forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpresolve_context.h
531 lines (441 loc) · 21.8 KB
/
presolve_context.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_SAT_PRESOLVE_CONTEXT_H_
#define OR_TOOLS_SAT_PRESOLVE_CONTEXT_H_
#include <cstdint>
#include <deque>
#include <vector>
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_utils.h"
#include "ortools/sat/model.h"
#include "ortools/sat/presolve_util.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/sat/util.h"
#include "ortools/util/affine_relation.h"
#include "ortools/util/bitset.h"
#include "ortools/util/logging.h"
#include "ortools/util/sorted_interval_list.h"
#include "ortools/util/time_limit.h"
namespace operations_research {
namespace sat {
// We use some special constraint index in our variable <-> constraint graph.
constexpr int kObjectiveConstraint = -1;
constexpr int kAffineRelationConstraint = -2;
constexpr int kAssumptionsConstraint = -3;
class PresolveContext;
// When storing a reference to a literal, it is important not to forget when
// reading it back to take its representative. Otherwise, we might introduce
// literal that have already been removed, which will break invariants in a
// bunch of places.
class SavedLiteral {
public:
SavedLiteral() {}
explicit SavedLiteral(int ref) : ref_(ref) {}
int Get(PresolveContext* context) const;
private:
int ref_ = 0;
};
// Same as SavedLiteral for variable.
class SavedVariable {
public:
SavedVariable() {}
explicit SavedVariable(int ref) : ref_(ref) {}
int Get(PresolveContext* context) const;
private:
int ref_ = 0;
};
// Wrap the CpModelProto we are presolving with extra data structure like the
// in-memory domain of each variables and the constraint variable graph.
class PresolveContext {
public:
explicit PresolveContext(Model* model, CpModelProto* cp_model,
CpModelProto* mapping)
: working_model(cp_model),
mapping_model(mapping),
logger_(model->GetOrCreate<SolverLogger>()),
params_(*model->GetOrCreate<SatParameters>()),
time_limit_(model->GetOrCreate<TimeLimit>()),
random_(model->GetOrCreate<ModelRandomGenerator>()) {}
// Helpers to adds new variables to the presolved model.
int NewIntVar(const Domain& domain);
int NewBoolVar();
int GetOrCreateConstantVar(int64_t cst);
// a => b.
void AddImplication(int a, int b);
// b => x in [lb, ub].
void AddImplyInDomain(int b, int x, const Domain& domain);
// Helpers to query the current domain of a variable.
bool DomainIsEmpty(int ref) const;
bool IsFixed(int ref) const;
bool CanBeUsedAsLiteral(int ref) const;
bool LiteralIsTrue(int lit) const;
bool LiteralIsFalse(int lit) const;
int64_t MinOf(int ref) const;
int64_t MaxOf(int ref) const;
bool DomainContains(int ref, int64_t value) const;
Domain DomainOf(int ref) const;
// Helpers to query the current domain of a linear expression.
// This doesn't check for integer overflow, but our linear expression
// should be such that this cannot happen (tested at validation).
int64_t MinOf(const LinearExpressionProto& expr) const;
int64_t MaxOf(const LinearExpressionProto& expr) const;
// This function takes a positive variable reference.
bool DomainOfVarIsIncludedIn(int var, const Domain& domain) {
return domains[var].IsIncludedIn(domain);
}
// Returns true if this ref only appear in one constraint.
bool VariableIsUniqueAndRemovable(int ref) const;
// Returns true if this ref no longer appears in the model.
bool VariableIsNotUsedAnymore(int ref) const;
// Functions to make sure that once we remove a variable, we no longer reuse
// it.
void MarkVariableAsRemoved(int ref);
bool VariableWasRemoved(int ref) const;
// Same as VariableIsUniqueAndRemovable() except that in this case the
// variable also appear in the objective in addition to a single constraint.
bool VariableWithCostIsUniqueAndRemovable(int ref) const;
// Returns true if an integer variable is only appearing in the rhs of
// constraints of the form lit => var in domain. When this is the case, then
// we can usually remove this variable and replace these constraints with
// the proper constraints on the enforcement literals.
bool VariableIsOnlyUsedInEncoding(int ref) const;
// Returns false if the new domain is empty. Sets 'domain_modified' (if
// provided) to true iff the domain is modified otherwise does not change it.
