You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Thank you very much for implementing swappingGAN in a very concise way. I believe you have a deep understanding of the official code. I am trying to understand the official code implementation, but I have encountered difficulties in some codes and cannot be solved. 1. I learned that the optimizer uses swapping_autoencoder_optimizer by default. This class uses a def prepare_images(data_i), but only returns data_i['real_A'], which does not seem to use 'real_B'. 2. In the subsequent self.E(real) process, sp and gl are output, and their mix=self.G(self.swap(sp),gl), why does the sp and gl used by mix come from the same sheet Image, shouldn't it be from real_A and real_B respectively, and what is the purpose of this self.swap(sp)? The above is my question. I am very sorry to bother you. If you are free, I hope you can answer my doubts. Thank you very much.
The text was updated successfully, but these errors were encountered:
Thank you very much for implementing swappingGAN in a very concise way. I believe you have a deep understanding of the official code. I am trying to understand the official code implementation, but I have encountered difficulties in some codes and cannot be solved. 1. I learned that the optimizer uses swapping_autoencoder_optimizer by default. This class uses a def prepare_images(data_i), but only returns data_i['real_A'], which does not seem to use 'real_B'. 2. In the subsequent self.E(real) process, sp and gl are output, and their mix=self.G(self.swap(sp),gl), why does the sp and gl used by mix come from the same sheet Image, shouldn't it be from real_A and real_B respectively, and what is the purpose of this self.swap(sp)? The above is my question. I am very sorry to bother you. If you are free, I hope you can answer my doubts. Thank you very much.
The text was updated successfully, but these errors were encountered: