-
Notifications
You must be signed in to change notification settings - Fork 388
/
Copy path_model.py
668 lines (602 loc) · 23.4 KB
/
_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
from __future__ import annotations
import importlib.util
import logging
from functools import partial
from typing import TYPE_CHECKING
import numpy as np
import pandas as pd
import pyro
from pyro.infer import Trace_ELBO
from scvi import REGISTRY_KEYS
from scvi.data import AnnDataManager
from scvi.data._utils import get_anndata_attribute
from scvi.data.fields import (
CategoricalJointObsField,
CategoricalObsField,
LabelsWithUnlabeledObsField,
LayerField,
ObsmField,
)
from scvi.dataloaders import AnnTorchDataset
from scvi.model._utils import (
scrna_raw_counts_properties,
)
from scvi.model.base import ArchesMixin, BaseModelClass, PyroSampleMixin, PyroSviTrainMixin
from scvi.model.base._de_core import _de_core
from scvi.utils import de_dsp, setup_anndata_dsp
from ._module import RESOLVAE
from ._utils import ResolVIPredictiveMixin
if TYPE_CHECKING:
from collections.abc import Iterable, Sequence
from typing import Literal
from anndata import AnnData
logger = logging.getLogger(__name__)
class RESOLVI(
PyroSviTrainMixin, PyroSampleMixin, ResolVIPredictiveMixin, BaseModelClass, ArchesMixin
):
"""
ResolVI addresses noise and bias in single-cell resolved spatial transcriptomics data.
Parameters
----------
adata
AnnData object that has been registered via :meth:`~scvi.model.SCVI.setup_anndata`.
n_hidden
Number of nodes per hidden layer.
n_latent
Dimensionality of the latent space.
n_layers
Number of hidden layers used for encoder and decoder NNs.
dropout_rate
Dropout rate for neural networks.
dispersion
One of the following:
* ``'gene'`` - dispersion parameter of NB is constant per gene across cells
* ``'gene-batch'`` - dispersion can differ between different batches
* ``'gene-label'`` - dispersion can differ between different labels
* ``'gene-cell'`` - dispersion can differ for every gene in every cell
gene_likelihood
One of:
* ``'nb'`` - Negative binomial distribution
* ``'zinb'`` - Zero-inflated negative binomial distribution
* ``'poisson'`` - Poisson distribution
**model_kwargs
Keyword args for :class:`~scvi.module.VAE`
Examples
--------
>>> adata = anndata.read_h5ad(path_to_anndata)
>>> scvi.model.SCVI.setup_anndata(adata, batch_key="batch")
>>> vae = scvi.model.SCVI(adata)
>>> vae.train()
>>> adata.obsm["X_scVI"] = vae.get_latent_representation()
>>> adata.obsm["X_normalized_scVI"] = vae.get_normalized_expression()
Notes
-----
See further usage examples in the following tutorials:
1. :doc:`/tutorials/notebooks/api_overview`
2. :doc:`/tutorials/notebooks/harmonization`
3. :doc:`/tutorials/notebooks/scarches_scvi_tools`
4. :doc:`/tutorials/notebooks/scvi_in_R`
"""
_module_cls = RESOLVAE
_block_parameters = []
def __init__(
self,
adata: AnnData | None,
registry: dict | None = None,
n_hidden: int = 32,
n_hidden_encoder: int = 128,
n_latent: int = 10,
n_layers: int = 2,
dropout_rate: float = 0.05,
dispersion: Literal["gene", "gene-batch"] = "gene",
gene_likelihood: Literal["nb", "poisson"] = "nb",
background_ratio=None,
median_distance=None,
semisupervised=False,
mixture_k=50,
downsample_counts=True,
**model_kwargs,
):
pyro.clear_param_store()
super().__init__(adata)
if semisupervised:
self._set_indices_and_labels()
results = self.compute_dataset_dependent_priors()
n_cats_per_cov = (
self.adata_manager.get_state_registry(REGISTRY_KEYS.CAT_COVS_KEY).n_cats_per_key
if REGISTRY_KEYS.CAT_COVS_KEY in self.adata_manager.data_registry
else None
)
n_labels = self.summary_stats.n_labels - 1
if background_ratio is None:
background_ratio = results["background_ratio"]
if median_distance is None:
median_distance = results["median_distance"]
if downsample_counts:
downsample_counts_mean = results["mean_log_counts"]
downsample_counts_std = results["std_log_counts"]
else:
downsample_counts_mean = None
downsample_counts_std = 1.0
expression_anntorchdata = AnnTorchDataset(
self.adata_manager,
getitem_tensors=["X"],
load_sparse_tensor=True,
)
