-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAllRoutines.py
947 lines (864 loc) · 23.4 KB
/
AllRoutines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
"""
Stats routines
A complete list of statistics routine for the 'Computational Statistics' book
The routines are:
VSort - sort a vector
MSort - sort a numpy.matrix
CalculateRanks - for calculating the ranks of a numpy.matrix
GetSSCP_M - calculates the sum of squares and cross-products numpy.matrix
GetVarsCovars_M - calculates the variances and covariances numpy.matrix
GetVariances - calculates the variances of a numpy.matrix of variables
GetStdDevs - calculates the standard deviations of a numpy.matrix of variables
GetCorrelationMatrix - calculates the correlation numpy.matrix
Count - returns the number of non-missing data
sum - returns the sum of non-missing data
minimum - returns the minimum of non-missing data
maximum - returns the maximum of non-missing data
Range - maximum minus the minimum
proportions -
relfreqmode -
cumsum -
cumproduct -
cumpercent -
frequencies -
trimmeddata -
trimmedmean -
bitrimmedmean -
mean -
median -
mode -
moment -
TukeyQuartiles - returns Tukey's hinges
MooreQuartiles - returns Moore & McCabe's hinges
SPQuantile - quantile used by S-Plus
TradQuantile - quantile used by SPSS
MidstepQuantile - mid-step qua
Q1 - Q1 quantile from Hyndman & Fan
Q2 - Q2 quantile from Hyndman & Fan
Q3 - Q3 quantile from Hyndman & Fan
Q4 - Q4 quantile from Hyndman & Fan
Q5 - Q5 quantile from Hyndman & Fan
Q6 - Q6 quantile from Hyndman & Fan
Q7 - Q7 quantile from Hyndman & Fan
Q8 - Q8 quantile from Hyndman & Fan
Q9 - Q9 quantile from Hyndman & Fan
InterquartileRange -
SS - sum of squares
SSDevs - sum of squared deviations from the mean
SampVar - sample variance
PopVar - population variance
SampStdDev - sample standard deviation
PopStdDev - population standard deviation
StdErr - standard error
CoeffVar - coefficient of variation
ConfidenceIntervals - returns the confidence intervals
MAD - Median absolute deviation
GeometricMean - the geometric mean
HarmonicMean - the harmonic mean
MSSD - mean square of successive differences
Skewness - returns the skewness
Kurtosis - returns the kurtosis
StandardScore - transforms a vector into a standard (ie, z-) score
EffectSizeControl - returns an effect size if a control condition is present
EffectSize - returns an effect size if no control is present
FiveNumber - Tukey's five number sumnumpy.mary (minimum, lower quartile, median, upper quartile, maximum)
OutliersSQR - returns two arrays, one of outliers defined by 1.5 * IQR, and the other without these outliers
"""
import math
import numpy
import numpy.ma
def GetMostUsedTests():
return ['Count','Sum','Mean','Median',"Quartiles", \
'Variance (sample)', 'Standard deviation (sample)', \
'Standard error', "Skewness","Kurtosis"]
def GetAllTests():
Alltests = ['Count','Sum','Minimum','Maximum','Range','Frequencies',\
'Proportions','Percentages','Relative frequency of the mode',\
'Cumulative sum', \
'Cumulative product','Cumulative percent', \
'Trimmed mean','Bi-trimmed mean','Winsorised mean','Mean','Median',\
'Mode','Moment',"Quartiles","Tukey's hinges","Moore & McCabe's hinges", \
