forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAssignmentSat.java
116 lines (107 loc) · 3.53 KB
/
AssignmentSat.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// CP-SAT example that solves an assignment problem.
// [START program]
package com.google.ortools.sat.samples;
// [START import]
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;
// [END import]
/** Assignment problem. */
public class AssignmentSat {
public static void main(String[] args) {
Loader.loadNativeLibraries();
// Data
// [START data_model]
int[][] costs = {
{90, 80, 75, 70},
{35, 85, 55, 65},
{125, 95, 90, 95},
{45, 110, 95, 115},
{50, 100, 90, 100},
};
final int numWorkers = costs.length;
final int numTasks = costs[0].length;
// [END data_model]
// Model
// [START model]
CpModel model = new CpModel();
// [END model]
// Variables
// [START variables]
IntVar[][] x = new IntVar[numWorkers][numTasks];
// Variables in a 1-dim array.
IntVar[] xFlat = new IntVar[numWorkers * numTasks];
int[] costsFlat = new int[numWorkers * numTasks];
for (int i = 0; i < numWorkers; ++i) {
for (int j = 0; j < numTasks; ++j) {
x[i][j] = model.newIntVar(0, 1, "");
int k = i * numTasks + j;
xFlat[k] = x[i][j];
costsFlat[k] = costs[i][j];
}
}
// [END variables]
// Constraints
// [START constraints]
// Each worker is assigned to at most one task.
for (int i = 0; i < numWorkers; ++i) {
IntVar[] vars = new IntVar[numTasks];
for (int j = 0; j < numTasks; ++j) {
vars[j] = x[i][j];
}
model.addLessOrEqual(LinearExpr.sum(vars), 1);
}
// Each task is assigned to exactly one worker.
for (int j = 0; j < numTasks; ++j) {
// LinearExpr taskSum;
IntVar[] vars = new IntVar[numWorkers];
for (int i = 0; i < numWorkers; ++i) {
vars[i] = x[i][j];
}
model.addEquality(LinearExpr.sum(vars), 1);
}
// [END constraints]
// Objective
// [START objective]
model.minimize(LinearExpr.scalProd(xFlat, costsFlat));
// [END objective]
// Solve
// [START solve]
CpSolver solver = new CpSolver();
CpSolverStatus status = solver.solve(model);
// [END solve]
// Print solution.
// [START print_solution]
// Check that the problem has a feasible solution.
if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
System.out.println("Total cost: " + solver.objectiveValue() + "\n");
for (int i = 0; i < numWorkers; ++i) {
for (int j = 0; j < numTasks; ++j) {
if (solver.value(x[i][j]) == 1) {
System.out.println(
"Worker " + i + " assigned to task " + j + ". Cost: " + costs[i][j]);
}
}
}
} else {
System.err.println("No solution found.");
}
// [END print_solution]
}
private AssignmentSat() {}
}