self.module = self._module_cls(
n_input=self.summary_stats.n_vars,
n_batch=self.summary_stats.n_batch,
n_cats_per_cov=n_cats_per_cov,
n_labels=n_labels,
mixture_k=mixture_k,
expression_anntorchdata=expression_anntorchdata,
n_neighbors=self.summary_stats.n_distance_neighbor,
n_obs=self.summary_stats["n_ind_x"],
n_hidden=n_hidden,
n_hidden_encoder=n_hidden_encoder,
n_latent=n_latent,
n_layers=n_layers,
dropout_rate=dropout_rate,
dispersion=dispersion,
gene_likelihood=gene_likelihood,
background_ratio=background_ratio,
median_distance=median_distance,
semisupervised=semisupervised,
downsample_counts_mean=downsample_counts_mean,
downsample_counts_std=downsample_counts_std,
**model_kwargs,
)
self._model_summary_string = (
f"RESOLVI Model with the following params: \nn_hidden: {n_hidden} "
f"n_latent: {n_latent}, n_layers: {n_layers}, dropout_rate: "
f"{dropout_rate}, dispersion: {dispersion}, gene_likelihood: {gene_likelihood} "
f"n_neighbors: {self.summary_stats.n_distance_neighbor}"
)
self.init_params_ = self._get_init_params(locals())
def train(
self,
max_epochs: int = 50,
lr: float = 3e-3,
lr_extra: float = 1e-2,
extra_lr_parameters: tuple = ("per_neighbor_diffusion_map", "u_prior_means"),
batch_size: int = 512,
weight_decay: float = 0.0,
eps: float = 1e-4,
n_steps_kl_warmup: int | None = None,
n_epochs_kl_warmup: int | None = 20,
plan_kwargs: dict | None = None,
expose_params: list = (),
**kwargs,
):
"""
Trains the model using amortized variational inference.
Parameters
----------
max_epochs
Number of passes through the dataset.
lr
Learning rate for optimization.
lr_extra
Learning rate for parameters (non-amortized and custom ones)
extra_lr_parameters
List of parameters to train with `lr_extra` learning rate.
batch_size
Minibatch size to use during training.
weight_decay
weight decay regularization term for optimization
eps
Optimizer eps
n_steps_kl_warmup
Number of training steps (minibatches) to scale weight on KL divergences from 0 to 1.
Only activated when `n_epochs_kl_warmup` is set to None. If `None`, defaults
to `floor(0.75 * adata.n_obs)`.
n_epochs_kl_warmup
Number of epochs to scale weight on KL divergences from 0 to 1.
Overrides `n_steps_kl_warmup` when both are not `None`.
plan_kwargs
Keyword args for :class:`~resolvi.train.PyroTrainingPlan`. Keyword arguments passed to
`train()` will overwrite values present in `plan_kwargs`, when appropriate.
expose_params
List of parameters to train if running model in Arches mode.
**kwargs
Other keyword args for :class:`~scvi.train.Trainer`.
"""
blocked = self._block_parameters.copy()
for name, param in self.module.named_parameters():
if not param.requires_grad:
blocked.append(name)
param.requires_grad = True
blocked = set(blocked) - set(expose_params)
if blocked:
print("Running scArches. Set lr to 0 and blocking variables.")
def per_param_callable(module_name, param_name):
store_name = f"{module_name}$$${param_name}" if "." in param_name else param_name
if store_name in blocked:
return {"lr": 0.0, "weight_decay": 0, "eps": eps}
if store_name in extra_lr_parameters:
return {"lr": lr_extra, "weight_decay": weight_decay, "eps": eps}
else:
return {"lr": lr, "weight_decay": weight_decay, "eps": eps}
optim = pyro.optim.Adam(per_param_callable)
if plan_kwargs is None:
plan_kwargs = {}
plan_kwargs.update(
{
"optim_kwargs": {"lr": lr, "weight_decay": weight_decay, "eps": eps},
"optim": optim,
"blocked": blocked,
"n_epochs_kl_warmup": n_epochs_kl_warmup
if n_epochs_kl_warmup is not None
else max_epochs,
"n_steps_kl_warmup": n_steps_kl_warmup,
"loss_fn": Trace_ELBO(
num_particles=5, vectorize_particles=True, retain_graph=True
),
}
)
super().train(
max_epochs=max_epochs,
train_size=1.0,
plan_kwargs=plan_kwargs,
batch_size=batch_size,
**kwargs,
)
@classmethod
@setup_anndata_dsp.dedent
def setup_anndata(
cls,
adata: AnnData,
layer: str | None = None,
batch_key: str | None = None,
labels_key: str | None = None,
categorical_covariate_keys: list[str] | None = None,
prepare_data: bool | None = True,
prepare_data_kwargs: dict = None,
unlabeled_category: str = "unknown",
**kwargs,
):
"""%(summary)s.