'S-Plus quantiles','SPSS quantiles','Mid-step quantiles', \
'Quantile 1 (Hyndman & Fan)','Quantile 2 (Hyndman & Fan)', \
'Quantile 3 (Hyndman & Fan)','Quantile 4 (Hyndman & Fan)', \
'Quantile 5 (Hyndman & Fan)','Quantile 6 (Hyndman & Fan)', \
'Quantile 7 (Hyndman & Fan)','Quantile 8 (Hyndman & Fan)', \
'Quantile 9 (Hyndman & Fan)','Interquartile range', \
'Sum of squares','Sum of squared deviations','Variance (sample)', \
'Variance (population)','Standard deviation (sample)', \
'Standard deviation (population)','Standard error', \
'Coefficient of variation','Median absolute deviation', \
'Geometric mean','Harmonic mean', \
'Mean of successive squared differences',\
'Skewness','Kurtosis', 'Confidence intervals']
return Alltests
def GetExtraTests():
Extratests = ['S-Plus quantiles','SPSS quantiles','Mid-step quantiles', \
'Quantile 1 (Hyndman & Fan)','Quantile 2 (Hyndman & Fan)', \
'Quantile 3 (Hyndman & Fan)','Quantile 4 (Hyndman & Fan)', \
'Quantile 5 (Hyndman & Fan)','Quantile 6 (Hyndman & Fan)', \
'Quantile 7 (Hyndman & Fan)','Quantile 8 (Hyndman & Fan)', \
'Quantile 9 (Hyndman & Fan)','Trimmed mean','Bi-trimmed mean',\
'Confidence intervals']
return Extratests
def Vsort(data):
# check that 'data' is a vector
return numpy.ma.sort(data)
def Msort(data):
# check that 'data' is a numpy.matrix
dims = numpy.ma.shape(data)
length = dims[0] * dims[1]
return numpy.ma.reshape(numpy.ma.sort(numpy.ma.reshape(data, length)), dims)
def IndexMatches(value, data):
indices = []
for idx, item in enumerate(data):
if value == item:
indices.append(idx)
return indices
def UniqueVals(data):
"""
Returns unique values + frequencies
"""
try:
uniques = list(set(data))
except TypeError:
data = [data]
uniques = data
uniques.sort()
length = len(uniques)
freqs = []
# now find frequencies
for item in uniques:
nummatches = IndexMatches(item, data)
freqs.append(Count(numpy.array(nummatches)))
freqs = numpy.ma.array(freqs)
return uniques, freqs
def UniqueVals3(data):
"""
All unique values. Currently, only numeric values.
"""
try:
data = numpy.ma.array(data)
uniques = numpy.ma.sort(list(set(data.compressed())))
numbers = numpy.zeros((len(uniques)))
for idx, unique in enumerate(uniques):
number = numpy.ma.equal(data, unique).sum()
numbers[idx] = number
except AttributeError:
uniques = set(list(data))
numbers = []
for value in uniques:
freq = 0
for cell in data:
if cell == value:
freq = freq + 1
numbers.append(freq)
return uniques, numbers
def CalculateRanks(data, start = 1):
data = numpy.ma.array(data)
try:
vals = data.compressed()
except AttributeError:
pass
vals = sorted(list(set(vals)))
rank = start - 0.5
ranks = numpy.ma.zeros(numpy.ma.shape(data), 'f')
for i in vals:
numpy.match = numpy.ma.equal(data, i)
incr = numpy.ma.sum(numpy.ma.sum(numpy.match))
numpy.match = numpy.array(numpy.match)
ranks[numpy.match] = rank + (incr / 2.0)
rank = rank + incr
res = numpy.ma.masked_where(numpy.ma.equal(ranks, 0), ranks)
return res
def GetSSCP_M(data):
Xd = data - numpy.ma.average(data)
Xdp = numpy.ma.transpose(Xd)
return numpy.ma.dot(Xdp, Xd)
def GetVarsCovars_M(data):
SSCP = GetSSCP_M(data)
return SSCP / len(data[1]) # is the len(data[1]) correct?
