|
| 1 | +import warnings |
| 2 | +from typing import Any, Callable, Iterable, Tuple |
| 3 | + |
| 4 | +import numpy as np |
| 5 | +from ipywidgets import interact, widgets |
| 6 | +from skimage.transform import downscale_local_mean as downscale |
| 7 | + |
| 8 | +from boiling_learning.preprocessing import Case |
| 9 | + |
| 10 | + |
| 11 | +def _make_show_frame_function( |
| 12 | + imshow: Callable[[np.ndarray], Any], |
| 13 | + downscale_factor: Iterable[int] = (8, 8, 1), |
| 14 | +) -> Callable[[np.ndarray], None]: |
| 15 | + def _imshow(image: np.ndarray) -> None: |
| 16 | + imshow(downscale(image, downscale_factor)) |
| 17 | + |
| 18 | + return _imshow |
| 19 | + |
| 20 | + |
| 21 | +def _interact_boiling_frames( |
| 22 | + cases: Tuple[Case, ...], imshow: Callable[[np.ndarray], Any] |
| 23 | +) -> None: |
| 24 | + cases_options = [(case.name, case) for case in cases] |
| 25 | + default_case = cases_options[0][1] |
| 26 | + cases_widget = widgets.Dropdown( |
| 27 | + options=cases_options, description='Case name:', value=default_case |
| 28 | + ) |
| 29 | + |
| 30 | + experiment_videos_options = [ |
| 31 | + (experiment_video.name, experiment_video) |
| 32 | + for experiment_video in cases_widget.value.values() |
| 33 | + ] |
| 34 | + experiment_videos_widget = widgets.Dropdown( |
| 35 | + options=experiment_videos_options, |
| 36 | + description='Experiment video:', |
| 37 | + value=experiment_videos_options[0][1], |
| 38 | + ) |
| 39 | + |
| 40 | + def update_videos_list(changes): |
| 41 | + experiment_videos_widget.options = [ |
| 42 | + (experiment_video.name, experiment_video) |
| 43 | + for experiment_video in changes['new'].values() |
| 44 | + ] |
| 45 | + |
| 46 | + cases_widget.observe(update_videos_list, 'value') |
| 47 | + |
| 48 | + with experiment_videos_widget.value.frames() as f: |
| 49 | + index_widget = widgets.IntSlider( |
| 50 | + value=0, min=0, max=len(f), description='Frame:' |
| 51 | + ) |
| 52 | + |
| 53 | + def update_max_index(changes): |
| 54 | + with changes['new'].frames() as f: |
| 55 | + index_widget.max = len(f) |
| 56 | + |
| 57 | + experiment_videos_widget.observe(update_max_index, 'value') |
| 58 | + |
| 59 | + def show_frames(case, ev, idx): |
| 60 | + imshow(ev.frame(idx)) |
| 61 | + |
| 62 | + interact( |
| 63 | + show_frames, |
| 64 | + case=cases_widget, |
| 65 | + ev=experiment_videos_widget, |
| 66 | + idx=index_widget, |
| 67 | + ) |
| 68 | + |
| 69 | + |
| 70 | +def main( |
| 71 | + cases: Iterable[Case], |
| 72 | + colab_backend: bool = False, |
| 73 | + physics: str = 'boiling', |
| 74 | +) -> None: |
| 75 | + cases = tuple(cases) |
| 76 | + |
| 77 | + if physics not in {'boiling', 'condensation'}: |
| 78 | + raise ValueError( |
| 79 | + '*physics* must be either "boiling" or "condensation"' |
| 80 | + ) |
| 81 | + |
| 82 | + imshow_imported: bool = False |
| 83 | + if colab_backend: |
| 84 | + try: |
| 85 | + from google.colab.patches import cv2_imshow |
| 86 | + |
| 87 | + imshow_imported = True |
| 88 | + except (ImportError, ModuleNotFoundError): |
| 89 | + pass |
| 90 | + |
| 91 | + if not imshow_imported: |
| 92 | + from cv2 import imshow as cv2_imshow |
| 93 | + |
| 94 | + imshow = _make_show_frame_function(cv2_imshow) |
| 95 | + |
| 96 | + with warnings.catch_warnings(): |
| 97 | + if physics == 'boiling': |
| 98 | + _interact_boiling_frames(cases, imshow) |
| 99 | + else: |
| 100 | + raise ValueError(f'physics=="{physics}" is not supported yet.') |
| 101 | + |
| 102 | + |
| 103 | +if __name__ == '__main__': |
| 104 | + raise RuntimeError( |
| 105 | + '*interact_frames* cannot be executed as a standalone script yet.' |
| 106 | + ) |
0 commit comments