ABSL_MUST_USE_RESULT bool IntersectDomainWith(
int ref, const Domain& domain, bool* domain_modified = nullptr);
// Returns false if the 'lit' doesn't have the desired value in the domain.
ABSL_MUST_USE_RESULT bool SetLiteralToFalse(int lit);
ABSL_MUST_USE_RESULT bool SetLiteralToTrue(int lit);
// This function always return false. It is just a way to make a little bit
// more sure that we abort right away when infeasibility is detected.
ABSL_MUST_USE_RESULT bool NotifyThatModelIsUnsat(
const std::string& message = "") {
// TODO(user): Report any explanation for the client in a nicer way?
VLOG(1) << "INFEASIBLE: '" << message << "'";
DCHECK(!is_unsat);
is_unsat = true;
return false;
}
bool ModelIsUnsat() const { return is_unsat; }
// Stores a description of a rule that was just applied to have a summary of
// what the presolve did at the end.
void UpdateRuleStats(const std::string& name, int num_times = 1);
// Updates the constraints <-> variables graph. This needs to be called each
// time a constraint is modified.
void UpdateConstraintVariableUsage(int c);
// At the beginning of the presolve, we delay the costly creation of this
// "graph" until we at least ran some basic presolve. This is because during
// a LNS neighbhorhood, many constraints will be reduced significantly by
// this "simple" presolve.
bool ConstraintVariableGraphIsUpToDate() const;
// Calls UpdateConstraintVariableUsage() on all newly created constraints.
void UpdateNewConstraintsVariableUsage();
// Returns true if our current constraints <-> variables graph is ok.
// This is meant to be used in DEBUG mode only.
bool ConstraintVariableUsageIsConsistent();
// Regroups fixed variables with the same value.
// TODO(user): Also regroup cte and -cte?
void ExploitFixedDomain(int var);
// Adds the relation (ref_x = coeff * ref_y + offset) to the repository.
// Once the relation is added, it doesn't need to be enforced by a constraint
// in the model proto, since we will propagate such relation directly and add
// them to the proto at the end of the presolve.
//
// Returns true if the relation was added.
// In some rare case, like if x = 3*z and y = 5*t are already added, we
// currently cannot add x = 2 * y and we will return false in these case. So
// when this returns false, the relation needs to be enforced by a separate
// constraint.
//
// If the relation was added, both variables will be marked to appear in the
// special kAffineRelationConstraint. This will allow to identify when a
// variable is no longer needed (only appear there and is not a
// representative).
bool StoreAffineRelation(int ref_x, int ref_y, int64_t coeff, int64_t offset);
// Adds the fact that ref_a == ref_b using StoreAffineRelation() above.
// This should never fail, so the relation will always be added.
void StoreBooleanEqualityRelation(int ref_a, int ref_b);
// Stores/Get the relation target_ref = abs(ref); The first function returns
// false if it already exist and the second false if it is not present.
bool StoreAbsRelation(int target_ref, int ref);
bool GetAbsRelation(int target_ref, int* ref);
// Returns the representative of a literal.
int GetLiteralRepresentative(int ref) const;
// Returns another reference with exactly the same value.
int GetVariableRepresentative(int ref) const;
// Used for statistics.
int NumAffineRelations() const { return affine_relations_.NumRelations(); }
int NumEquivRelations() const { return var_equiv_relations_.NumRelations(); }
// This makes sure that the affine relation only uses one of the
// representative from the var_equiv_relations.
AffineRelation::Relation GetAffineRelation(int ref) const;
// To facilitate debugging.
std::string RefDebugString(int ref) const;
std::string AffineRelationDebugString(int ref) const;
// Makes sure the domain of ref and of its representative are in sync.