def GetVariances(data):
return numpy.ma.diagonal(GetVarsCovars_M(data))
def GetStdDevs(data):
return numpy.ma.sqrt(GetVariances(data))
def GetCorrelationnMatrix(data):
VCV = GetVarsCovars_M(data)
return VCV / numpy.ma.sqrt(numpy.ma.diagonal(VCV))
def Count(data):
"""
Count
"""
data = numpy.ma.array(data)
val = int(numpy.ma.count(data))
return val
def NumberMissing(data):
return data.size - data.count()
def Sum(data):
"""
Sum
"""
t = str(data.dtype.type)
if 'string' in t:
return None# is string
elif "int" in t:
return int(numpy.ma.sum(data))
elif 'float' in t:
return float(numpy.ma.sum(data))
else:
return None
def Minimum(data):
"""
Minimum
"""
t = str(data.dtype.type)
if 'string' in t:
return data.sort[0] # is string
elif "int" in t:
return int(numpy.ma.minimum(data))
elif 'float' in t:
return float(numpy.ma.minimum(data))
else:
return None
def Maximum(data):
"""
Maximum
"""
t = str(data.dtype.type)
if 'string' in t:
return sort(a)[-1] # is string
elif "int" in t:
return int(numpy.ma.maximum(data))
elif 'float' in t:
return float(numpy.ma.maximum(data))
else:
return None
def Range(data):
"""
Range
"""
return Maximum(data) - Minimum(data)
def Midrange(data):
"""
Mid-range
"""
maximum = Maximum(data)
minimum = Minimum(data)
midrange = (maximum + minimum) / 2.0
return midrange
def Proportions(data):
"""
Proportions
"""
un, nu = Frequencies(data)
nu = numpy.ma.array((nu),numpy.float)
props = nu / nu.sum()
return un, props
#CumPercent(numbers) / 100.0
def Percentages(data):
"""
Percentages
"""
un, nu = Proportions(data)
return un, nu * 100
def RelFreqMode(data):
"""
Relative frequency of mode
"""
vals, nums = UniqueVals(data)
m = Maximum(nums)
total = numpy.ma.sum(nums)
modes = numpy.ma.equal(data, m)
return modes, (m / float(total)) * 100.0
def sum(data):
"""
Sum
"""
return data.sum()
def CumSum(data):
"""
Cumulative sum
"""
t = str(data.dtype.type)
if 'string' in t:
return None
elif "int" in t:
return int(cumsum(data)[-1])
elif 'float' in t:
return float(CumSum(data)[-1])
else:
return None
def CumProduct(data):
"""
Cumulative product
"""
t = str(data.dtype.type)
if 'string' in t:
return None
elif "int" in t:
return int(numpy.ma.cumprod(data)[-1])
elif 'float' in t:
return float(numpy.ma.cumprod(data)[-1])
else:
return None
def CumPercent(data):
"""
Cumulative percent
"""
# assumes numbers of frequencies are sent
return data / float(numpy.ma.sum(data)) * 100.0
def Frequencies(data):
"""
Frequencies
"""
uniques, numbers = UniqueVals(data)
return uniques, numbers #, nu, nu / CumPercent(nu)
def TrimmedData(Data, Lsplit, Usplit = None):
"""
Trim data
"""
if (Usplit == None) or (Usplit < 0.5):
Usplit = 1.0 - Lsplit
Data = numpy.ma.sort(Data)
LB = Q7(Data, Lsplit)
UB = Q7(Data, Usplit)
Data = Data[numpy.ma.greater(Data, LB)]
Data = Data[numpy.ma.less(Data,UB)]
return Data
def TrimmedMean(data, trim):
"""
Trimmed mean
"""
t = str(data.dtype.type)
if 'string' in t:
return None
else:
data = TrimmedData(data, trim)
return float(Mean(data))
def BiTrimmedMean(data, Ltrim, Utrim):
"""
Bi-trimmed mean
"""
t = str(data.dtype.type)
if 'string' in t:
return None
else:
Lsplit = Ltrim / 100.0
Usplit = Utrim / 100.0
data = TrimmedData(data, Lsplit, Usplit)
if "int" in t:
return int(numpy.ma.average(data))
elif 'float' in t:
return float(numpy.ma.average(data))
else:
return None
def WinsorisedMean(Data, trim):
"""
Winsorised mean
