forked from idiap/coqui-ai-TTS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_model.py
160 lines (131 loc) · 5.32 KB
/
load_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import contextlib
import functools
import hashlib
import logging
import os
import requests
import torch
import tqdm
from TTS.tts.layers.bark.model import GPT, GPTConfig
from TTS.tts.layers.bark.model_fine import FineGPT, FineGPTConfig
if (
torch.cuda.is_available()
and hasattr(torch.cuda, "amp")
and hasattr(torch.cuda.amp, "autocast")
and torch.cuda.is_bf16_supported()
):
autocast = functools.partial(torch.cuda.amp.autocast, dtype=torch.bfloat16)
else:
@contextlib.contextmanager
def autocast():
yield
# hold models in global scope to lazy load
logger = logging.getLogger(__name__)
if not hasattr(torch.nn.functional, "scaled_dot_product_attention"):
logger.warning(
"torch version does not support flash attention. You will get significantly faster"
+ " inference speed by upgrade torch to newest version / nightly."
)
def _md5(fname):
hash_md5 = hashlib.md5()
with open(fname, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
def _download(from_s3_path, to_local_path, CACHE_DIR):
os.makedirs(CACHE_DIR, exist_ok=True)
response = requests.get(from_s3_path, stream=True)
total_size_in_bytes = int(response.headers.get("content-length", 0))
block_size = 1024 # 1 Kibibyte
progress_bar = tqdm.tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True)
with open(to_local_path, "wb") as file:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
file.write(data)
progress_bar.close()
if total_size_in_bytes not in [0, progress_bar.n]:
raise ValueError("ERROR, something went wrong")
class InferenceContext:
def __init__(self, benchmark=False):
# we can't expect inputs to be the same length, so disable benchmarking by default
self._chosen_cudnn_benchmark = benchmark
self._cudnn_benchmark = None
def __enter__(self):
self._cudnn_benchmark = torch.backends.cudnn.benchmark
torch.backends.cudnn.benchmark = self._chosen_cudnn_benchmark
def __exit__(self, exc_type, exc_value, exc_traceback):
torch.backends.cudnn.benchmark = self._cudnn_benchmark
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
@contextlib.contextmanager
def inference_mode():
with InferenceContext(), torch.inference_mode(), torch.no_grad(), autocast():
yield
def clear_cuda_cache():
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
def load_model(ckpt_path, device, config, model_type="text"):
logger.info(f"loading {model_type} model from {ckpt_path}...")
if device == "cpu":
logger.warning("No GPU being used. Careful, Inference might be extremely slow!")
if model_type == "text":
ConfigClass = GPTConfig
ModelClass = GPT
elif model_type == "coarse":
ConfigClass = GPTConfig
ModelClass = GPT
elif model_type == "fine":
ConfigClass = FineGPTConfig
ModelClass = FineGPT
else:
raise NotImplementedError()
if (
not config.USE_SMALLER_MODELS
and os.path.exists(ckpt_path)
and _md5(ckpt_path) != config.REMOTE_MODEL_PATHS[model_type]["checksum"]
):
logger.warning(f"found outdated {model_type} model, removing...")
os.remove(ckpt_path)
if not os.path.exists(ckpt_path):
logger.info(f"{model_type} model not found, downloading...")
_download(config.REMOTE_MODEL_PATHS[model_type]["path"], ckpt_path, config.CACHE_DIR)
checkpoint = torch.load(ckpt_path, map_location=device, weights_only=True)
# this is a hack
model_args = checkpoint["model_args"]
if "input_vocab_size" not in model_args:
model_args["input_vocab_size"] = model_args["vocab_size"]
model_args["output_vocab_size"] = model_args["vocab_size"]
del model_args["vocab_size"]
gptconf = ConfigClass(**checkpoint["model_args"])
if model_type == "text":
config.semantic_config = gptconf
elif model_type == "coarse":
config.coarse_config = gptconf
elif model_type == "fine":
config.fine_config = gptconf
model = ModelClass(gptconf)
state_dict = checkpoint["model"]
# fixup checkpoint
unwanted_prefix = "_orig_mod."
for k, _ in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k)
extra_keys = set(state_dict.keys()) - set(model.state_dict().keys())
extra_keys = set(k for k in extra_keys if not k.endswith(".attn.bias"))
missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
missing_keys = set(k for k in missing_keys if not k.endswith(".attn.bias"))
if len(extra_keys) != 0:
raise ValueError(f"extra keys found: {extra_keys}")
if len(missing_keys) != 0:
raise ValueError(f"missing keys: {missing_keys}")
model.load_state_dict(state_dict, strict=False)
n_params = model.get_num_params()
val_loss = checkpoint["best_val_loss"].item()
logger.info(f"model loaded: {round(n_params/1e6,1)}M params, {round(val_loss,3)} loss")
model.eval()
model.to(device)
del checkpoint, state_dict
clear_cuda_cache()
return model, config