Parameters
----------
%(param_adata)s
%(param_layer)s
%(param_batch_key)s
%(param_labels_key)s
%(param_cat_cov_keys)s
prepare_data
If True, prepares AnnData for training. Computes spatial neighbors and distances.
prepare_data_kwargs
Keyword args for :meth:`scvi.external.RESOLVI._prepare_data`
%(param_unlabeled_category)s
"""
setup_method_args = cls._get_setup_method_args(**locals())
if layer is None:
x = adata.X
else:
x = adata.layers[layer]
assert np.min(x.sum(axis=1)) > 0, (
"Please filter cells with less than 5 counts prior to running resolVI."
)
if batch_key is not None:
adata.obs["_indices"] = (
adata.obs[batch_key].astype(str) + "_" + adata.obs_names.astype(str)
)
else:
adata.obs["_indices"] = adata.obs_names.astype(str)
adata.obs["_indices"] = adata.obs["_indices"].astype("category")
assert not adata.obs["_indices"].duplicated(keep="first").any(), (
"obs_names need to be unique prior to running resolVI."
)
if labels_key is None:
label_field = CategoricalObsField(REGISTRY_KEYS.LABELS_KEY, labels_key)
else:
label_field = LabelsWithUnlabeledObsField(
REGISTRY_KEYS.LABELS_KEY, labels_key, unlabeled_category
)
if prepare_data:
if prepare_data_kwargs is None:
prepare_data_kwargs = {}
RESOLVI._prepare_data(adata, batch_key=batch_key, **prepare_data_kwargs)
anndata_fields = [
LayerField(REGISTRY_KEYS.X_KEY, layer, is_count_data=True),
CategoricalObsField(REGISTRY_KEYS.BATCH_KEY, batch_key),
ObsmField("index_neighbor", "index_neighbor"),
ObsmField("distance_neighbor", "distance_neighbor"),
CategoricalObsField(REGISTRY_KEYS.INDICES_KEY, "_indices"),
label_field,
CategoricalJointObsField(REGISTRY_KEYS.CAT_COVS_KEY, categorical_covariate_keys),
]
adata_manager = AnnDataManager(fields=anndata_fields, setup_method_args=setup_method_args)
adata_manager.register_fields(adata, **kwargs)
cls.register_manager(adata_manager)
@staticmethod
def _prepare_data(adata, n_neighbors=10, spatial_rep="X_spatial", batch_key=None, **kwargs):
try:
import scanpy
from sklearn.neighbors._base import _kneighbors_from_graph
except ImportError as err:
raise ImportError(
"Please install scanpy and scikit-learn -- `pip install scanpy`"
) from err
# Spatial neighbors are batch dependent.
if batch_key is None:
indices = [np.arange(adata.n_obs)]
else:
indices = [
np.where(adata.obs[batch_key] == i)[0] for i in adata.obs[batch_key].unique()
]
distance_neighbor = 1e6 * np.ones([adata.n_obs, n_neighbors])
index_neighbor = np.zeros([adata.n_obs, n_neighbors], dtype=int)
for index in indices:
sub_data = adata[index].copy()
if importlib.util.find_spec("cuml") is not None:
method = "rapids"
else:
method = "umap"
scanpy.pp.neighbors(
sub_data, n_neighbors=n_neighbors + 5, use_rep=spatial_rep, method=method
)
distances = sub_data.obsp["distances"] ** 2
distance_neighbor[index, :], index_neighbor_batch = _kneighbors_from_graph(
distances, n_neighbors, return_distance=True
)
index_neighbor[index, :] = index[index_neighbor_batch]
adata.obsm["X_spatial"] = adata.obsm[spatial_rep]
adata.obsm["index_neighbor"] = index_neighbor
adata.obsm["distance_neighbor"] = distance_neighbor
def compute_dataset_dependent_priors(self, n_small_genes=None):
x = self.adata_manager.get_from_registry(REGISTRY_KEYS.X_KEY)
n_small_genes = x.shape[1] // 50 if n_small_genes is None else int(n_small_genes)