// Returns false on unsat.
bool PropagateAffineRelation(int ref);
// Creates the internal structure for any new variables in working_model.
void InitializeNewDomains();
// Clears the "rules" statistics.
void ClearStats();
// Inserts the given literal to encode ref == value.
// If an encoding already exists, it adds the two implications between
// the previous encoding and the new encoding.
//
// Important: This does not update the constraint<->variable graph, so
// ConstraintVariableGraphIsUpToDate() will be false until
// UpdateNewConstraintsVariableUsage() is called.
void InsertVarValueEncoding(int literal, int ref, int64_t value);
// Gets the associated literal if it is already created. Otherwise
// create it, add the corresponding constraints and returns it.
//
// Important: This does not update the constraint<->variable graph, so
// ConstraintVariableGraphIsUpToDate() will be false until
// UpdateNewConstraintsVariableUsage() is called.
int GetOrCreateVarValueEncoding(int ref, int64_t value);
// If not already done, adds a Boolean to represent any integer variables that
// take only two values. Make sure all the relevant affine and encoding
// relations are updated.
//
// Note that this might create a new Boolean variable.
void CanonicalizeDomainOfSizeTwo(int var);
// Returns true if a literal attached to ref == var exists.
// It assigns the corresponding to `literal` if non null.
bool HasVarValueEncoding(int ref, int64_t value, int* literal = nullptr);
// Stores the fact that literal implies var == value.
// It returns true if that information is new.
bool StoreLiteralImpliesVarEqValue(int literal, int var, int64_t value);
// Stores the fact that literal implies var != value.
// It returns true if that information is new.
bool StoreLiteralImpliesVarNEqValue(int literal, int var, int64_t value);
// Objective handling functions. We load it at the beginning so that during
// presolve we can work on the more efficient hash_map representation.
//
// Note that ReadObjectiveFromProto() makes sure that var_to_constraints of
// all the variable that appear in the objective contains -1. This is later
// enforced by all the functions modifying the objective.
//
// Note(user): Because we process affine relation only on
// CanonicalizeObjective(), it is possible that when processing a
// canonicalized linear constraint, we don't detect that a variable in affine
// relation is in the objective. For now this is fine, because when this is
// the case, we also have an affine linear constraint, so we can't really do
// anything with that variable since it appear in at least two constraints.
void ReadObjectiveFromProto();
ABSL_MUST_USE_RESULT bool CanonicalizeObjective();
void WriteObjectiveToProto() const;
// Given a variable defined by the given inequality that also appear in the
// objective, remove it from the objective by transferring its cost to other
// variables in the equality.
//
// If new_vars_in_objective is not nullptr, it will be filled with "new"
// variables that where not in the objective before and are after
// substitution.
//
// Returns false, if the substitution cannot be done. This is the case if the
// model become UNSAT or if doing it will result in an objective that do not
// satisfy our overflow preconditions. Note that this can only happen if the
// substitued variable is not implied free (i.e. if its domain is smaller than
// the implied domain from the equality).
bool SubstituteVariableInObjective(
int var_in_equality, int64_t coeff_in_equality,
const ConstraintProto& equality,
std::vector<int>* new_vars_in_objective = nullptr);
// Objective getters.
const Domain& ObjectiveDomain() const { return objective_domain_; }
const absl::flat_hash_map<int, int64_t>& ObjectiveMap() const {
return objective_map_;
}
bool ObjectiveDomainIsConstraining() const {
return objective_domain_is_constraining_;
}
// Advanced usage. This should be called when a variable can be removed from
// the problem, so we don't count it as part of an affine relation anymore.
void RemoveVariableFromAffineRelation(int var);
void RemoveAllVariablesFromAffineRelationConstraint();
// Variable <-> constraint graph.
// The vector list is sorted and contains unique elements.
