00, 31.3kB/s]" } }, - "315af73ed83744b099320c20dc59508f": { + "8e3d181d47d741b0949678e0f02eba53": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2091,13 +2923,13 @@ "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, - "align_items": "center", + "align_items": null, "align_self": null, "border": null, "bottom": null, - "display": "flex", + "display": null, "flex": null, - "flex_flow": "column", + "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, @@ -2127,10 +2959,10 @@ "right": null, "top": null, "visibility": null, - "width": "50%" + "width": null } }, - "2341d14200204994888759f7a1be98ed": { + "3aa1fae13f9a478cac2ad96fb56844a7": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2182,7 +3014,7 @@ "width": null } }, - "e67c7eaf6aac481e82b568671c4e08cc": { + "cde77f0c227b4afda2c2175aea49e339": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -2197,7 +3029,7 @@ "description_width": "" } }, - "24e433a74d6b4bd194848f97999c333c": { + "24b0220fa4a747df95df46f453a28108": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2249,22 +3081,23 @@ "width": null } }, - "ac0b9d70d3ba41b49cd75488bf0aea8d": { + "6b972e333b9742ef8d2c8c0fc4e74e23": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "93228f56864747c482827fe18a6a3653": { + "480c0fcb041d44c0898d47e726576159": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2316,7 +3149,7 @@ "width": null } }, - "dbefa99013a1487eafe4b42261f8a3bc": { + "84fa2487fed04ef6b990e4b1bdd583c0": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -2331,7 +3164,147 @@ "description_width": "" } }, - "ae50c0206be34c1399d2f6c4c065a4bb": { + "2fca4c5efaa34b3e871f8ad1aad192a8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b68e785045b441dda6f5addca0e35e17", + "IPY_MODEL_b4a5d5b367b7457c83762a91d5552c3b", + "IPY_MODEL_dbee1c9a651b44c5a5d010ce884c3299" + ], + "layout": "IPY_MODEL_8bb859ef61234b5ca8823bee9d66fe4c" + } + }, + "b68e785045b441dda6f5addca0e35e17": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9255c87c16d9495a80b25485bf4710d5", + "placeholder": "​", + "style": "IPY_MODEL_f44967749055441e9611ca5e36616a4f", + "value": "tokenizer_config.json: 100%" + } + }, + "b4a5d5b367b7457c83762a91d5552c3b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f2f140f0dbd3483f93c028e4132c6ad4", + "max": 242593, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b3b7f487bbda493cadfa78ec408e87e6", + "value": 242593 + } + }, + "dbee1c9a651b44c5a5d010ce884c3299": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b3e78414d14545b3aaf6e3e6b2b2aec0", + "placeholder": "​", + "style": "IPY_MODEL_8ad6f1790b924d34b7e62aa2778a5a36", + "value": " 243k/243k [00:00<00:00, 14.0MB/s]" + } + }, + "8bb859ef61234b5ca8823bee9d66fe4c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9255c87c16d9495a80b25485bf4710d5": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2383,23 +3356,22 @@ "width": null } }, - "1f77b30eeb9a4e56bd0ec0a306cb7219": { + "f44967749055441e9611ca5e36616a4f": { "model_module": "@jupyter-widgets/controls", - "model_name": "ButtonStyleModel", + "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ButtonStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "button_color": null, - "font_weight": "" + "description_width": "" } }, - "d20cae74f2964ec7a643bb0089bb2d43": { + "f2f140f0dbd3483f93c028e4132c6ad4": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2451,43 +3423,23 @@ "width": null } }, - "9a45a471f91744b68b022188177dc09c": { + "b3b7f487bbda493cadfa78ec408e87e6": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "6a9b48da04904bf297cc70649e60f875": { - "model_module": "@jupyter-widgets/controls", - "model_name": "LabelModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "LabelModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "LabelView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cb35fbbef21b4ed9a62f96fcccb88f15", - "placeholder": "​", - "style": "IPY_MODEL_839ec515bcad402cbb8802dbf12d757a", - "value": "Connecting..." - } - }, - "cb35fbbef21b4ed9a62f96fcccb88f15": { + "b3e78414d14545b3aaf6e3e6b2b2aec0": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2539,7 +3491,7 @@ "width": null } }, - "839ec515bcad402cbb8802dbf12d757a": { + "8ad6f1790b924d34b7e62aa2778a5a36": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -2554,7 +3506,7 @@ "description_width": "" } }, - "8f08e58d8dbc4d9c8d711e268c91779e": { + "8dd05fa0632c491e9e8a384d45794a40": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -2569,14 +3521,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5933cc0787bb429a87ec6bf02caf1289", - "IPY_MODEL_56427972eb68402eb0f78f66f0c54809", - "IPY_MODEL_918ce9446bfb40749e41226970329509" + "IPY_MODEL_a5466a9fe8474c0b8f57a2ca59f6c7b8", + "IPY_MODEL_8a76caa928cb44c0a29ba9c19e665d12", + "IPY_MODEL_fade30557a1f43ca94949afee28b2456" ], - "layout": "IPY_MODEL_3c5a3268d91b4975b02ce5f65fa931a7" + "layout": "IPY_MODEL_9563585b2832451cb12c1028ddc0b776" } }, - "5933cc0787bb429a87ec6bf02caf1289": { + "a5466a9fe8474c0b8f57a2ca59f6c7b8": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -2591,13 +3543,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1b6e5d8d811844b68dd38853bb2d6c23", + "layout": "IPY_MODEL_ab62ae70883f4616adeee165359c20dd", "placeholder": "​", - "style": "IPY_MODEL_72c7880d09f3463d8cd7ef84ab53c733", - "value": "preprocessor_config.json: 100%" + "style": "IPY_MODEL_cee6bbd8fca8481cb2c1c14fef010ad9", + "value": "tokenizer.json: 100%" } }, - "56427972eb68402eb0f78f66f0c54809": { + "8a76caa928cb44c0a29ba9c19e665d12": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -2613,15 +3565,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_06d03215531740dab05b0c3acf0a15f0", - "max": 425, + "layout": "IPY_MODEL_bfaa02154b2c4ba7970b283ad9016fb5", + "max": 34600820, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_b8937875231c4a1098fc521192a960ce", - "value": 425 + "style": "IPY_MODEL_f69021fb4d9c4fd3800f524da9e81c20", + "value": 34600820 } }, - "918ce9446bfb40749e41226970329509": { + "fade30557a1f43ca94949afee28b2456": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -2636,13 +3588,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2539c990ce034d7fa802a0c7692ce92f", + "layout": "IPY_MODEL_4038b94a383c46a18c6f5f423ac0b0b2", "placeholder": "​", - "style": "IPY_MODEL_99c535c834af4f4aaf99a43f67173196", - "value": " 425/425 [00:00<00:00, 31.6kB/s]" + "style": "IPY_MODEL_1a403cfd7ba44c87abf5c453f9fc1ccc", + "value": " 34.6M/34.6M [00:02<00:00, 16.1MB/s]" } }, - "3c5a3268d91b4975b02ce5f65fa931a7": { + "9563585b2832451cb12c1028ddc0b776": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2694,7 +3646,7 @@ "width": null } }, - "1b6e5d8d811844b68dd38853bb2d6c23": { + "ab62ae70883f4616adeee165359c20dd": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2746,7 +3698,7 @@ "width": null } }, - "72c7880d09f3463d8cd7ef84ab53c733": { + "cee6bbd8fca8481cb2c1c14fef010ad9": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -2761,7 +3713,7 @@ "description_width": "" } }, - "06d03215531740dab05b0c3acf0a15f0": { + "bfaa02154b2c4ba7970b283ad9016fb5": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2813,7 +3765,7 @@ "width": null } }, - "b8937875231c4a1098fc521192a960ce": { + "f69021fb4d9c4fd3800f524da9e81c20": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -2829,7 +3781,7 @@ "description_width": "" } }, - "2539c990ce034d7fa802a0c7692ce92f": { + "4038b94a383c46a18c6f5f423ac0b0b2": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2881,7 +3833,7 @@ "width": null } }, - "99c535c834af4f4aaf99a43f67173196": { + "1a403cfd7ba44c87abf5c453f9fc1ccc": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -2896,7 +3848,7 @@ "description_width": "" } }, - "879fc03f3f594503bd191b38daf3bf12": { + "8491ed88a8034410b0def84abf09f250": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -2911,14 +3863,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_01264b2a14994c679364a1ae687188e2", - "IPY_MODEL_559594a7d2e54357b2e769c026bb47dc", - "IPY_MODEL_5e0421e735a84a588ad08efbbec072b5" + "IPY_MODEL_53608ccb553e48eb9c4e78132c44d2f4", + "IPY_MODEL_7f8047914bb44223b79158b95cdbcb1f", + "IPY_MODEL_34d9364fdc874be7ba10d13c32090ed6" ], - "layout": "IPY_MODEL_203c2abfa4f44aeaa48a14746847ceee" + "layout": "IPY_MODEL_2cd04d07d1cb4094b6ceff0c1fa14afe" } }, - "01264b2a14994c679364a1ae687188e2": { + "53608ccb553e48eb9c4e78132c44d2f4": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -2933,13 +3885,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c8f3bd5ddf544d6db5aaec8e251becc4", + "layout": "IPY_MODEL_e5fb8dac380644e894ed84325e8e8f99", "placeholder": "​", - "style": "IPY_MODEL_8f2e90355fa94a0b9c7a2dd24ecb248d", - "value": "tokenizer_config.json: 100%" + "style": "IPY_MODEL_0fc9f57a5509435db7961a45441554e8", + "value": "special_tokens_map.json: 100%" } }, - "559594a7d2e54357b2e769c026bb47dc": { + "7f8047914bb44223b79158b95cdbcb1f": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -2955,15 +3907,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d28bb2a775884189bd0dba5182796249", - "max": 242593, + "layout": "IPY_MODEL_16d7585a11d041d68cb5000b14202902", + "max": 733, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_470a169789334df791dcb43ab6715856", - "value": 242593 + "style": "IPY_MODEL_bc6c3eff612d43e7ae8126595bd06810", + "value": 733 } }, - "5e0421e735a84a588ad08efbbec072b5": { + "34d9364fdc874be7ba10d13c32090ed6": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -2978,13 +3930,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_122a6e6fb5ab4d39948aa1afbe1ba327", + "layout": "IPY_MODEL_3bed0198202d4a8586c46ab1259f3631", "placeholder": "​", - "style": "IPY_MODEL_26e78b1b7a784679af973b9e427aa3db", - "value": " 243k/243k [00:00<00:00, 13.0MB/s]" + "style": "IPY_MODEL_20924d8cafe14d649a1c6d8821de5f70", + "value": " 733/733 [00:00<00:00, 65.2kB/s]" } }, - "203c2abfa4f44aeaa48a14746847ceee": { + "2cd04d07d1cb4094b6ceff0c1fa14afe": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3036,7 +3988,7 @@ "width": null } }, - "c8f3bd5ddf544d6db5aaec8e251becc4": { + "e5fb8dac380644e894ed84325e8e8f99": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3088,7 +4040,7 @@ "width": null } }, - "8f2e90355fa94a0b9c7a2dd24ecb248d": { + "0fc9f57a5509435db7961a45441554e8": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3103,7 +4055,7 @@ "description_width": "" } }, - "d28bb2a775884189bd0dba5182796249": { + "16d7585a11d041d68cb5000b14202902": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3155,7 +4107,7 @@ "width": null } }, - "470a169789334df791dcb43ab6715856": { + "bc6c3eff612d43e7ae8126595bd06810": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -3171,7 +4123,7 @@ "description_width": "" } }, - "122a6e6fb5ab4d39948aa1afbe1ba327": { + "3bed0198202d4a8586c46ab1259f3631": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3223,7 +4175,7 @@ "width": null } }, - "26e78b1b7a784679af973b9e427aa3db": { + "20924d8cafe14d649a1c6d8821de5f70": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3238,7 +4190,7 @@ "description_width": "" } }, - "8c2be6acc9d54d139335a71c9d4d95f3": { + "afecda55d65f45c6a17cb660fc210cf6": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -3253,14 +4205,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f9b29007c3b84575b22336fe147878de", - "IPY_MODEL_762e3605672d450188f87ebd91a62e13", - "IPY_MODEL_1fc6379bdb6946e49f437343dabc2f3b" + "IPY_MODEL_fecb9713acd54b6dac2656c188d15772", + "IPY_MODEL_e23fd7fa8ed24449b7c3d1f0089a1573", + "IPY_MODEL_50db3de4776c4026b9ba1cd63e8d1c1e" ], - "layout": "IPY_MODEL_f330df7f8dbb4d0f805f2a5a2a499dba" + "layout": "IPY_MODEL_fa6672fa177747f0bb9823b5a0c7ad2e" } }, - "f9b29007c3b84575b22336fe147878de": { + "fecb9713acd54b6dac2656c188d15772": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3275,13 +4227,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c9eb05cddd7246dc93fe0394dbd9a938", + "layout": "IPY_MODEL_fd07067a8175448db335cd4341c1f055", "placeholder": "​", - "style": "IPY_MODEL_ae52d4d9402d4ecdb15eb1112c6da328", - "value": "tokenizer.json: 100%" + "style": "IPY_MODEL_2effb91c612b48afa218b8a0d5e6efe3", + "value": "config.json: 100%" } }, - "762e3605672d450188f87ebd91a62e13": { + "e23fd7fa8ed24449b7c3d1f0089a1573": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -3297,15 +4249,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3d5539eeb3744bb1ab2f8792f2fba682", - "max": 34600820, + "layout": "IPY_MODEL_9cff3d47290d492b8a21b0ebcd392d33", + "max": 1335, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_38141d7ff86f4f17a4d977d84fe58c2f", - "value": 34600820 + "style": "IPY_MODEL_134c9c3de0e34c628ab4fa57a467e90b", + "value": 1335 } }, - "1fc6379bdb6946e49f437343dabc2f3b": { + "50db3de4776c4026b9ba1cd63e8d1c1e": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3320,13 +4272,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f0ac6ae241014fb3882fe2b1ea1aca82", + "layout": "IPY_MODEL_ba837fa434b345f1948d3f96e46ebed7", "placeholder": "​", - "style": "IPY_MODEL_699b70579f9f4c2d94a96c961cafdffd", - "value": " 34.6M/34.6M [00:00<00:00, 42.9MB/s]" + "style": "IPY_MODEL_1bc0785f913c4946bc2127d3f33e43cf", + "value": " 1.33k/1.33k [00:00<00:00, 115kB/s]" } }, - "f330df7f8dbb4d0f805f2a5a2a499dba": { + "fa6672fa177747f0bb9823b5a0c7ad2e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3378,7 +4330,7 @@ "width": null } }, - "c9eb05cddd7246dc93fe0394dbd9a938": { + "fd07067a8175448db335cd4341c1f055": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3430,7 +4382,7 @@ "width": null } }, - "ae52d4d9402d4ecdb15eb1112c6da328": { + "2effb91c612b48afa218b8a0d5e6efe3": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3445,7 +4397,7 @@ "description_width": "" } }, - "3d5539eeb3744bb1ab2f8792f2fba682": { + "9cff3d47290d492b8a21b0ebcd392d33": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3497,7 +4449,7 @@ "width": null } }, - "38141d7ff86f4f17a4d977d84fe58c2f": { + "134c9c3de0e34c628ab4fa57a467e90b": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -3513,7 +4465,7 @@ "description_width": "" } }, - "f0ac6ae241014fb3882fe2b1ea1aca82": { + "ba837fa434b345f1948d3f96e46ebed7": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3565,7 +4517,7 @@ "width": null } }, - "699b70579f9f4c2d94a96c961cafdffd": { + "1bc0785f913c4946bc2127d3f33e43cf": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3580,7 +4532,7 @@ "description_width": "" } }, - "98afcff4beaa47a59b6c0c94ac1b38c0": { + "51a938146e374ac8888b702039e138bc": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -3595,14 +4547,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f4e19b3fa78948509516bd9d27c6c7e8", - "IPY_MODEL_9a2c312f321140c8abe7eeed8c24aa16", - "IPY_MODEL_d88c21de0e8b4a098a08f71da0d12af3" + "IPY_MODEL_a8120b1b525d43e6bd0736923e13e3a1", + "IPY_MODEL_fc1dbea534604477874eb5ae169d8471", + "IPY_MODEL_3450be9ee6d545bca6fda866bb19316f" ], - "layout": "IPY_MODEL_d110b5500b064a719a61d6954f9ba3d7" + "layout": "IPY_MODEL_01c636f67199424ba8b2126cf3e973f8" } }, - "f4e19b3fa78948509516bd9d27c6c7e8": { + "a8120b1b525d43e6bd0736923e13e3a1": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3617,13 +4569,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_871150c6294249268981b725ad109bb2", + "layout": "IPY_MODEL_0b962b805d614502862ad1dffc8ff58b", "placeholder": "​", - "style": "IPY_MODEL_8718c573a70840eb8b3c8e5ef9edbb8d", - "value": "special_tokens_map.json: 100%" + "style": "IPY_MODEL_ea93dc7e95314e6f905c0cc7b66376e6", + "value": "model.safetensors.index.json: 100%" } }, - "9a2c312f321140c8abe7eeed8c24aa16": { + "fc1dbea534604477874eb5ae169d8471": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -3639,15 +4591,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_94b60faf70b64c3f86336b6cd8787f43", - "max": 733, + "layout": "IPY_MODEL_25b27eb14cde40149e660c21ebafad41", + "max": 92634, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_edff2d85b0d445f89d5ce119aa4f6426", - "value": 733 + "style": "IPY_MODEL_6f6d3219157f4981a15f136b24c547c4", + "value": 92634 } }, - "d88c21de0e8b4a098a08f71da0d12af3": { + "3450be9ee6d545bca6fda866bb19316f": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3662,13 +4614,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_358d64313bb740dd934ed1f2de757772", + "layout": "IPY_MODEL_baff42519850499c9fc5383515634241", "placeholder": "​", - "style": "IPY_MODEL_45bcbfea26a34fe59ee984af88024d4b", - "value": " 733/733 [00:00<00:00, 61.6kB/s]" + "style": "IPY_MODEL_d5857240d2fd4af8814afd27418e1820", + "value": " 92.6k/92.6k [00:00<00:00, 393kB/s]" } }, - "d110b5500b064a719a61d6954f9ba3d7": { + "01c636f67199424ba8b2126cf3e973f8": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3720,7 +4672,7 @@ "width": null } }, - "871150c6294249268981b725ad109bb2": { + "0b962b805d614502862ad1dffc8ff58b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3772,7 +4724,7 @@ "width": null } }, - "8718c573a70840eb8b3c8e5ef9edbb8d": { + "ea93dc7e95314e6f905c0cc7b66376e6": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3787,7 +4739,7 @@ "description_width": "" } }, - "94b60faf70b64c3f86336b6cd8787f43": { + "25b27eb14cde40149e660c21ebafad41": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3839,7 +4791,7 @@ "width": null } }, - "edff2d85b0d445f89d5ce119aa4f6426": { + "6f6d3219157f4981a15f136b24c547c4": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -3855,7 +4807,7 @@ "description_width": "" } }, - "358d64313bb740dd934ed1f2de757772": { + "baff42519850499c9fc5383515634241": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3907,7 +4859,7 @@ "width": null } }, - "45bcbfea26a34fe59ee984af88024d4b": { + "d5857240d2fd4af8814afd27418e1820": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3922,7 +4874,7 @@ "description_width": "" } }, - "b843791871f04a588d53cfdd96ee49fd": { + "18266e7b3bde40cfb94ea9e43e8ef46a": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -3937,14 +4889,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_4fe52a885e854b838b9e4f84863dd8b6", - "IPY_MODEL_8c65d81074db41e98ab53f58e877e3ad", - "IPY_MODEL_1e93706c65f84656b7b4438cf09e57a1" + "IPY_MODEL_91d7993988f94e9e80030cd4f2994125", + "IPY_MODEL_6add882242a34f00b9df0c171296f312", + "IPY_MODEL_69bdaf21e7ea4bc693f997f216a52cd1" ], - "layout": "IPY_MODEL_df42641ffddf4fbdb6421189e53dcec6" + "layout": "IPY_MODEL_2fb1b7a01b164cee9f46d182402e2377" } }, - "4fe52a885e854b838b9e4f84863dd8b6": { + "91d7993988f94e9e80030cd4f2994125": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3959,13 +4911,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ff69e334b13c43f29e40971654c1edf9", + "layout": "IPY_MODEL_a342dec88a5f4c78a0f0407e39966962", "placeholder": "​", - "style": "IPY_MODEL_aef9220c7d3a48c2bf941e6a5bc7113b", - "value": "config.json: 100%" + "style": "IPY_MODEL_13d4015fa53a491f93e832ff0f5888e0", + "value": "Downloading shards: 100%" } }, - "8c65d81074db41e98ab53f58e877e3ad": { + "6add882242a34f00b9df0c171296f312": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -3981,15 +4933,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_acc1f7b9cf6c455ba1b9f180b6725cd7", - "max": 1357, + "layout": "IPY_MODEL_d60e9a0def6548089a587208d1f22dd5", + "max": 4, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_5cd45220e9e342579fe3f41939b8f5b8", - "value": 1357 + "style": "IPY_MODEL_7bf0a37511344136ade9f515e5e3efd6", + "value": 4 } }, - "1e93706c65f84656b7b4438cf09e57a1": { + "69bdaf21e7ea4bc693f997f216a52cd1": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4004,13 +4956,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_63ed22f94278436e9cd2a0ff28555a0c", + "layout": "IPY_MODEL_bc5e3a1a0db1478ab357fb25a4d1abbc", "placeholder": "​", - "style": "IPY_MODEL_7bbc228443094d2e8bf4d24d4126e71f", - "value": " 1.36k/1.36k [00:00<00:00, 103kB/s]" + "style": "IPY_MODEL_bb7564013bbe4dc3b7343bbc170f9083", + "value": " 4/4 [09:02<00:00, 132.03s/it]" } }, - "df42641ffddf4fbdb6421189e53dcec6": { + "2fb1b7a01b164cee9f46d182402e2377": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4062,7 +5014,7 @@ "width": null } }, - "ff69e334b13c43f29e40971654c1edf9": { + "a342dec88a5f4c78a0f0407e39966962": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4114,7 +5066,7 @@ "width": null } }, - "aef9220c7d3a48c2bf941e6a5bc7113b": { + "13d4015fa53a491f93e832ff0f5888e0": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4129,7 +5081,7 @@ "description_width": "" } }, - "acc1f7b9cf6c455ba1b9f180b6725cd7": { + "d60e9a0def6548089a587208d1f22dd5": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4181,7 +5133,7 @@ "width": null } }, - "5cd45220e9e342579fe3f41939b8f5b8": { + "7bf0a37511344136ade9f515e5e3efd6": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -4197,7 +5149,7 @@ "description_width": "" } }, - "63ed22f94278436e9cd2a0ff28555a0c": { + "bc5e3a1a0db1478ab357fb25a4d1abbc": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4249,7 +5201,7 @@ "width": null } }, - "7bbc228443094d2e8bf4d24d4126e71f": { + "bb7564013bbe4dc3b7343bbc170f9083": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4264,7 +5216,7 @@ "description_width": "" } }, - "ad86fa575f044255b2e52af6d65e8f3a": { + "bebfe14b72d54f65990269ce0a4c57f7": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -4279,14 +5231,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_30fb6fcc2ca340a89ba04386d95a68d3", - "IPY_MODEL_0ac55e47d8734d3aa0060fca1275a745", - "IPY_MODEL_176edac9e8b140c69de408f9d32b1a78" + "IPY_MODEL_5ca6206ef7e448b9bac4ee8492e91a5f", + "IPY_MODEL_090a7a19da9f4406add31d6bb351cfea", + "IPY_MODEL_b5c66ee618034c8fa8952f173c70d8fe" ], - "layout": "IPY_MODEL_94666f74fbe84d3896401ee668f743b9" + "layout": "IPY_MODEL_faccc7282b4741d8b4075f4aaac43f9a" } }, - "30fb6fcc2ca340a89ba04386d95a68d3": { + "5ca6206ef7e448b9bac4ee8492e91a5f": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4301,13 +5253,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_cbca4719a3df4cc6b7a0315754529d65", + "layout": "IPY_MODEL_0acd2c8e580b4dc4b77f36c1cc6f0e90", "placeholder": "​", - "style": "IPY_MODEL_52e514999a1843de8f909d4a5c337855", - "value": "model.safetensors.index.json: 100%" + "style": "IPY_MODEL_be75f6b3bfe947b2a896a187550fd9f1", + "value": "model-00001-of-00004.safetensors: 100%" } }, - "0ac55e47d8734d3aa0060fca1275a745": { + "090a7a19da9f4406add31d6bb351cfea": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -4323,15 +5275,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7b83dfad6ff8471cbef55b7fe16072a4", - "max": 75145, + "layout": "IPY_MODEL_969a5a28c6f34a8ebe7a85da2a6fbb1d", + "max": 4952495768, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_4a7800b71a5c44bcad204826b7addfd2", - "value": 75145 + "style": "IPY_MODEL_7c782d2f1cda423eb5b0fab02e95bcd5", + "value": 4952495768 } }, - "176edac9e8b140c69de408f9d32b1a78": { + "b5c66ee618034c8fa8952f173c70d8fe": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4346,13 +5298,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6151ba46c8294a64ae288f14e91f6770", + "layout": "IPY_MODEL_6f1198ad48f94f4190a14f2529bd35e4", "placeholder": "​", - "style": "IPY_MODEL_411dd4720a234335b935419cc8096df9", - "value": " 75.1k/75.1k [00:00<00:00, 5.34MB/s]" + "style": "IPY_MODEL_d11f3cc8e0194600ae80b3ad233fa6d2", + "value": " 4.95G/4.95G [02:26<00:00, 40.4MB/s]" } }, - "94666f74fbe84d3896401ee668f743b9": { + "faccc7282b4741d8b4075f4aaac43f9a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4404,7 +5356,7 @@ "width": null } }, - "cbca4719a3df4cc6b7a0315754529d65": { + "0acd2c8e580b4dc4b77f36c1cc6f0e90": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4456,7 +5408,7 @@ "width": null } }, - "52e514999a1843de8f909d4a5c337855": { + "be75f6b3bfe947b2a896a187550fd9f1": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4471,7 +5423,7 @@ "description_width": "" } }, - "7b83dfad6ff8471cbef55b7fe16072a4": { + "969a5a28c6f34a8ebe7a85da2a6fbb1d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4523,7 +5475,7 @@ "width": null } }, - "4a7800b71a5c44bcad204826b7addfd2": { + "7c782d2f1cda423eb5b0fab02e95bcd5": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -4539,7 +5491,7 @@ "description_width": "" } }, - "6151ba46c8294a64ae288f14e91f6770": { + "6f1198ad48f94f4190a14f2529bd35e4": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4591,7 +5543,7 @@ "width": null } }, - "411dd4720a234335b935419cc8096df9": { + "d11f3cc8e0194600ae80b3ad233fa6d2": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4606,7 +5558,7 @@ "description_width": "" } }, - "1fc96bb08c4049d69e059bb49ce1c473": { + "000f5b367bd94ea68ba25fbf439bccee": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -4621,14 +5573,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_de5cd4278d2940eda4defbee1d04d3da", - "IPY_MODEL_01ff8a22cfb745ab98cd768779005d42", - "IPY_MODEL_726913fd0c414f7d956b85727f284e4f" + "IPY_MODEL_c650b6f8f0fd44c7bed5af1fedc99cab", + "IPY_MODEL_59a312d33ae14802953d29e13570e211", + "IPY_MODEL_c2abd2d817f04aa88e870f2ecdfcda86" ], - "layout": "IPY_MODEL_46008154e258493cbb79f74f95ca7bce" + "layout": "IPY_MODEL_dcc4ae3e753c4d7c82c628053394a6a8" } }, - "de5cd4278d2940eda4defbee1d04d3da": { + "c650b6f8f0fd44c7bed5af1fedc99cab": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4643,13 +5595,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5410b749e4354b87adb4250603e71236", + "layout": "IPY_MODEL_2475d13d151b4ba2a8060f940308d762", "placeholder": "​", - "style": "IPY_MODEL_1d6b18b3e1974465a85a3ffadc697084", - "value": "Downloading shards: 100%" + "style": "IPY_MODEL_4203e3d02caa4ecea1618e5f0b1cf051", + "value": "model-00002-of-00004.safetensors: 100%" } }, - "01ff8a22cfb745ab98cd768779005d42": { + "59a312d33ae14802953d29e13570e211": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -4665,15 +5617,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_554c4d7368004662a27a869fe4f25ffd", - "max": 2, + "layout": "IPY_MODEL_e7dcee7f0fa6480a873496603648e8e1", + "max": 4947572960, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_987284b09a2a4256b8e0688df089c3d7", - "value": 2 + "style": "IPY_MODEL_3a143117bf8a4006820a4113458d348b", + "value": 4947572960 } }, - "726913fd0c414f7d956b85727f284e4f": { + "c2abd2d817f04aa88e870f2ecdfcda86": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4688,13 +5640,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b3500dd0c823406dbb296374da5adaf6", + "layout": "IPY_MODEL_b91072a594554fb68330d5731e56f399", "placeholder": "​", - "style": "IPY_MODEL_38dbec8afd67449d932fb370b85c4d68", - "value": " 2/2 [02:25<00:00, 64.61s/it]" + "style": "IPY_MODEL_833c50790e3c4dfda695d53c786ba2fb", + "value": " 4.95G/4.95G [02:13<00:00, 42.2MB/s]" } }, - "46008154e258493cbb79f74f95ca7bce": { + "dcc4ae3e753c4d7c82c628053394a6a8": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4746,7 +5698,7 @@ "width": null } }, - "5410b749e4354b87adb4250603e71236": { + "2475d13d151b4ba2a8060f940308d762": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4798,7 +5750,7 @@ "width": null } }, - "1d6b18b3e1974465a85a3ffadc697084": { + "4203e3d02caa4ecea1618e5f0b1cf051": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4813,7 +5765,7 @@ "description_width": "" } }, - "554c4d7368004662a27a869fe4f25ffd": { + "e7dcee7f0fa6480a873496603648e8e1": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4865,7 +5817,7 @@ "width": null } }, - "987284b09a2a4256b8e0688df089c3d7": { + "3a143117bf8a4006820a4113458d348b": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -4881,7 +5833,7 @@ "description_width": "" } }, - "b3500dd0c823406dbb296374da5adaf6": { + "b91072a594554fb68330d5731e56f399": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4933,7 +5885,7 @@ "width": null } }, - "38dbec8afd67449d932fb370b85c4d68": { + "833c50790e3c4dfda695d53c786ba2fb": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4948,7 +5900,7 @@ "description_width": "" } }, - "1a258f0aa77a44ffafe3a14a1c36c118": { + "852c25d25cab43b68c4a2177961a4442": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -4963,14 +5915,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3b6baf638233499d97a6cdf07fea4158", - "IPY_MODEL_f78e77ef66da4e0ab66a0b70ea006187", - "IPY_MODEL_eb8b95c897c64296b0226bfb0c40a4a1" + "IPY_MODEL_90ede016aedc4864a6a1cd55a2dc608a", + "IPY_MODEL_f7a5bd61966a4d908e5e68377d8ea826", + "IPY_MODEL_2999e60673814bdbb936536ffdc538e5" ], - "layout": "IPY_MODEL_d9461e096a2344fc9111e2c775c5242e" + "layout": "IPY_MODEL_42dbc2bb820e45b18b25fbe0a447c12e" } }, - "3b6baf638233499d97a6cdf07fea4158": { + "90ede016aedc4864a6a1cd55a2dc608a": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4985,13 +5937,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2a2053ba8c774f8d8a40989e43ab851d", + "layout": "IPY_MODEL_89be8b48d46a4e54bdc015cfccdf847f", "placeholder": "​", - "style": "IPY_MODEL_54f5d46782804066b086761e96d928b1", - "value": "model-00001-of-00002.safetensors: 100%" + "style": "IPY_MODEL_29ee45bc41a64801a7a9f519fa1d3ca3", + "value": "model-00003-of-00004.safetensors: 100%" } }, - "f78e77ef66da4e0ab66a0b70ea006187": { + "f7a5bd61966a4d908e5e68377d8ea826": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -5007,15 +5959,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6abf73b31979469f95ee0e0f3d424b19", - "max": 4995089032, + "layout": "IPY_MODEL_1c16971b8eb741a0932c56951d907970", + "max": 4962223472, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_c2d64b89d7a0410685f9e041ace711a6", - "value": 4995089032 + "style": "IPY_MODEL_ccd9003a294a4830b96e91f1cefa6649", + "value": 4962223472 } }, - "eb8b95c897c64296b0226bfb0c40a4a1": { + "2999e60673814bdbb936536ffdc538e5": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -5030,13 +5982,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_30723df65ed74ab5ba624c3cf5ad2afa", + "layout": "IPY_MODEL_d0f3c692e93f483aa1b06c69076795c0", "placeholder": "​", - "style": "IPY_MODEL_79b38651fa1446d69c28295e8641c9b7", - "value": " 5.00G/5.00G [01:58<00:00, 39.0MB/s]" + "style": "IPY_MODEL_b653ce8a7cef420f854d1d39628e5aba", + "value": " 4.96G/4.96G [02:23<00:00, 41.8MB/s]" } }, - "d9461e096a2344fc9111e2c775c5242e": { + "42dbc2bb820e45b18b25fbe0a447c12e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5088,7 +6040,7 @@ "width": null } }, - "2a2053ba8c774f8d8a40989e43ab851d": { + "89be8b48d46a4e54bdc015cfccdf847f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5140,7 +6092,7 @@ "width": null } }, - "54f5d46782804066b086761e96d928b1": { + "29ee45bc41a64801a7a9f519fa1d3ca3": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -5155,7 +6107,7 @@ "description_width": "" } }, - "6abf73b31979469f95ee0e0f3d424b19": { + "1c16971b8eb741a0932c56951d907970": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5207,7 +6159,7 @@ "width": null } }, - "c2d64b89d7a0410685f9e041ace711a6": { + "ccd9003a294a4830b96e91f1cefa6649": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -5223,7 +6175,7 @@ "description_width": "" } }, - "30723df65ed74ab5ba624c3cf5ad2afa": { + "d0f3c692e93f483aa1b06c69076795c0": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5275,7 +6227,7 @@ "width": null } }, - "79b38651fa1446d69c28295e8641c9b7": { + "b653ce8a7cef420f854d1d39628e5aba": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -5290,7 +6242,7 @@ "description_width": "" } }, - "bba1b49f14d842bc936333389d429e44": { + "981ae87618124ac281ede48cdc512c6c": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -5305,14 +6257,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_952085af6ba54d7695b420f40f919ac5", - "IPY_MODEL_d142fee1c8224781b135ca22477ec224", - "IPY_MODEL_e06081cf6cda4b308675fc80e9d45b1e" + "IPY_MODEL_0e01d1ca37ea4f36a933c1c51d80a17f", + "IPY_MODEL_5f2c50903fe844adb7c1947fe1cfcac9", + "IPY_MODEL_2242ed77a880448d9ddbf01defa40180" ], - "layout": "IPY_MODEL_8b9e8aa1b1974a85a7db6c8c23c1e89f" + "layout": "IPY_MODEL_b659e43ffb0a4e4589eade144dbde7a4" } }, - "952085af6ba54d7695b420f40f919ac5": { + "0e01d1ca37ea4f36a933c1c51d80a17f": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -5327,13 +6279,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_556fe5f5373f4e9885e183a0758fb439", + "layout": "IPY_MODEL_3196e523bf5d44db879ae63f57de2ac0", "placeholder": "​", - "style": "IPY_MODEL_fc72f49c2d074268b9fb9efa06330f43", - "value": "model-00002-of-00002.safetensors: 100%" + "style": "IPY_MODEL_5aec6ab6bc1845ba8072b6110a94b128", + "value": "model-00004-of-00004.safetensors: 100%" } }, - "d142fee1c8224781b135ca22477ec224": { + "5f2c50903fe844adb7c1947fe1cfcac9": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -5349,15 +6301,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2e419eef644e467fb4c828e4973e201d", - "max": 1071263816, + "layout": "IPY_MODEL_2820de88878b4ffd9cdce1d30cc8dbf5", + "max": 4463107504, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_02dd7eeb0c404adfb85a59b665d9bcb7", - "value": 1071263816 + "style": "IPY_MODEL_78ebef33b97646b4b11a6848a7380afd", + "value": 4463107504 } }, - "e06081cf6cda4b308675fc80e9d45b1e": { + "2242ed77a880448d9ddbf01defa40180": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -5372,13 +6324,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_efbc432bfa3d48738372140527b835b9", + "layout": "IPY_MODEL_521dcbedbeb444e8a0f239e8a3e21c7b", "placeholder": "​", - "style": "IPY_MODEL_1c0ef7e774a24ab59ffa09b0c70b5a10", - "value": " 1.07G/1.07G [00:25<00:00, 42.0MB/s]" + "style": "IPY_MODEL_fd1bb9bb056c44ffac19855439113305", + "value": " 4.46G/4.46G [01:56<00:00, 34.0MB/s]" } }, - "8b9e8aa1b1974a85a7db6c8c23c1e89f": { + "b659e43ffb0a4e4589eade144dbde7a4": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5430,7 +6382,7 @@ "width": null } }, - "556fe5f5373f4e9885e183a0758fb439": { + "3196e523bf5d44db879ae63f57de2ac0": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5482,7 +6434,7 @@ "width": null } }, - "fc72f49c2d074268b9fb9efa06330f43": { + "5aec6ab6bc1845ba8072b6110a94b128": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -5497,7 +6449,7 @@ "description_width": "" } }, - "2e419eef644e467fb4c828e4973e201d": { + "2820de88878b4ffd9cdce1d30cc8dbf5": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5549,7 +6501,7 @@ "width": null } }, - "02dd7eeb0c404adfb85a59b665d9bcb7": { + "78ebef33b97646b4b11a6848a7380afd": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -5565,7 +6517,7 @@ "description_width": "" } }, - "efbc432bfa3d48738372140527b835b9": { + "521dcbedbeb444e8a0f239e8a3e21c7b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5617,7 +6569,7 @@ "width": null } }, - "1c0ef7e774a24ab59ffa09b0c70b5a10": { + "fd1bb9bb056c44ffac19855439113305": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -5632,7 +6584,7 @@ "description_width": "" } }, - "c712f856fbc64d87bcaff95db5169f6e": { + "9350592ec8b748d2a3f5d500c7dc025d": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -5647,14 +6599,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6a60a91d28424a468a8e8220b31459a2", - "IPY_MODEL_69573ff62bda4ad79946443e4b058d01", - "IPY_MODEL_17c46d7918844ca2bad27491bd166e89" + "IPY_MODEL_712a398e91824c4f9bbe430dbfb27e4f", + "IPY_MODEL_79d864307ec6462d9be1edf92d7f1aa2", + "IPY_MODEL_900b53a6433a4fbf961205b438919b76" ], - "layout": "IPY_MODEL_28933f77bce5447b964aa61757c1bcaf" + "layout": "IPY_MODEL_051f440c5a944070bf0c9e0a5ec37f5b" } }, - "6a60a91d28424a468a8e8220b31459a2": { + "712a398e91824c4f9bbe430dbfb27e4f": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -5669,13 +6621,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8b67052d70ff41a2a6106c074aace677", + "layout": "IPY_MODEL_5462cc91ddfb47ef929578a97d01fcb5", "placeholder": "​", - "style": "IPY_MODEL_e2bd7ee590f9491f9aca709eba2cdaaa", + "style": "IPY_MODEL_4facb44861eb4ceca5686938dfda5ff1", "value": "Loading checkpoint shards: 100%" } }, - "69573ff62bda4ad79946443e4b058d01": { + "79d864307ec6462d9be1edf92d7f1aa2": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -5691,15 +6643,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_279b8ec948f64b9da8588276591bbf23", - "max": 2, + "layout": "IPY_MODEL_f4c4ae84c41b445fbeec8c948b6ff660", + "max": 4, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_dae699775c074f2b9c475753eb1906d8", - "value": 2 + "style": "IPY_MODEL_e6c4b48a7a8d4154b2c397e5c3edd1ec", + "value": 4 } }, - "17c46d7918844ca2bad27491bd166e89": { + "900b53a6433a4fbf961205b438919b76": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -5714,13 +6666,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_001abd4436804f66ae3d32e8055650dd", + "layout": "IPY_MODEL_f05ca06e1fe144569c5d331c3cfccc10", "placeholder": "​", - "style": "IPY_MODEL_c6ed71ebeefe4354b67ab366d8f84ee2", - "value": " 2/2 [00:05<00:00,  2.43s/it]" + "style": "IPY_MODEL_ae295efbf02545b2b4535c0e6878abfa", + "value": " 4/4 [00:07<00:00,  1.79s/it]" } }, - "28933f77bce5447b964aa61757c1bcaf": { + "051f440c5a944070bf0c9e0a5ec37f5b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5772,7 +6724,7 @@ "width": null } }, - "8b67052d70ff41a2a6106c074aace677": { + "5462cc91ddfb47ef929578a97d01fcb5": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5824,7 +6776,7 @@ "width": null } }, - "e2bd7ee590f9491f9aca709eba2cdaaa": { + "4facb44861eb4ceca5686938dfda5ff1": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -5839,7 +6791,7 @@ "description_width": "" } }, - "279b8ec948f64b9da8588276591bbf23": { + "f4c4ae84c41b445fbeec8c948b6ff660": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5891,7 +6843,7 @@ "width": null } }, - "dae699775c074f2b9c475753eb1906d8": { + "e6c4b48a7a8d4154b2c397e5c3edd1ec": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -5907,7 +6859,7 @@ "description_width": "" } }, - "001abd4436804f66ae3d32e8055650dd": { + "f05ca06e1fe144569c5d331c3cfccc10": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5959,7 +6911,7 @@ "width": null } }, - "c6ed71ebeefe4354b67ab366d8f84ee2": { + "ae295efbf02545b2b4535c0e6878abfa": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -5974,7 +6926,7 @@ "description_width": "" } }, - "6060579e6e084133be39e517a0be0feb": { + "45228c76493b411ead5b13f5302ca4ef": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -5989,14 +6941,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_daa76171336f427d9a01ff0837f4c7fc", - "IPY_MODEL_aef6dfc8ddf548ea9f0a55b6adefb503", - "IPY_MODEL_1610099d31ea4a42b1e10686099789c4" + "IPY_MODEL_3d5bc286ff324b2aabb4308abacaf2da", + "IPY_MODEL_bb268a363c89437782864db7e4c4014b", + "IPY_MODEL_83cdcdda93c54bce923a3198e4b73615" ], - "layout": "IPY_MODEL_a2c4844d75b94ba09f21fa9eda482889" + "layout": "IPY_MODEL_56fc2e117ba04ff19012cd407bd7c832" } }, - "daa76171336f427d9a01ff0837f4c7fc": { + "3d5bc286ff324b2aabb4308abacaf2da": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6011,13 +6963,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9ddb8a0ddadd482198b304ec51887bd5", + "layout": "IPY_MODEL_4b4fe69d72464dc39927fab5d5497e95", "placeholder": "​", - "style": "IPY_MODEL_e3ec1e2ce56c45bf97485acccb964c32", + "style": "IPY_MODEL_920200fdc9ea446bb34281570e052c61", "value": "generation_config.json: 100%" } }, - "aef6dfc8ddf548ea9f0a55b6adefb503": { + "bb268a363c89437782864db7e4c4014b": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -6033,15 +6985,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1bf19d9861cf4ca1b3f4e553514d2d4c", + "layout": "IPY_MODEL_3fc1cb9d6409491c9514eeb89d8a4a56", "max": 173, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_5267be1c3e81483883a5595f2cadf955", + "style": "IPY_MODEL_db1542e440af48cda6caf34f799fcfc8", "value": 173 } }, - "1610099d31ea4a42b1e10686099789c4": { + "83cdcdda93c54bce923a3198e4b73615": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6056,13 +7008,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_507f2efc03f44aa9810ea1d93493f4bb", + "layout": "IPY_MODEL_1c26024c7b0a42eca2ffdaab9db33904", "placeholder": "​", - "style": "IPY_MODEL_fd8c61d4af5140f3a2435e7724e63e1e", - "value": " 173/173 [00:00<00:00, 15.8kB/s]" + "style": "IPY_MODEL_ae25eda4f50642bca76e6926f82eb1a1", + "value": " 173/173 [00:00<00:00, 15.4kB/s]" } }, - "a2c4844d75b94ba09f21fa9eda482889": { + "56fc2e117ba04ff19012cd407bd7c832": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6114,7 +7066,7 @@ "width": null } }, - "9ddb8a0ddadd482198b304ec51887bd5": { + "4b4fe69d72464dc39927fab5d5497e95": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6166,7 +7118,7 @@ "width": null } }, - "e3ec1e2ce56c45bf97485acccb964c32": { + "920200fdc9ea446bb34281570e052c61": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -6181,7 +7133,7 @@ "description_width": "" } }, - "1bf19d9861cf4ca1b3f4e553514d2d4c": { + "3fc1cb9d6409491c9514eeb89d8a4a56": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6233,7 +7185,7 @@ "width": null } }, - "5267be1c3e81483883a5595f2cadf955": { + "db1542e440af48cda6caf34f799fcfc8": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -6249,7 +7201,7 @@ "description_width": "" } }, - "507f2efc03f44aa9810ea1d93493f4bb": { + "1c26024c7b0a42eca2ffdaab9db33904": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6301,7 +7253,7 @@ "width": null } }, - "fd8c61d4af5140f3a2435e7724e63e1e": { + "ae25eda4f50642bca76e6926f82eb1a1": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -6316,7 +7268,7 @@ "description_width": "" } }, - "ca7aebc964004606bc4bb2ded7845dba": { + "65de82823814445c90eccec2b8202db1": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -6331,14 +7283,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_1f72cb4fabc34524afbc492d35941834", - "IPY_MODEL_910afed62aef457eb2de11ef0ba2f846", - "IPY_MODEL_c3fb5a3f8659432690e74b9839d1beba" + "IPY_MODEL_94f0b6a012ab4178b53ea6332e2eb50c", + "IPY_MODEL_9981cd15dec94796810e1e141576765f", + "IPY_MODEL_a1b3684587c949aca3055369f790d5a7" ], - "layout": "IPY_MODEL_fc4626bd7d154d1b9077bb8e3b1a1ca8" + "layout": "IPY_MODEL_e8048c541d5a42ba9aa7736fb9b6859c" } }, - "1f72cb4fabc34524afbc492d35941834": { + "94f0b6a012ab4178b53ea6332e2eb50c": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6353,13 +7305,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6891878df8e94fad94d1b0043e211477", + "layout": "IPY_MODEL_7a357ce1b9c14872b6ccb9730faa961b", "placeholder": "​", - "style": "IPY_MODEL_0c624ee250244606a6333fb04448c611", + "style": "IPY_MODEL_147584d42e8d4c63b1614a995d9408a9", "value": "Downloading builder script: 100%" } }, - "910afed62aef457eb2de11ef0ba2f846": { + "9981cd15dec94796810e1e141576765f": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -6375,15 +7327,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6e6def764f3e4be2aa694e7e46ed9f79", + "layout": "IPY_MODEL_8a30e2c843484cc186865e33020104ff", "max": 5937, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_e5ef21ef83804f1b9bbd1287a12c8c2b", + "style": "IPY_MODEL_b031598a947f4b2c94156d81854a8813", "value": 5937 } }, - "c3fb5a3f8659432690e74b9839d1beba": { + "a1b3684587c949aca3055369f790d5a7": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6398,13 +7350,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_cce52c92b61b49a790c43748ba3df469", + "layout": "IPY_MODEL_8866699020a54ef89b459a39dc18e2df", "placeholder": "​", - "style": "IPY_MODEL_48521394be8e46199701bf86bc9ce45b", - "value": " 5.94k/5.94k [00:00<00:00, 348kB/s]" + "style": "IPY_MODEL_d136ecf468a74980baf3ea71adcecde7", + "value": " 5.94k/5.94k [00:00<00:00, 408kB/s]" } }, - "fc4626bd7d154d1b9077bb8e3b1a1ca8": { + "e8048c541d5a42ba9aa7736fb9b6859c": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6456,7 +7408,7 @@ "width": null } }, - "6891878df8e94fad94d1b0043e211477": { + "7a357ce1b9c14872b6ccb9730faa961b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6508,7 +7460,7 @@ "width": null } }, - "0c624ee250244606a6333fb04448c611": { + "147584d42e8d4c63b1614a995d9408a9": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -6523,7 +7475,7 @@ "description_width": "" } }, - "6e6def764f3e4be2aa694e7e46ed9f79": { + "8a30e2c843484cc186865e33020104ff": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6575,7 +7527,7 @@ "width": null } }, - "e5ef21ef83804f1b9bbd1287a12c8c2b": { + "b031598a947f4b2c94156d81854a8813": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -6591,7 +7543,7 @@ "description_width": "" } }, - "cce52c92b61b49a790c43748ba3df469": { + "8866699020a54ef89b459a39dc18e2df": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6643,7 +7595,7 @@ "width": null } }, - "48521394be8e46199701bf86bc9ce45b": { + "d136ecf468a74980baf3ea71adcecde7": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -6658,7 +7610,7 @@ "description_width": "" } }, - "c3e9a08a931547b68a9a4027e288443a": { + "88810a621c9d41449d7dbd0234f22904": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -6673,14 +7625,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_32cf287379c540dea0fa6bae096a606b", - "IPY_MODEL_d333b0fb43184394b88178a93c0a8c9c", - "IPY_MODEL_5900a96b6eec4efaa7334b7885385f4d" + "IPY_MODEL_ef5e154e32334abc9103f98602a89c37", + "IPY_MODEL_b6cb53fd090c41f0bc0f3d947b7f4102", + "IPY_MODEL_1320a30ebc1d4ea8aad5263d67267995" ], - "layout": "IPY_MODEL_26e8841f88244287a77fa381dc9e68c5" + "layout": "IPY_MODEL_2448c9f029c44ff6a8079ddf45d1b651" } }, - "32cf287379c540dea0fa6bae096a606b": { + "ef5e154e32334abc9103f98602a89c37": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6695,13 +7647,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_988f41845d21476ba76ea017e109cd49", + "layout": "IPY_MODEL_566b4d04baf542099388a850bec050e0", "placeholder": "​", - "style": "IPY_MODEL_5de998d0e21e47a7a5fc1fed9c379b8f", + "style": "IPY_MODEL_f3e8cc24eaf0468d8393b28a9e586a0e", "value": "Downloading extra modules: " } }, - "d333b0fb43184394b88178a93c0a8c9c": { + "b6cb53fd090c41f0bc0f3d947b7f4102": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -6717,15 +7669,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b2eb2780ff6c49879141760d2ddec932", + "layout": "IPY_MODEL_c65b95f237ea4f79abc106cb8f1fd79d", "max": 1554, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_e12b6026469f4329b09eb8d9a4f94db3", + "style": "IPY_MODEL_21bce2ffb0c64643acf1705c1d9cf7f1", "value": 1554 } }, - "5900a96b6eec4efaa7334b7885385f4d": { + "1320a30ebc1d4ea8aad5263d67267995": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6740,13 +7692,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_65ee27bae1044d16acd443ad4db25614", + "layout": "IPY_MODEL_0c82d7e13a4245e7bdf47d1839e660ae", "placeholder": "​", - "style": "IPY_MODEL_d7fbd5c089ce48218df82079ae667e60", - "value": " 4.07k/? [00:00<00:00, 275kB/s]" + "style": "IPY_MODEL_61d1d81f980941bba3c647eab8a67ae7", + "value": " 4.07k/? [00:00<00:00, 264kB/s]" } }, - "26e8841f88244287a77fa381dc9e68c5": { + "2448c9f029c44ff6a8079ddf45d1b651": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6798,7 +7750,7 @@ "width": null } }, - "988f41845d21476ba76ea017e109cd49": { + "566b4d04baf542099388a850bec050e0": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6850,7 +7802,7 @@ "width": null } }, - "5de998d0e21e47a7a5fc1fed9c379b8f": { + "f3e8cc24eaf0468d8393b28a9e586a0e": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -6865,7 +7817,7 @@ "description_width": "" } }, - "b2eb2780ff6c49879141760d2ddec932": { + "c65b95f237ea4f79abc106cb8f1fd79d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6917,7 +7869,7 @@ "width": null } }, - "e12b6026469f4329b09eb8d9a4f94db3": { + "21bce2ffb0c64643acf1705c1d9cf7f1": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -6933,7 +7885,7 @@ "description_width": "" } }, - "65ee27bae1044d16acd443ad4db25614": { + "0c82d7e13a4245e7bdf47d1839e660ae": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6985,7 +7937,7 @@ "width": null } }, - "d7fbd5c089ce48218df82079ae667e60": { + "61d1d81f980941bba3c647eab8a67ae7": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -7000,7 +7952,7 @@ "description_width": "" } }, - "171e4e3012e346d08a4d11cdf571fc35": { + "4760b69b8e204119ba1df519d810c3cd": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -7015,14 +7967,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5e2ee6332e214d6b9c3be718d0b41665", - "IPY_MODEL_a3ab6e6436ff47e8ad7284253e18f399", - "IPY_MODEL_4cb23557c6214a16a3ad46810118108e" + "IPY_MODEL_288e9c53ae4f40b4b910c228c2d68dab", + "IPY_MODEL_34eb2d74cf704ceb95abbf2ab8ad7e45", + "IPY_MODEL_e26ab30e13594a62929c52aa903378d9" ], - "layout": "IPY_MODEL_4be42740a20640a5b44dd14bfe782400" + "layout": "IPY_MODEL_5f42f1c9e9ac4e2c96d12f06165d57d4" } }, - "5e2ee6332e214d6b9c3be718d0b41665": { + "288e9c53ae4f40b4b910c228c2d68dab": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -7037,13 +7989,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_02b4e70706274c619d3c226bca79e090", + "layout": "IPY_MODEL_d8507df327cb459aa954ae500181cb47", "placeholder": "​", - "style": "IPY_MODEL_b13129bbd7674bb783ca8cd1d47c5575", + "style": "IPY_MODEL_77ca22841d7348788dd710f57ba2f7c5", "value": "Downloading extra modules: 100%" } }, - "a3ab6e6436ff47e8ad7284253e18f399": { + "34eb2d74cf704ceb95abbf2ab8ad7e45": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -7059,15 +8011,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_470a106c3bee4c658271c595fb842a61", + "layout": "IPY_MODEL_7c248573664740d8aaba2c94ff0acae3", "max": 3344, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_5fa51694da274034b17fbfda7fc26027", + "style": "IPY_MODEL_e79f982a893046ed8d73dff3cb696bc7", "value": 3344 } }, - "4cb23557c6214a16a3ad46810118108e": { + "e26ab30e13594a62929c52aa903378d9": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -7082,13 +8034,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0eca508f03c9424aa34b8216e02b4f0e", + "layout": "IPY_MODEL_63797809b54248b28850c9dcb042db53", "placeholder": "​", - "style": "IPY_MODEL_e73d62976231495384b1fba212969acf", - "value": " 3.34k/3.34k [00:00<00:00, 278kB/s]" + "style": "IPY_MODEL_6b9efce422524b958ca542f24311624c", + "value": " 3.34k/3.34k [00:00<00:00, 269kB/s]" } }, - "4be42740a20640a5b44dd14bfe782400": { + "5f42f1c9e9ac4e2c96d12f06165d57d4": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7140,7 +8092,7 @@ "width": null } }, - "02b4e70706274c619d3c226bca79e090": { + "d8507df327cb459aa954ae500181cb47": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7192,7 +8144,7 @@ "width": null } }, - "b13129bbd7674bb783ca8cd1d47c5575": { + "77ca22841d7348788dd710f57ba2f7c5": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -7207,7 +8159,7 @@ "description_width": "" } }, - "470a106c3bee4c658271c595fb842a61": { + "7c248573664740d8aaba2c94ff0acae3": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7259,7 +8211,7 @@ "width": null } }, - "5fa51694da274034b17fbfda7fc26027": { + "e79f982a893046ed8d73dff3cb696bc7": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -7275,7 +8227,7 @@ "description_width": "" } }, - "0eca508f03c9424aa34b8216e02b4f0e": { + "63797809b54248b28850c9dcb042db53": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7327,7 +8279,7 @@ "width": null } }, - "e73d62976231495384b1fba212969acf": { + "6b9efce422524b958ca542f24311624c": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -7342,7 +8294,7 @@ "description_width": "" } }, - "9a735f3919644616bcc4c585d06d645d": { + "a245eeb765664b5fb97e3156f67e4090": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -7357,14 +8309,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_da3a78de860e4df4aab822fc7388750d", - "IPY_MODEL_4a2c90148c83403baeadffebbf73854e", - "IPY_MODEL_e332d8fe724a4c16a67c6dbef23c9099" + "IPY_MODEL_d987d6a207874063b4c6cbb1bac85af9", + "IPY_MODEL_fb0d7db1b96b4ec996863a7ace7b83ec", + "IPY_MODEL_e166f9df8e914b22ab9fabbf20e613e4" ], - "layout": "IPY_MODEL_548dbc5e9eac4177b9150489241c237f" + "layout": "IPY_MODEL_38a5f0ead86b45cba812c2151b8e3c89" } }, - "da3a78de860e4df4aab822fc7388750d": { + "d987d6a207874063b4c6cbb1bac85af9": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -7379,13 +8331,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1b55a8487b2746aca029af2b375c3d03", + "layout": "IPY_MODEL_766f330ae4934cc889664a663861a00d", "placeholder": "​", - "style": "IPY_MODEL_d50707e73bda435b89a03e473b069400", + "style": "IPY_MODEL_58040ae1bf5f4a5bb1d94cf2e67dbb59", "value": "Downloading builder script: 100%" } }, - "4a2c90148c83403baeadffebbf73854e": { + "fb0d7db1b96b4ec996863a7ace7b83ec": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -7401,15 +8353,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d8ee58c5fbd14b32b1bd5daac8a87684", + "layout": "IPY_MODEL_2a4ed96361d14a8fbf4e32eba3280ada", "max": 9991, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_9cb3c0a3b66d4425b97e5f584e92198f", + "style": "IPY_MODEL_18e9b7c41f83466fb76eb96222dfb01f", "value": 9991 } }, - "e332d8fe724a4c16a67c6dbef23c9099": { + "e166f9df8e914b22ab9fabbf20e613e4": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -7424,13 +8376,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_009197970ff64569b3e2e70af7be0efa", + "layout": "IPY_MODEL_aee8117c5c5142de8ada83734f74a719", "placeholder": "​", - "style": "IPY_MODEL_67a200b28ed04777ad7e29303b483dad", - "value": " 9.99k/9.99k [00:00<00:00, 851kB/s]" + "style": "IPY_MODEL_1e061226a8e845ec94420a185bab40a6", + "value": " 9.99k/9.99k [00:00<00:00, 723kB/s]" } }, - "548dbc5e9eac4177b9150489241c237f": { + "38a5f0ead86b45cba812c2151b8e3c89": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7482,7 +8434,7 @@ "width": null } }, - "1b55a8487b2746aca029af2b375c3d03": { + "766f330ae4934cc889664a663861a00d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7534,7 +8486,7 @@ "width": null } }, - "d50707e73bda435b89a03e473b069400": { + "58040ae1bf5f4a5bb1d94cf2e67dbb59": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -7549,7 +8501,7 @@ "description_width": "" } }, - "d8ee58c5fbd14b32b1bd5daac8a87684": { + "2a4ed96361d14a8fbf4e32eba3280ada": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7601,7 +8553,7 @@ "width": null } }, - "9cb3c0a3b66d4425b97e5f584e92198f": { + "18e9b7c41f83466fb76eb96222dfb01f": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -7617,7 +8569,7 @@ "description_width": "" } }, - "009197970ff64569b3e2e70af7be0efa": { + "aee8117c5c5142de8ada83734f74a719": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7669,7 +8621,7 @@ "width": null } }, - "67a200b28ed04777ad7e29303b483dad": { + "1e061226a8e845ec94420a185bab40a6": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0",