# Computing library size over low expressed genes (expectation for background).
# Handles sparse and dense counts.
smallest_means = x[:, np.array(x.sum(0)).flatten().argsort()[:n_small_genes]].mean(
1
) / np.array(x.mean(1))
background_ratio = np.mean(np.array(smallest_means))
# Median distance for empiric expectation of kernel size in diffusion
distance = self.adata_manager.get_from_registry("distance_neighbor")
median_distance = np.median(np.partition(distance, 5)[:, 5])
log_library_size = np.log1p(np.array(x.sum(1)))
mean_log_counts = np.median(log_library_size)
std_log_counts = np.std(log_library_size)
return {
"background_ratio": background_ratio,
"median_distance": median_distance,
"mean_log_counts": mean_log_counts,
"std_log_counts": std_log_counts,
}
@de_dsp.dedent
def differential_expression(
self,
adata: AnnData | None = None,
groupby: str | None = None,
group1: Iterable[str] | None = None,
group2: str | None = None,
idx1: Sequence[int] | Sequence[bool] | None = None,
idx2: Sequence[int] | Sequence[bool] | None = None,
subset_idx: Sequence[int] | None = None,
mode: Literal["vanilla", "change"] = "change",
delta: float = 0.25,
batch_size: int | None = None,
all_stats: bool = True,
batch_correction: bool = False,
batchid1: Iterable[str] | None = None,
batchid2: Iterable[str] | None = None,
fdr_target: float = 0.05,
silent: bool = False,
weights: Literal["uniform", "importance"] | None = "uniform",
filter_outlier_cells: bool = False,
**kwargs,
) -> pd.DataFrame:
r"""A unified method for differential expression analysis.
Implements `"vanilla"` DE :cite:p:`Lopez18` and `"change"` mode DE :cite:p:`Boyeau19`.
Parameters
----------
%(de_adata)s
%(de_groupby)s
%(de_group1)s
%(de_group2)s
%(de_idx1)s
%(de_idx2)s
%(de_subset_idx)s
%(de_mode)s
%(de_delta)s
%(de_batch_size)s
%(de_all_stats)s
%(de_batch_correction)s
%(de_batchid1)s
%(de_batchid2)s
%(de_fdr_target)s
%(de_silent)s
weights
filter_outlier_cells
Whether to filter outlier cells with
:meth:`~scvi.model.base.DifferentialComputation.filter_outlier_cells`
**kwargs
Keyword args for :meth:`scvi.model.base.DifferentialComputation.get_bayes_factors`
Returns
-------
Differential expression DataFrame.
"""
adata = self._validate_anndata(adata)
model_fn = partial(
self.get_normalized_expression_importance,
return_numpy=True,
n_samples=5,
batch_size=batch_size,
weights=weights,
return_mean=False,
)
representation_fn = self.get_latent_representation if filter_outlier_cells else None
result = _de_core(
adata_manager=self.get_anndata_manager(adata, required=True),
model_fn=model_fn,
representation_fn=representation_fn,
groupby=groupby,
group1=group1,
group2=group2,
idx1=idx1,
idx2=idx2,
subset_idx=subset_idx,
all_stats=all_stats,
all_stats_fn=scrna_raw_counts_properties,
col_names=adata.var_names,
mode=mode,
batchid1=batchid1,
batchid2=batchid2,
delta=delta,
batch_correction=batch_correction,
fdr=fdr_target,
silent=silent,
**kwargs,
)
return result
@de_dsp.dedent
def differential_niche_abundance(
self,
adata: AnnData | None = None,
groupby: str | None = None,
group1: Iterable[str] | None = None,
group2: str | None = None,
neighbor_key: str | None = None,
idx1: Sequence[int] | Sequence[bool] | None = None,
idx2: Sequence[int] | Sequence[bool] | None = None,
subset_idx: Sequence[int] | None = None,
mode: Literal["vanilla", "change"] = "change",
delta: float = 0.25,
batch_size: int | None = None,
fdr_target: float = 0.05,
silent: bool = False,
filter_outlier_cells: bool = False,
pseudocounts: float = 1e-3,
**kwargs,
) -> pd.DataFrame:
r"""A unified method for niche differential abundance analysis.