//
// Important: To properly handle the objective, var_to_constraints[objective]
// contains -1 so that if the objective appear in only one constraint, the
// constraint cannot be simplified.
const std::vector<int>& ConstraintToVars(int c) const {
DCHECK(ConstraintVariableGraphIsUpToDate());
return constraint_to_vars_[c];
}
const absl::flat_hash_set<int>& VarToConstraints(int var) const {
DCHECK(ConstraintVariableGraphIsUpToDate());
return var_to_constraints_[var];
}
int IntervalUsage(int c) const {
DCHECK(ConstraintVariableGraphIsUpToDate());
return interval_usage_[c];
}
// Make sure we never delete an "assumption" literal by using a special
// constraint for that.
void RegisterVariablesUsedInAssumptions() {
for (const int ref : working_model->assumptions()) {
var_to_constraints_[PositiveRef(ref)].insert(kAssumptionsConstraint);
}
}
// The following helper adds the following constraint:
// result <=> (time_i <= time_j && active_i is true && active_j is true)
// and returns the (cached) literal result.
//
// Note that this cache should just be used temporarily and then cleared
// with ClearPrecedenceCache() because there is no mechanism to update the
// cached literals when literal equivalence are detected.
int GetOrCreateReifiedPrecedenceLiteral(int time_i, int time_j, int active_i,
int active_j);
// Clear the precedence cache.
void ClearPrecedenceCache();
SolverLogger* logger() const { return logger_; }
const SatParameters& params() const { return params_; }
TimeLimit* time_limit() { return time_limit_; }
ModelRandomGenerator* random() { return random_; }
// For each variables, list the constraints that just enforce a lower bound
// (resp. upper bound) on that variable. If all the constraints in which a
// variable appear are in the same direction, then we can usually fix a
// variable to one of its bound (modulo its cost).
//
// TODO(user): Keeping these extra vector of hash_set seems inefficient. Come
// up with a better way to detect if a variable is only constrainted in one
// direction.
std::vector<absl::flat_hash_set<int>> var_to_ub_only_constraints;
std::vector<absl::flat_hash_set<int>> var_to_lb_only_constraints;
CpModelProto* working_model = nullptr;
CpModelProto* mapping_model = nullptr;
// Indicate if we are allowed to remove irrelevant feasible solution from the
// set of feasible solution. For example, if a variable is unused, can we fix
// it to an arbitrary value (or its mimimum objective one)? This must be true
// if the client wants to enumerate all solutions or wants correct tightened
// bounds in the response.
bool keep_all_feasible_solutions = false;
// Just used to display statistics on the presolve rules that were used.
absl::flat_hash_map<std::string, int> stats_by_rule_name;
// Number of "rules" applied. This should be equal to the sum of all numbers
// in stats_by_rule_name. This is used to decide if we should do one more pass
// of the presolve or not. Note that depending on the presolve transformation,
// a rule can correspond to a tiny change or a big change. Because of that,
// this isn't a perfect proxy for the efficacy of the presolve.
int64_t num_presolve_operations = 0;
// Temporary storage.
std::vector<int> tmp_literals;
std::vector<Domain> tmp_term_domains;
std::vector<Domain> tmp_left_domains;
absl::flat_hash_set<int> tmp_literal_set;
// Each time a domain is modified this is set to true.
SparseBitset<int64_t> modified_domains;
// Advanced presolve. See this class comment.
DomainDeductions deductions;
private:
// Helper to add an affine relation x = c.y + o to the given repository.
bool AddRelation(int x, int y, int64_t c, int64_t o, AffineRelation* repo);
void AddVariableUsage(int c);
void UpdateLinear1Usage(const ConstraintProto& ct, int c);
// Returns true iff the variable is not the representative of an equivalence
// class of size at least 2.
bool VariableIsNotRepresentativeOfEquivalenceClass(int var) const;
// Process encoding_remap_queue_ and updates the encoding maps. This could
// lead to UNSAT being detected, in which case it will return false.
bool RemapEncodingMaps();
// Makes sure we only insert encoding about the current representative.
//
// Returns false if ref cannot take the given value (it might not have been
// propagated yed).
bool CanonicalizeEncoding(int* ref, int64_t* value);
// Inserts an half reified var value encoding (literal => var ==/!= value).
