-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeed_forward_FxLMS.m
57 lines (50 loc) · 1.32 KB
/
feed_forward_FxLMS.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
tic;
T = 1000;
xn = rand(1,T); % random white noise
num_coeff = 10;
Sz = rand(1,num_coeff); % assume Sz' == Sz
Sz_hat = Sz; % random Sz
Pz = rand(1,num_coeff); % random Pz
dn = filter(Pz,1,xn); % desired signal
xntemp = zeros(1,num_coeff);
yntemp = zeros(1,num_coeff);
%Wz = rand(1,num_coeff);
Wz = zeros(1,num_coeff);
err = zeros(1,T);
total_err = zeros(1,T);
% mu = 0.01;
% for k = 1:T
% xntemp = [xn(k), xntemp(1:num_coeff-1)];
% %yn_hat = sum(xntemp.*Wz.*Sz);
% yn = xntemp*Wz';
% yntemp = [yn,yntemp(1:num_coeff-1)];
% yn_hat = yntemp*Wz';
% err(k) = dn(k) - yn_hat;
%
%
% xn_hat= xntemp.*Sz_hat;
% Wz = Wz + mu/norm(xn_hat,2)*err(k)*xn_hat;
% %Wz = Wz + mu*err(k)*xn_hat;
% end
mu = 0.005;
for k = 1:T
xntemp = [xn(k), xntemp(1:num_coeff-1)];
%yn_hat = sum(xntemp.*Wz.*Sz);
yn = filter(Wz,1,xn);
yn_hat = filter(Sz,1,yn);
err(k) = dn(k) - yn_hat(k);
total_err(k) = sum(dn-yn_hat);
xn_hat= xntemp.*Sz_hat;
Wz = Wz + mu/norm(xn_hat,2)*err(k)*xn_hat;
%Wz = Wz + mu*err(k)*xn_hat;
end
yn_res = filter(Sz,1, filter(Wz,1,xn));
plot(dn(1:500),'k');
hold on;
plot(yn_res(1:500),'r');
%sum(yn_res-dn);
figure;
plot(total_err,'k')
% figure;
% plot(dn(1:500)-yn_res(1:500),'k')
toc