"""
t = str(Data.dtype.type)
if 'string' in t:
return None
else:
try:
if trim > 0.5:
return None
else:
Data = numpy.ma.sort(Data)
LB = Q7(Data, trim)
UB = Q7(Data, 1.0-trim)
idx_lower = numpy.ma.less(Data, LB)
idx_upper = numpy.ma.greater(Data, UB)
val_min = Data[-idx_lower][0]
val_max = Data[-idx_upper][-1]
Data[idx_lower] = LB
Data[idx_upper] = UB
return Mean(Data)
except:
return
def Mean(data):
"""
Mean
"""
t = str(data.dtype.type)
if 'string' in t:
return None
else:
try:
return float(numpy.ma.average(data))
except:
return
def Median(data):
"""
Median
"""
t = str(data.dtype.type)
if 'string' in t:
l = numpy.ma.count(data)
if mod(l, 2):
# odd numbered
return data[(l/2)+1]
else:
return (data[l/2], data[(l/2)+1])
if 'float' in t or 'int' in t:
return float(numpy.ma.median(data))
else:
return None
def Mode(data):
"""
Mode
"""
# get list of values and frequencies
vals, nums = Frequencies(data)
maxes = numpy.ma.max(nums)
idxs = data[numpy.ma.equal(nums, maxes)]
return maxes, idxs
def Moment(data, m):
"""
Moment
"""
t = str(data.dtype.type)
if 'string' in t:
return
elif 'float' in t or 'int' in t:
return (Sum((data - numpy.ma.average(data)) ** m) / Count(data))
else:
return
def TukeyQuartiles(data):
"""
Tukey's quartiles
"""
data = numpy.ma.sort(data)
med = Median(data)
firstQ = numpy.ma.compress(numpy.ma.less_equal(data, med), data)
thirdQ = numpy.ma.compress(numpy.ma.greater_equal(data, med), data)
return Median(data[firstQ]), Median(data[thirdQ])
def MooreQuartiles(data):
"""
Moore & McCabe's quartiles
"""
data = numpy.ma.sort(data)
med = Median(data)
firstQ = numpy.ma.compress(numpy.ma.less(data, med), data)
thirdQ = numpy.ma.compress(numpy.ma.greater(data, med), data)
return Median(data[firstQ]), Median(data[thirdQ])
def QuantileDef(data, k, a):
return ((1-a)*data[k-1])+(a*data[k])
def SPQuantile(data, alpha):
"""
SPSS quantile
"""
data = numpy.ma.sort(data)
n = numpy.ma.count(data)
k = int(1+(alpha*(n-1)))
a = 1+(alpha*(n-1))-k
Q = QuantileDef(data, k, a)
return Q
def TradQuantile(data, alpha):
"""
Traditional quantiles
"""
data = numpy.ma.sort(data)
n = numpy.ma.count(data)
k = int(alpha * (n+1))
a = (alpha*(n+1))-k
Q = QuantileDef(data, k, a)
return Q
def MidstepQuantile(data, alpha):
"""
Mid-step quantiles
"""
# has limits up to alpha < 0.98 and alpha > 0.02
data = numpy.ma.sort(data)
n = numpy.ma.count(data)
k = int((alpha * n) + 0.5)
a = (alpha*n)-k+0.5
Q = QuantileDef(data, k, a)
return Q
def Q1(data, alpha):
"""
Quantile 1 from Hyndmand & Fan
"""
n = numpy.ma.count(data)
data = numpy.ma.sort(data)
k = int(alpha * n)
g = (alpha * n) - k
if g == 0:
a = 0.0
else:
a = 1.0
Q = QuantileDef(data, k, a)
return Q
def Q2(data, alpha):
"""
Quantile 2 from Hyndmand & Fan
"""
n = numpy.ma.count(data)
data = numpy.ma.sort(data)
k = int(alpha * n)
g = (alpha * n) - k
if g == 0:
a = 0.5
else:
a = 1.0
Q = QuantileDef(data, k, a)
return Q
def Q3(data, alpha):
"""
Quantile 3 from Hyndmand & Fan
"""
n = numpy.ma.count(data)
data = numpy.ma.sort(data)
m = -0.5
k = int((alpha * n) + m)
g = (alpha * n) + m - k
a = 1.0
if g == 0 and not k % 2:
a = 0
Q = QuantileDef(data, k, a)
return Q
def Q4(data, alpha):
"""
Quantile 4 from Hyndmand & Fan
"""
n = numpy.ma.count(data)
data = numpy.ma.sort(data)
m = 0.0
k = int((alpha * n) + m)
a = ((alpha * n) + m) - k
Q = QuantileDef(data, k, a)
return Q
def Q5(data, alpha):
"""