Implements `"vanilla"` DE :cite:p:`Lopez18` and `"change"` mode DE :cite:p:`Boyeau19`.
Parameters
----------
%(de_adata)s
%(de_groupby)s
%(de_group1)s
%(de_group2)s
neighbor_key
Obsm key containing the spatial neighbors of each cell.
%(de_idx1)s
%(de_idx2)s
%(de_subset_idx)s
%(de_mode)s
%(de_delta)s
%(de_batch_size)s
%(de_fdr_target)s
%(de_silent)s
filter_outlier_cells
Whether to filter outlier cells with
:meth:`~scvi.model.base.DifferentialComputation.filter_outlier_cells`
pseudocounts
pseudocount offset used for the mode `change`.
When None, observations from non-expressed genes are used to estimate its value.
**kwargs
Keyword args for :meth:`scvi.model.base.DifferentialComputation.get_bayes_factors`
Returns
-------
Differential expression DataFrame.
"""
adata = self._validate_anndata(adata)
model_fn = partial(
self.get_neighbor_abundance,
return_numpy=True,
n_samples=5,
batch_size=batch_size,
return_mean=False,
neighbor_key=neighbor_key,
)
representation_fn = self.get_latent_representation if filter_outlier_cells else None
result = _de_core(
adata_manager=self.get_anndata_manager(adata, required=True),
model_fn=model_fn,
representation_fn=representation_fn,
groupby=groupby,
group1=group1,
group2=group2,
idx1=idx1,
idx2=idx2,
subset_idx=subset_idx,
all_stats=False,
all_stats_fn=scrna_raw_counts_properties,
col_names=self._label_mapping[:-1],
mode=mode,
batchid1=None,
batchid2=None,
delta=delta,
batch_correction=False,
fdr=fdr_target,
silent=silent,
pseudocounts=pseudocounts,
**kwargs,
)
return result
def predict(
self,
adata: AnnData | None = None,
indices: Sequence[int] | None = None,
soft: bool = False,
batch_size: int | None = 500,
num_samples: int | None = 30,
) -> np.ndarray | pd.DataFrame:
"""
Return cell label predictions.
Parameters
----------
adata
AnnData object that has been registered via :meth:`~scvi.model.SCANVI.setup_anndata`.
indices
Subsample AnnData to these indices.
soft
If True, returns per class probabilities
batch_size
Minibatch size for data loading into model. Defaults to `scvi.settings.batch_size`.
num_samples
Samples to draw from the posterior for cell-type prediction.
"""
adata = self._validate_anndata(adata)
if indices is None:
indices = np.arange(adata.n_obs)
sampled_prediction = self.sample_posterior(
adata=adata,
indices=indices,
model=self.module.model_corrected,
return_sites=["probs_prediction"],
num_samples=num_samples,
return_samples=False,
batch_size=batch_size,
summary_frequency=10,
return_observed=True,
)
y_pred = sampled_prediction["post_sample_means"]["probs_prediction"]
if not soft:
y_pred = y_pred.argmax(axis=1)
predictions = [self._code_to_label[p] for p in y_pred]
return np.array(predictions)
else:
n_labels = len(y_pred[0])
predictions = pd.DataFrame(
y_pred,
columns=self._label_mapping[:n_labels],
index=adata.obs_names[indices],
)
return predictions
def _set_indices_and_labels(self):
"""Set indices for labeled and unlabeled cells."""
labels_state_registry = self.adata_manager.get_state_registry(REGISTRY_KEYS.LABELS_KEY)
self.original_label_key = labels_state_registry.original_key
self.unlabeled_category_ = labels_state_registry.unlabeled_category
labels = get_anndata_attribute(
self.adata,
self.adata_manager.data_registry.labels.attr_name,
self.original_label_key,
).ravel()
self._label_mapping = labels_state_registry.categorical_mapping
# set unlabeled and labeled indices
self._unlabeled_indices = np.argwhere(labels == self.unlabeled_category_).ravel()
self._labeled_indices = np.argwhere(labels != self.unlabeled_category_).ravel()
self._code_to_label = dict(enumerate(self._label_mapping))