forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultiple_knapsack_sat.py
123 lines (104 loc) · 3.66 KB
/
multiple_knapsack_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#!/usr/bin/env python3
# Copyright 2010-2021 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START program]
"""Solves a multiple knapsack problem using the CP-SAT solver."""
# [START import]
from ortools.sat.python import cp_model
# [END import]
# [START data_model]
def create_data_model():
"""Create the data for the example."""
data = {}
weights = [48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36]
values = [10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25]
data['num_items'] = len(weights)
data['all_items'] = range(data['num_items'])
data['weights'] = weights
data['values'] = values
data['bin_capacities'] = [100, 100, 100, 100, 100]
data['num_bins'] = len(data['bin_capacities'])
data['all_bins'] = range(data['num_bins'])
return data
# [END data_model]
# [START solution_printer]
def print_solutions(data, solver, x):
"""Display the solution."""
total_weight = 0
total_value = 0
for b in data['all_bins']:
print('Bin', b, '\n')
bin_weight = 0
bin_value = 0
for idx, val in enumerate(data['weights']):
if solver.Value(x[(idx, b)]) > 0:
print('Item', idx, '- Weight:', val, ' Value:',
data['values'][idx])
bin_weight += val
bin_value += data['values'][idx]
print('Packed bin weight:', bin_weight)
print('Packed bin value:', bin_value, '\n')
total_weight += bin_weight
total_value += bin_value
print('Total packed weight:', total_weight)
print('Total packed value:', total_value)
# [END solution_printer]
def main():
# [START data]
data = create_data_model()
# [END data]
# [START model]
model = cp_model.CpModel()
# [END model]
# Main variables.
# [START variables]
x = {}
for idx in data['all_items']:
for b in data['all_bins']:
x[(idx, b)] = model.NewIntVar(0, 1, 'x_%i_%i' % (idx, b))
max_value = sum(data['values'])
# value[b] is the value of bin b when packed.
value = [
model.NewIntVar(0, max_value, 'value_%i' % b) for b in data['all_bins']
]
for b in data['all_bins']:
model.Add(value[b] == sum(
x[(i, b)] * data['values'][i] for i in data['all_items']))
# [END variables]
# [START constraints]
# Each item can be in at most one bin.
for idx in data['all_items']:
model.Add(sum(x[idx, b] for b in data['all_bins']) <= 1)
# The amount packed in each bin cannot exceed its capacity.
for b in data['all_bins']:
model.Add(
sum(x[(i, b)] * data['weights'][i]
for i in data['all_items']) <= data['bin_capacities'][b])
# [END constraints]
# [START objective]
# Maximize total value of packed items.
model.Maximize(sum(value))
# [END objective]
# [START solver]
solver = cp_model.CpSolver()
# [END solver]
# [START solve]
status = solver.Solve(model)
# [END solve]
# [START print_solution]
if status == cp_model.OPTIMAL:
print_solutions(data, solver, x)
# [END solutions_printer]
if __name__ == '__main__':
main()
# [END program]