Quantile 5 from Hyndmand & Fan
"""
n = numpy.ma.count(data)
data = numpy.ma.sort(data)
m = 0.5
k = int((alpha * n) + m)
a = ((alpha * n) + m) - k
Q = QuantileDef(data, k, a)
return Q
def Q6(data, alpha):
"""
Quantile 6 from Hyndmand & Fan
"""
n = numpy.ma.count(data)
data = numpy.ma.sort(data)
m = alpha
k = int((alpha * n) + m)
a = ((alpha * n) + m) - k
Q = QuantileDef(data, k, a)
return Q
def Q7(data, alpha):
"""
Quantile 7 from Hyndmand & Fan
"""
n = numpy.ma.count(data)
data = numpy.ma.sort(data)
m = 1.0 - alpha
k = int((alpha * n) + m)
a = ((alpha * n) + m) - k
Q = QuantileDef(data, k, a)
return Q
def Q8(data, alpha):
"""
Quantile 8 from Hyndmand & Fan
"""
n = numpy.ma.count(data)
data = numpy.ma.sort(data)
m = (alpha + 1) / 3.0
k = int((alpha * n) + m)
a = ((alpha * n) + m) - k
Q = QuantileDef(data, k, a)
return Q
def Q9(data, alpha):
"""
Quantile 9 from Hyndmand & Fan
"""
n = numpy.ma.count(data)
data = numpy.ma.sort(data)
m = (0.25 * alpha) + (3 / 8.0)
k = int((alpha * n) + m)
a = ((alpha * n) + m) - k
Q = QuantileDef(data, k, a)
return Q
def Quartiles(data):
"""
Quartiles (quantile 8 from Hyndman & Fan)
"""
q1 = Q8(data, 0.25)
q2 = Q8(data, 0.50)
q3 = Q8(data, 0.75)
return q1, q2, q3
def InterquartileRange(data, Qtype = "8"):
"""
Interquartile range
"""
t = str(data.dtype.type)
if 'int' in t or 'float' in t:
numpy.ma.sort(data)
minimum, median, maximum = Quartiles(data)
return float(maximum - minimum)
else:
return
def SS(data):
"""
Sum of squares
"""
t = str(data.dtype.type)
if 'int' in t or 'float' in t:
return float(numpy.ma.sum(data ** 2))
else:
return
def SSDevs(data):
"""
Sum of squared deviations
"""
t = str(data.dtype.type)
if 'int' in t or 'float' in t:
try:
tmp = data - numpy.ma.average(data)
return float(numpy.ma.sum(tmp ** 2))
except:
return None
else:
return
def SampVar(data):
"""
Sample variance
"""
t = str(data.dtype.type)
if 'int' in t or 'float' in t:
try:
return float(SSDevs(data) / float(numpy.ma.count(data) - 1))
except:
return None
else:
return
def PopVar(data):
"""
Population variance
"""
t = str(data.dtype.type)
if 'int' in t or 'float' in t:
try:
return float(SSDevs(data) / float(Count(data)))
except:
return None
else:
return
def SampStdDev(data):
"""
Sample standard deviation
"""
t = str(data.dtype.type)
if 'int' in t or 'float' in t:
try:
return float(numpy.ma.sqrt(SampVar(data)))
except:
return None
else:
return
def PopStdDev(data):
"""
Population standard deviation
"""
t = str(data.dtype.type)
if 'int' in t or 'float' in t:
try:
return float(numpy.ma.sqrt(PopVar(data)))
except:
return None
else:
return
def CoeffVar(data):
"""
Coefficient of variation
"""
t = str(data.dtype.type)
if 'int' in t or 'float' in t:
try:
return float(SampStdDev(data) / numpy.ma.average(data))
except:
return None
else:
return
def StdErr(data):
"""
Standard error
"""
t = str(data.dtype.type)
if 'int' in t or 'float' in t:
try:
return float(SampStdDev(data) / float(numpy.math.sqrt(Count(data))))
except:
return None
else:
return
def ConfidenceIntervals(data, p=0.95):
"""
Confidence intervals
"""
p = 1.0 - p
n = numpy.ma.count(data)
m = numpy.ma.average(data)
sd = SampStdDev(data)
#diff = (probabilities.inversef(p
diff = (pstats.inverset(p, n-1) * sd) / numpy.math.sqrt(n)
lb = m - diff
ub = m + diff
return lb, ub
def MAD(data, constant = 1.4826):
"""
Median absolute deviation
"""
t = str(data.dtype.type)
