forked from idiap/coqui-ai-TTS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharch_utils.py
432 lines (369 loc) · 14.2 KB
/
arch_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import functools
import math
import fsspec
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import LogitsWarper
from TTS.tts.layers.tortoise.xtransformers import ContinuousTransformerWrapper, RelativePositionBias
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
class GroupNorm32(nn.GroupNorm):
def forward(self, x):
return super().forward(x.float()).type(x.dtype)
def normalization(channels):
"""
Make a standard normalization layer.
:param channels: number of input channels.
:return: an nn.Module for normalization.
"""
groups = 32
if channels <= 16:
groups = 8
elif channels <= 64:
groups = 16
while channels % groups != 0:
groups = int(groups / 2)
assert groups > 2
return GroupNorm32(groups, channels)
class QKVAttentionLegacy(nn.Module):
"""
A module which performs QKV attention. Matches legacy QKVAttention + input/output heads shaping
"""
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv, mask=None, rel_pos=None):
"""
Apply QKV attention.
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = torch.einsum("bct,bcs->bts", q * scale, k * scale) # More stable with f16 than dividing afterwards
if rel_pos is not None:
weight = rel_pos(weight.reshape(bs, self.n_heads, weight.shape[-2], weight.shape[-1])).reshape(
bs * self.n_heads, weight.shape[-2], weight.shape[-1]
)
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
if mask is not None:
# The proper way to do this is to mask before the softmax using -inf, but that doesn't work properly on CPUs.
mask = mask.repeat(self.n_heads, 1).unsqueeze(1)
weight = weight * mask
a = torch.einsum("bts,bcs->bct", weight, v)
return a.reshape(bs, -1, length)
class AttentionBlock(nn.Module):
"""
An attention block that allows spatial positions to attend to each other.
Originally ported from here, but adapted to the N-d case.
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
"""
def __init__(
self,
channels,
num_heads=1,
num_head_channels=-1,
do_checkpoint=True,
relative_pos_embeddings=False,
):
super().__init__()
self.channels = channels
self.do_checkpoint = do_checkpoint
if num_head_channels == -1:
self.num_heads = num_heads
else:
assert (
channels % num_head_channels == 0
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
self.num_heads = channels // num_head_channels
self.norm = normalization(channels)
self.qkv = nn.Conv1d(channels, channels * 3, 1)
# split heads before split qkv
self.attention = QKVAttentionLegacy(self.num_heads)
self.proj_out = zero_module(nn.Conv1d(channels, channels, 1))
if relative_pos_embeddings:
self.relative_pos_embeddings = RelativePositionBias(
scale=(channels // self.num_heads) ** 0.5,
causal=False,
heads=num_heads,
num_buckets=32,
max_distance=64,
)
else:
self.relative_pos_embeddings = None
def forward(self, x, mask=None):
b, c, *spatial = x.shape
x = x.reshape(b, c, -1)
qkv = self.qkv(self.norm(x))
h = self.attention(qkv, mask, self.relative_pos_embeddings)
h = self.proj_out(h)
return (x + h).reshape(b, c, *spatial)
class Upsample(nn.Module):
"""
An upsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
"""
def __init__(self, channels, use_conv, out_channels=None, factor=4):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.factor = factor
if use_conv:
ksize = 5
pad = 2
self.conv = nn.Conv1d(self.channels, self.out_channels, ksize, padding=pad)
def forward(self, x):
assert x.shape[1] == self.channels
x = F.interpolate(x, scale_factor=self.factor, mode="nearest")
if self.use_conv:
x = self.conv(x)
return x
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
"""
def __init__(self, channels, use_conv, out_channels=None, factor=4, ksize=5, pad=2):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
stride = factor
if use_conv:
self.op = nn.Conv1d(self.channels, self.out_channels, ksize, stride=stride, padding=pad)
else:
assert self.channels == self.out_channels
self.op = nn.AvgPool1d(kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[1] == self.channels
return self.op(x)
class ResBlock(nn.Module):
def __init__(
self,
channels,
dropout,
out_channels=None,
use_conv=False,
use_scale_shift_norm=False,
up=False,
down=False,
kernel_size=3,
):
super().__init__()
self.channels = channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_scale_shift_norm = use_scale_shift_norm
padding = 1 if kernel_size == 3 else 2
self.in_layers = nn.Sequential(
normalization(channels),
nn.SiLU(),
nn.Conv1d(channels, self.out_channels, kernel_size, padding=padding),
)
self.updown = up or down
if up:
self.h_upd = Upsample(channels, False)
self.x_upd = Upsample(channels, False)
elif down:
self.h_upd = Downsample(channels, False)
self.x_upd = Downsample(channels, False)
else:
self.h_upd = self.x_upd = nn.Identity()
self.out_layers = nn.Sequential(
normalization(self.out_channels),
nn.SiLU(),
nn.Dropout(p=dropout),
zero_module(nn.Conv1d(self.out_channels, self.out_channels, kernel_size, padding=padding)),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
elif use_conv:
self.skip_connection = nn.Conv1d(channels, self.out_channels, kernel_size, padding=padding)
else:
self.skip_connection = nn.Conv1d(channels, self.out_channels, 1)
def forward(self, x):
if self.updown:
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
h = in_rest(x)
h = self.h_upd(h)
x = self.x_upd(x)
h = in_conv(h)
else:
h = self.in_layers(x)
h = self.out_layers(h)
return self.skip_connection(x) + h
class AudioMiniEncoder(nn.Module):
def __init__(
self,
spec_dim,
embedding_dim,
base_channels=128,
depth=2,
resnet_blocks=2,
attn_blocks=4,
num_attn_heads=4,
dropout=0,
downsample_factor=2,
kernel_size=3,
):
super().__init__()
self.init = nn.Sequential(nn.Conv1d(spec_dim, base_channels, 3, padding=1))
ch = base_channels
res = []
for l in range(depth):
for r in range(resnet_blocks):
res.append(ResBlock(ch, dropout, kernel_size=kernel_size))
res.append(Downsample(ch, use_conv=True, out_channels=ch * 2, factor=downsample_factor))
ch *= 2
self.res = nn.Sequential(*res)
self.final = nn.Sequential(normalization(ch), nn.SiLU(), nn.Conv1d(ch, embedding_dim, 1))
attn = []
for a in range(attn_blocks):
attn.append(
AttentionBlock(
embedding_dim,
num_attn_heads,
)
)
self.attn = nn.Sequential(*attn)
self.dim = embedding_dim
def forward(self, x):
h = self.init(x)
h = self.res(h)
h = self.final(h)
h = self.attn(h)
return h[:, :, 0]
DEFAULT_MEL_NORM_FILE = "https://coqui.gateway.scarf.sh/v0.14.1_models/mel_norms.pth"
class TorchMelSpectrogram(nn.Module):
def __init__(
self,
filter_length=1024,
hop_length=256,
win_length=1024,
n_mel_channels=80,
mel_fmin=0,
mel_fmax=8000,
sampling_rate=22050,
normalize=False,
mel_norm_file=DEFAULT_MEL_NORM_FILE,
):
super().__init__()
# These are the default tacotron values for the MEL spectrogram.
self.filter_length = filter_length
self.hop_length = hop_length
self.win_length = win_length
self.n_mel_channels = n_mel_channels
self.mel_fmin = mel_fmin
self.mel_fmax = mel_fmax
self.sampling_rate = sampling_rate
self.mel_stft = torchaudio.transforms.MelSpectrogram(
n_fft=self.filter_length,
hop_length=self.hop_length,
win_length=self.win_length,
power=2,
normalized=normalize,
sample_rate=self.sampling_rate,
f_min=self.mel_fmin,
f_max=self.mel_fmax,
n_mels=self.n_mel_channels,
norm="slaney",
)
self.mel_norm_file = mel_norm_file
if self.mel_norm_file is not None:
with fsspec.open(self.mel_norm_file) as f:
self.mel_norms = torch.load(f, weights_only=True)
else:
self.mel_norms = None
def forward(self, inp):
if (
len(inp.shape) == 3
): # Automatically squeeze out the channels dimension if it is present (assuming mono-audio)
inp = inp.squeeze(1)
assert len(inp.shape) == 2
self.mel_stft = self.mel_stft.to(inp.device)
mel = self.mel_stft(inp)
# Perform dynamic range compression
mel = torch.log(torch.clamp(mel, min=1e-5))
if self.mel_norms is not None:
self.mel_norms = self.mel_norms.to(mel.device)
mel = mel / self.mel_norms.unsqueeze(0).unsqueeze(-1)
return mel
class CheckpointedLayer(nn.Module):
"""
Wraps a module. When forward() is called, passes kwargs that require_grad through torch.checkpoint() and bypasses
checkpoint for all other args.
"""
def __init__(self, wrap):
super().__init__()
self.wrap = wrap
def forward(self, x, *args, **kwargs):
for k, v in kwargs.items():
assert not (isinstance(v, torch.Tensor) and v.requires_grad) # This would screw up checkpointing.
partial = functools.partial(self.wrap, **kwargs)
return partial(x, *args)
class CheckpointedXTransformerEncoder(nn.Module):
"""
Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid
to channels-last that XTransformer expects.
"""
def __init__(self, needs_permute=True, exit_permute=True, checkpoint=True, **xtransformer_kwargs):
super().__init__()
self.transformer = ContinuousTransformerWrapper(**xtransformer_kwargs)
self.needs_permute = needs_permute
self.exit_permute = exit_permute
if not checkpoint:
return
for i in range(len(self.transformer.attn_layers.layers)):
n, b, r = self.transformer.attn_layers.layers[i]
self.transformer.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r])
def forward(self, x, **kwargs):
if self.needs_permute:
x = x.permute(0, 2, 1)
h = self.transformer(x, **kwargs)
if self.exit_permute:
h = h.permute(0, 2, 1)
return h
class TypicalLogitsWarper(LogitsWarper):
def __init__(
self,
mass: float = 0.9,
filter_value: float = -float("Inf"),
min_tokens_to_keep: int = 1,
):
self.filter_value = filter_value
self.mass = mass
self.min_tokens_to_keep = min_tokens_to_keep
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# calculate entropy
normalized = torch.nn.functional.log_softmax(scores, dim=-1)
p = torch.exp(normalized)
ent = -(normalized * p).nansum(-1, keepdim=True)
# shift and sort
shifted_scores = torch.abs((-normalized) - ent)
sorted_scores, sorted_indices = torch.sort(shifted_scores, descending=False)
sorted_logits = scores.gather(-1, sorted_indices)
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
# Remove tokens with cumulative mass above the threshold
last_ind = (cumulative_probs < self.mass).sum(dim=1)
last_ind[last_ind < 0] = 0
sorted_indices_to_remove = sorted_scores > sorted_scores.gather(1, last_ind.view(-1, 1))
if self.min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores