
M. Sozeau
INRIA

Unifying Unifiers
Coq WG
October 4th 2017

Unifying Unifiers

Recap

• evars (ctx and type) and metas (no ctx)

• unification.ml, tactic unification (apply,
destruct…):

• w_unify & abstract_list_all

• evarconv.ml: refinement unification (refine,
Definition…)

• evar_conv_x

2

Unifying Unifiers

The plan & what happened

• Move everything to evarconv.ml

• clenv for evars already started by PMP, easy
switch in general (apply, auto…), clean control
on goals.

• Means moving higher-order abstraction to a new
procedure: second_order_matching

• Along the way, fix bugs and fix specs.

3

Unifying Unifiers

Second-order matching
• Solve goals ?ev[σ] t1 .. tn ~= ty

• In practice: everything (rewrite, destruct/elim/
induction, set, apply…).

• clenv maintains the potentially HO clause (and
the threading of sigmas is explicit, PMP would
approve :).

• Rough idea: find the occurrences of t1 .. tn and σ
in ty, abstract them by variables, instantiate ev
by the predicate

• Subterm selection now always configurable:
patterns, specific “equality” function, maximal
well-typed generalization

4

Unifying Unifiers

The new evarconv

type unify_flags = {
 modulo_betaiota : bool;
 open_ts : Names.transparent_state;
 (* Reduction during unification *)
 closed_ts : Names.transparent_state;
 (* Transparency for closed terms conversion *)
 subterm_ts : Names.transparent_state;
 (* For subterm selection in HO unification *)
 frozen_evars : Evar.Set.t;
 allow_K_at_toplevel : bool
 (* Allow trivial HO unification solutions or not for explicit evar
arguments (in general, false) *) }

5

Unifying Unifiers

The new HO matching
This is *typed* generalisation of subterms, according
to an occurrence selection parameter:
type occurrence_selection =
 | AtOccurrences of occurrences
 | Unspecified of prefer_abstraction
 (* choose abstraction over leaving the term if there is a choice *)

type occurrence_match_test =
 env -> evar_map -> int (* under binders *) -> constr (* pattern *) -> constr (* subterm *) ->
 bool * evar_map

type occurrences_selection =
 occurrence_match_test * occurrence_selection list
 (** The occurrence selection list should be exactly of the length of the arguments of the existential
below *)

val second_order_matching : unify_flags -> env -> evar_map ->
 existential (* ev, σ, t1, .. tn *) -> occurrences_selection -> constr -> evar_map * bool

6

Unifying Unifiers

Status

• The standard library and test-suite compile

• For apply: 7 line change in the stdlib

• Different instances chosen in non-linear
unification, backward compat by specifying or  
making the script insensitive to that.

• Bugfix apply which was shelving dependent
subgoals, backward compatible with eapply.

• Also, eapply was not shelving certain
dependent subgoals, now fixed
(incompatibilities in eauto).

7

Unifying Unifiers

Status: apply in test-suite

• Sometimes the user provides an explicit HO
pattern, and uses a tactic such as elim which is
supposed to do HO unification itself. We
heuristically prefer FO unification in these cases.
This should rather be an option/flag of apply/elim
to prefer FO over HO.

• with bindings: unify their type with expected
type before or after unifying with the conclusion?

• Discrepancy between apply (before) and
exists (after) here, solved by backtracking on
failure to solve with bindings early (not ideal)

8

Unifying Unifiers

destruct/elim/inversion/…

• Not too hard to port, no incompatibilities spotted
yet

• Allows occurrence selection (e.g. of indices),
default is maximal abstraction (compatible).

• Time to fix a uniform order of side-conditions vs
main subgoal (discrepancy between elim/
destruct/induction)? Currently a parameter to
clenv tactics.

• Question: Renaming trick done in destruct, do
we really want this?

9

Unifying Unifiers

apply in auto/eauto/tc
eauto

• Incompatibilities because apply works better (not
failing to apply lemmas it should indeed be able
to apply).

• Made treatment of transparent_state of
databases consistent while I was at it, requiring a
few directives.

• Need evaluation of impact here as well.

10

Unifying Unifiers

rewrite
• occurrence selection strategy: match subterms with

same head as lhs and recursively matching
applicative structure of explicit arguments (or
explicit pattern, not necessary in stdlib, useful for
switching to more or less conversion in specific
cases).

• unification with delta following the applicative
structure of the pattern (emulates a kind of FO
approximation ensuring we respect what the user
sees as “rigid” structure).

• Incompatibilities (~40 lines diff) old rewrite was
arbitrarily reducing under constants in particular, or
choosing the last occurrence instead of the first due
to its FO heuristic, or choosing an arbitrary unifier.

11

Unifying Unifiers

rewrite: TODO

• bind occurrence selection strategy to ssrmatching
strategy and see if there are differences.

• Evaluate incompatibilities on travis

12

Unifying Unifiers

Status
• Episode I - Infrastructure ready: https://

github.com/coq/coq/pull/930 (evarconv
and second_order_matching +
reachable_from_evars test)

• Small perf decrease in fiat-crypto
certainly due to the later (need
discussion with Hugo)

• Episode II - apply / eapply : https://
github.com/coq/coq/pull/991

• Need to adapt packages. Mainly apply’s
which should rather be eapply’s AFAICS.

13

https://github.com/coq/coq/pull/930
https://github.com/coq/coq/pull/930
https://github.com/coq/coq/pull/991
https://github.com/coq/coq/pull/991

Unifying Unifiers

Status
• Episode III - the compatibility dilemma strikes

back. Note: no nontrivial change in tactic API. I
see two solutions for migrating:

• Version switches: switch on global or local
version in each modified tactic. Hard: where/
how do we scope the versions?

• Make the new tactics available as a “future”
plugin in Coq, and so that Import Future binds
to the new code (hopefully can be achieved,
PMP?). That gives time for users to experiment
and give feedback. If we’re happy by 8.9 we
switch the code. Might as well use this to
cleanup other stuff.

14