if 'int' in t or 'float' in t:
med = Median(data)
return Median(abs((data - med))) * constant
else:
return
def GeometricMean(data):
"""
Geometric mean
"""
t = str(data.dtype.type)
if 'int' in t or 'float' in t:
return math.exp(Mean(numpy.ma.log(data)))
else:
return
def HarmonicMean(data):
"""
Harmonic mean
"""
t = str(data.dtype.type)
if 'int' in t or 'float' in t:
try:
div1 = numpy.ma.divide(1.0, data)
m1 = Mean(div1)
hm = numpy.ma.divide(1.0, m1)
return hm
except ZeroDivisionError:
return None
else:
return
def MSSD(data):
"""
Mean square of successive differences
"""
t = str(data.dtype.type)
if 'int' in t or 'float' in t:
val = (data[1:] - data[0:-1]) ** 2
try:
return float(numpy.ma.average(val) / float(numpy.ma.count(data) - 2))
except:
return None
else:
return
def Skewness(data):
"""
Skewness
"""
t = str(data.dtype.type)
if 'int' in t or 'float' in t:
m3 = Moment(data, 3)
m2 = Moment(data, 2)
try:
return float(m3 / float(m2 * numpy.math.sqrt(m2)))
except:
return None
else:
return
def Kurtosis(data):
"""
Kurtosis
"""
t = str(data.dtype.type)
if 'int' in t or 'float' in t:
m4 = Moment(data, 4)
m22 = (Moment(data, 2) ** 2)
try:
return float((m4 / float(m22)))
except:
return None
else:
return
def StandardScore(data):
"""
Standard score
"""
av = numpy.ma.average(data)
sd = SampStdDev(data)
try:
z = (data - av) / float(sd)
except:
z = None
return z
def calceffectsizescontrol(d1, d2):
return abs((numpy.ma.average(d1)-numpy.ma.average(d2))/SampStdDev(data.compressed()))
def EffectSizeControl(data):
# first index is control second on are data
if numpy.ma.count(numpy.ma.shape(data)) != 2:
return
else:
return CalcEffectSizeControl(data[0], data[1])
def calceffectsize(d1, d2):
Psd = numpy.math.sqrt((SampStdDev(d1)**2) + (SampStdDev(d2)**2) / 2.0)
ES = abs((numpy.ma.average(d1)-numpy.ma.average(d2))/Psd)
return ES
def EffectSize(data):
s = len(numpy.ma.shape(data))
if s != 2:
return
s = numpy.ma.count(data)
if s == 2:
return CalcEffectSize(data[0], data[1])
else:
# permute and apply
n = 0
for i in range(3, s+1):
n = n + i
vals = numpy.ma.zeros((n), numpy.ma.Float)
count = 0
for i in range(1, n+1):
for j in range(i+1, n+1):
vals[count] = CalcEffectSize(data[i-1], data[j-1])
count = count + 1
return vals
def FiveNumber(data):
"""
Five number summary
"""
mn = numpy.minimum(data)
mx = numpy.maximum(data)
med = Median(data)
quartiles = (Q8(data, 0.25), Q8(data, 0.75))
res = [mn, quartiles[0], med, quartiles[1], mx]
return res
def OutliersIQR(data):
"""
Outliers (via interquartile range)
"""
IQR = InterquartileRange(data)
# returns outliers defined as those outside 1.5 * IQR
# note - this is not finished - needs the 1.5 and the centre point (mean)
firstQ = numpy.ma.compress(numpy.ma.less(data, IQR[0]), data)
secondQ = numpy.ma.compress(numpy.ma.greater(data, IQR[1]), data)
outliers = numpy.ma.concatenate((firstQ, secondQ))
step1 = numpy.ma.compress(numpy.ma.greater(data, IQR[0]), data)
step2 = numpy.ma.compress(numpy.ma.less(step1, IQR[1]), data)
return outliers, step2
if __name__ == '__main__':
data = numpy.array(([1,2,3,2,1,2,3]))
data = [1,2,3,2,1,2,3]
data = ['a','a','b','b','c','c','c','b']
data = "a"
data = 2
data = 3.14
data = {3: "hi"}
data = [3,2,5.65464,"hi",2,3,"hi"]
data = numpy.ma.array([[9,9.5,5,7.5,9.5,7.5,8,7,8.5,6],
[7,6.5,7,7.5,5,8,6,6.5,7,7],
[6,8,4,6,7,6.5,6,4,6.5,3]])
print (CalculateRanks(data))