The SynthLang Evolution System is an advanced prompt optimization framework that combines genetic algorithms with self-play tournaments to evolve and improve prompts in the SynthLang format. Drawing inspiration from PAPILLON and DSPy, it uses evolutionary computation principles to iteratively refine prompts while maintaining strict adherence to SynthLang's symbolic notation and format rules.
-
Automated Optimization
- Reduces manual prompt engineering effort
- Systematically explores prompt variations
- Maintains format consistency while evolving
-
Multi-objective Optimization
- Balances multiple fitness criteria:
- Clarity: Symbol usage and structure
- Specificity: Operator and join usage
- Task Completion: Test case performance
- Balances multiple fitness criteria:
-
Verifiable Results
- Test case validation
- Fitness metrics tracking
- Evolution history logging
-
SynthLang-Aware Mutations
- Symbol-preserving mutations (↹, ⊕, Σ)
- Format-compliant transformations
- Operator-aware modifications
-
Hybrid Fitness Functions
- Combines structural and functional metrics
- Weighted scoring system
- Adaptive fitness calculation
-
Tournament Selection
- Self-play competition between prompts
- Survival of the fittest mechanics
- Population diversity maintenance
class PromptEvolver:
def __init__(self, lm, population_size, mutation_rate, tournament_size,
fitness_type, test_cases):
# Initialize evolution parameters
def _generate_variant(self, prompt):
# Generate mutations while preserving format
def _calculate_fitness(self, prompt):
# Multi-objective fitness calculation
def _tournament_select(self, population):
# Tournament selection process
def evolve(self, seed_prompt, n_generations):
# Main evolution loop
-
Add Processing Step
Before: ↹ data•sales ⊕ analyze => insights Σ report After: ↹ data•sales ⊕ filter>Q1 => subset ⊕ analyze => insights Σ report
-
Combine Steps
Before: ↹ data•source ⊕ validate => clean ⊕ analyze => insights Σ report After: ↹ data•source ⊕ validate•analyze => insights Σ report
-
Split Step
Before: ↹ input•stream ⊕ process => result Σ output After: ↹ input•stream ⊕ validate => clean ⊕ transform => result Σ output
def calculate_fitness(prompt):
# Clarity (symbol usage)
clarity = sum(sym in prompt for sym in [↹, ⊕, Σ]) / 3.0
# Specificity (operators and joins)
specificity = (
prompt.count("•") * 0.2 + # Joins
prompt.count("=>") * 0.2 + # Transforms
sum(op in prompt for op in ["+", ">", "<", "^"]) * 0.1
)
# Task completion (if test cases provided)
task_score = evaluate_test_cases(prompt)
# Overall fitness
weights = [0.3, 0.3, 0.4] # Configurable weights
return (clarity * weights[0] +
specificity * weights[1] +
task_score * weights[2])
Parameter | Default | Description |
---|---|---|
seed |
Required | Initial prompt to evolve |
generations |
10 | Number of evolution cycles |
population |
5 | Size of prompt population |
mutation_rate |
0.3 | Probability of mutation (0-1) |
tournament_size |
3 | Number of prompts per tournament |
fitness |
"hybrid" | Fitness function type |
save_lineage |
False | Save evolution history |
test_cases |
None | Path to test cases file |
-
Basic Evolution
synthlang evolve \ --seed "↹ data•sales\n⊕ analyze => insights\nΣ report" \ --generations 5 \ --population 3
-
Task-Specific Evolution
synthlang evolve \ --seed "↹ feedback•customer\n⊕ analyze => sentiment\nΣ report" \ --generations 10 \ --population 5 \ --fitness task \ --test-cases tests/sentiment.json
-
Advanced Evolution with History
synthlang evolve \ --seed "↹ data•source\n⊕ process => result\nΣ output" \ --generations 20 \ --population 8 \ --mutation-rate 0.4 \ --tournament-size 4 \ --fitness hybrid \ --save-lineage
{
"test_cases": [
{
"input": "analyze sales data for Q1",
"expected": "↹ data•sales\n⊕ filter>Q1 => analyze\nΣ insights + trends"
},
{
"input": "summarize customer feedback",
"expected": "↹ feedback•customer\n⊕ sentiment>0 => pos\n⊕ sentiment<0 => neg\nΣ summary + metrics"
}
]
}
The system tracks various metrics during evolution:
-
Fitness Scores
- Clarity (0-1): Symbol usage effectiveness
- Specificity (0-2): Operator and join utilization
- Task Completion (0-1): Test case success rate
- Overall (0-1): Weighted combination
-
Evolution Statistics
- Generations completed
- Total variants created
- Successful mutations
- Tournament winners
-
Lineage Tracking
- Complete evolution history
- Population snapshots
- Fitness progression
-
Seed Prompts
- Start with valid SynthLang format
- Include essential operations
- Keep initial complexity moderate
-
Evolution Parameters
- Adjust based on task complexity
- Use larger populations for diverse solutions
- Increase generations for thorough exploration
-
Test Cases
- Cover key functionality
- Include edge cases
- Maintain format consistency
-
Fitness Selection
- Use "hybrid" for general optimization
- Choose "task" for specific requirements
- Select "clarity" for format refinement