-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdetie-cut.yaml
33 lines (27 loc) · 1.25 KB
/
detie-cut.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# @package _global_
model:
name: TripletsExtractorBERTOnly # the model variant used in the paper
lang: en
use_syntax_features: False # using extra syntax-based features (not used in the paper)
postprocess_adp: False # extra work with adpositions (not used in the paper)
join_is: True # appending [is] [of] [from] to the text (OpenIE6-inspired language-dependent trick used for English)
pretrained_encoder: bert-base-multilingual-cased # tried: xlm-roberta-large, bert-base-uncased, bert-large-cased
word_dropout: 0
stanza_emb_size: 32 # syntax features embeddings size (not used in the paper)
# Training process details
max_epochs: 100
batch_size: 32
unfreeze_epoch: 0
unfreeze_layers_from_top: 4
syntetic_data_after_epoch: ${model.max_epochs}
# Loss params
matching: iou # Intersection-over-Union or 'dice' or 'dice_squared'
disable_bg: True # (not) taking the background 'O' labels into account
focal_gamma: 0
class_weights: [1, 1, 1, 1]
# Transformer params
num_layers: 2
hid_size: 512
n_classes: 4 # S (source), R (relation),T (target), O (other) ~ arg1, rel, arg2, o
num_detections: 20 # a number of possible simultaneous 'detections' (sequences of labels) for each sentence
best_version: 276 # an ID of the model