// It returns true if the new state is different from the old state.
// Not that if imply_eq is false, the literal will be stored in its negated
// form.
//
// Thus, if you detect literal <=> var == value, then two calls must be made:
// InsertHalfVarValueEncoding(literal, var, value, true);
// InsertHalfVarValueEncoding(NegatedRef(literal), var, value, false);
bool InsertHalfVarValueEncoding(int literal, int var, int64_t value,
bool imply_eq);
// Insert fully reified var-value encoding.
void InsertVarValueEncodingInternal(int literal, int var, int64_t value,
bool add_constraints);
SolverLogger* logger_;
const SatParameters& params_;
TimeLimit* time_limit_;
ModelRandomGenerator* random_;
// Initially false, and set to true on the first inconsistency.
bool is_unsat = false;
// The current domain of each variables.
std::vector<Domain> domains;
// Internal representation of the objective. During presolve, we first load
// the objective in this format in order to have more efficient substitution
// on large problems (also because the objective is often dense). At the end
// we re-convert it to its proto form.
absl::flat_hash_map<int, int64_t> objective_map_;
int64_t objective_overflow_detection_;
std::vector<std::pair<int, int64_t>> tmp_entries_;
bool objective_domain_is_constraining_ = false;
Domain objective_domain_;
double objective_offset_;
double objective_scaling_factor_;
// Constraints <-> Variables graph.
std::vector<std::vector<int>> constraint_to_vars_;
std::vector<absl::flat_hash_set<int>> var_to_constraints_;
// Number of constraints of the form [lit =>] var in domain.
std::vector<int> constraint_to_linear1_var_;
std::vector<int> var_to_num_linear1_;
// We maintain how many time each interval is used.
std::vector<std::vector<int>> constraint_to_intervals_;
std::vector<int> interval_usage_;
// Contains abs relation (key = abs(saved_variable)).
absl::flat_hash_map<int, SavedVariable> abs_relations_;
// For each constant variable appearing in the model, we maintain a reference
// variable with the same constant value. If two variables end up having the
// same fixed value, then we can detect it using this and add a new
// equivalence relation. See ExploitFixedDomain().
absl::flat_hash_map<int64_t, SavedVariable> constant_to_ref_;
// When a "representative" gets a new representative, it should be enqueued
// here so that we can lazily update the *encoding_ maps below.
std::deque<int> encoding_remap_queue_;
// Contains variables with some encoded value: encoding_[i][v] points
// to the literal attached to the value v of the variable i.
absl::flat_hash_map<int, absl::flat_hash_map<int64_t, SavedLiteral>>
encoding_;
// Contains the currently collected half value encodings:
// i.e.: literal => var ==/!= value
// The state is accumulated (adding x => var == value then !x => var != value)
// will deduce that x equivalent to var == value.
absl::flat_hash_map<int,
absl::flat_hash_map<int64_t, absl::flat_hash_set<int>>>
eq_half_encoding_;
absl::flat_hash_map<int,
absl::flat_hash_map<int64_t, absl::flat_hash_set<int>>>
neq_half_encoding_;
// This regroups all the affine relations between variables. Note that the
// constraints used to detect such relations will not be removed from the
// model at detection time (thus allowing proper domain propagation). However,
// if the arity of a variable becomes one, then such constraint will be
// removed.
AffineRelation affine_relations_;
AffineRelation var_equiv_relations_;
std::vector<int> tmp_new_usage_;
// Used by SetVariableAsRemoved() and VariableWasRemoved().
absl::flat_hash_set<int> removed_variables_;
// Cache for the reified precedence literals created during the expansion of
// the reservoir constraint. This cache is only valid during the expansion
// phase, and is cleared afterwards.
absl::flat_hash_map<std::tuple<int, int, int, int>, int>
reified_precedences_cache_;
};
} // namespace sat
} // namespace operations_research
#endif // OR_TOOLS_SAT_PRESOLVE_CONTEXT_H_