-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproposal.tex
203 lines (169 loc) · 5.54 KB
/
proposal.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
%\documentclass{report}
\documentclass[nobib]{tufte-book}
\usepackage{standalone}
\usepackage{calc}
%\usepackage[bookmarks=true]{hyperref}
% symbols
\usepackage{amsmath} % assumes amsmath package installed
\usepackage{amssymb} % for \square
% non-italicized math subscripts
\newcommand{\ms}[1]{\mbox{\scriptsize #1}}
% from http://tex.stackexchange.com/a/5255
\DeclareMathOperator*{\argmin}{arg\,min}
% algorithm stuff
\usepackage{algorithm}
\usepackage[noend]{algpseudocode}
\usepackage{array}
\usepackage{graphicx}
%\usepackage{subcaption}
\usepackage[caption=false]{subfig} %[caption=false]
\usepackage{float} % for side-by-side figures?
% http://tex.stackexchange.com/a/95357
\usepackage{setspace}
\floatstyle{plain}
\newfloat{genericfloat}{h}{gflt}
\usepackage{tikz}
\usetikzlibrary{arrows,backgrounds,calc,patterns,positioning,shapes,decorations.pathmorphing}
% plots
\usepackage{pgfplots}
% pretty tables
\usepackage{multirow}
\usepackage{booktabs}
% custom title page
\usepackage{titling}
% for adjustwidth
\usepackage{changepage}
% include \paragraph as numbered
\setcounter{secnumdepth}{3}
\setcounter{tocdepth}{1} % 3
%\def\hidenotes{}
% list of commenters
\newcommand{\ssnote}[1]{{\xxnote{SS}{red}{#1}}}
\newcommand{\cdnote}[1]{{\xxnote{CD}{blue}{#1}}}
\newcommand{\mknote}[1]{{\xxnote{MK}{green}{#1}}}
% implement conditional notes (turn on/off with \hidenotes above)
\newcommand{\xxnote}[3]{}
\ifx\hidenotes\undefined
\usepackage{color}
\renewcommand{\xxnote}[3]{\color{#2}{#1: #3}}
\fi
% wide page for side by side figures, tables, etc
% see http://tex.stackexchange.com/a/154766
\newlength{\offsetpage}
\setlength{\offsetpage}{1.5in}
\newenvironment{widepage}
{\begin{adjustwidth}{-\offsetpage}{-\offsetpage}%
\addtolength{\textwidth}{2\offsetpage}}%
{\end{adjustwidth}}
% theorems
\newtheorem{invariant}{Invariant}
\newtheorem{theorem}{Theorem}
\newtheorem{proposition}{Proposition}
\newtheorem{lemma}{Lemma}
% from http://www.maths.tcd.ie/~dwilkins/LaTeXPrimer/Theorems.html
\newenvironment{proof}[1][Proof]{\begin{trivlist}
\item[\hskip \labelsep {\bfseries #1}]}{\hfill$\square$\end{trivlist}}
\title{Efficient Manipulation Task Planning via\\
Reuse-Informed Optimization of Planning Effort}
\author{Christopher M. Dellin}
%\date{\today}
\date{March 31, 2015}
\renewcommand{\maketitlehooka}{
\begin{fullwidth}
}
\renewcommand{\maketitlehookd}{
\begin{center}
\vspace{0.7in}
The Robotics Institute\\
Carnegie Mellon University\\
Pittsburgh, PA 15213\\
\vspace{0.7in}
\textbf{Thesis Committee:}\\
Siddhartha Srinivasa, CMU RI (Chair)\\
Anthony Stentz, CMU RI\\
Maxim Likhachev, CMU RI\\
Lydia Kavraki, Rice University\\
%\vspace{0.7in}
%\emph{Submitted in partial fulfillment of the requirements\\
%for the degree of Doctor of Philosophy.}
\end{center}
\end{fullwidth}
}
\begin{document}
\maketitle
%\begin{abstract}
\begin{fullwidth}
\begin{adjustwidth}{1in}{1in}
{\LARGE \emph{Abstract}}
\vspace{0.2in}
In order to assist humans
with dangerous or menial tasks,
autonomous robots will need to
act under significant time and energy constraints.
At task time,
the amount of effort a robot spends planning directly
detracts from its total performance.
Manipulation tasks, however, present challenges
to efficient motion planning.
They are often tightly coupled --
while moving an object can be decomposed into
steps (reach, grasp, transfer, release),
each step requires choices (e.g. which grasp),
and committing to a bad choice
can render subsequent steps difficult;
this encourages longer planning horizons.
However,
an articulated robot
situated within a geometrically complex and dynamic environment
induces a high-dimensional configuration space
in which it is expensive to test for valid paths.
And since multi-step plans
require paths in changing valid subsets of configuration space,
it is difficult to reuse computation across steps
or maintain caches between tasks.
We focus on a motion planning approach for coupled multi-step
manipulation problems that is efficient over the entire task
(including both planning and execution).
We contend that the problem's cost structure
favors explicit handling of
both graph representation and task effort optimization,
and propose a graph search algorithm which captures these insights
given a model of planning effort.
We offer methods for roadmap construction
which seek to balance completeness with efficiency at task time.
We then unify previous work examining configuration space structure of
related problems (e.g. multi-step manipulation)
into a general set-theoretic formulation
which suggests a planning effort model
to be exploited by our roadmap search algorithm,
yielding a motion planner which
efficiently reuses computation between queries.
We also present a task planner
that maps a task decomposition into queries to our motion planner.
Our insights yield complementary components
which, taken together,
constitute an efficient approach to planning manipulation tasks.
This thesis proposes a heavy emphasis on experimental evaluation
of the individual constituent algorithms
and the approach as a whole.
We will compare against
state-of-the-art task and motion planners
on multiple robotic platforms,
in applications from home table clearing
to remote disaster response.
We also provide open-source implementations of our algorithms.
\end{adjustwidth}
\end{fullwidth}
%\end{abstract}
\tableofcontents
\include{proposal-intro}
\include{proposal-framework}
\include{proposal-summary}
%{\small
%\bibliographystyle{abbrv}
%\bibliography{pr-refs}
%}
\bibliographystyle{abbrv}
\bibliography{references}
%\doccmddef{bibliography}
\end{document}