-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproptalk-act2.tex
981 lines (818 loc) · 38.2 KB
/
proptalk-act2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
\begin{frame}
\frametitle{Part 2: Reusing Computation Between Steps}
\begin{tikzpicture}
\draw[step=1,black!15,very thin,opacity=\gridopacity] (0,0) grid (12,8);
% figure adapted from proposal doc
\begin{scope}[font=\scriptsize,shift={(1.5,6.25)}]
% root sets
\node[draw,black,rounded corners,minimum height=1.5cm,minimum width=1cm]
(Xgrasp) at (3,0) {};
\node[above=0cm of Xgrasp] {Grasp};
\node[draw,black,rounded corners,minimum height=1.5cm,minimum width=1cm]
(Xdrop) at (6,0) {};
\node[above=0cm of Xdrop] {Place};
% nodes
\node[circle,fill=black,inner sep=2] (xstart) at (0,0) {};
\node[above=0.1cm of xstart] {$q_{\mbox{\scriptsize start}}$};
% grasp choices
\node[circle,fill=black,inner sep=2] (xg1) at (2.8,0.5) {};
\node[circle,fill=black,inner sep=2] (xg2) at (3.1,0.1) {};
\node[circle,fill=black,inner sep=2] (xg3) at (2.9,-0.5) {};
% place choices
\node[circle,fill=black,inner sep=2] (xd1) at (5.9,0.3) {};
\node[circle,fill=black,inner sep=2] (xd2) at (6.0,-0.4) {};
% xend
\node[circle,fill=black,inner sep=2] (xend) at (9,0) {};
\node[above=0.1cm of xend] {$q_{\mbox{\scriptsize end}}$};
\draw[line width=1.5mm,white]
(xstart) .. controls (1,0.2) and (1.4,0.9) .. (xg1);
\draw[line width=1.5mm,white]
(xstart) .. controls (1.5,0.2) .. (xg2);
\draw[line width=1.5mm,white]
(xstart) .. controls (1.8,-0.6) and (1.6,-0.8) .. (xg3);
\draw
(xstart) .. controls (1,0.2) and (1.4,0.9) .. (xg1);
\draw
(xstart) .. controls (1.5,0.2) .. (xg2);
\draw
(xstart) .. controls (1.8,-0.6) and (1.6,-0.8) .. (xg3);
\draw[line width=1.5mm,white]
(xg1) -- (4.7,0.6);
\draw
(xg1) -- (4.7,0.6);
\draw[line width=1.5mm,white]
(xg2) .. controls (4.5,1) and (3.5,-1.2) .. (4.5,-0.4)
.. controls (5.5,0.5) and (5.0,-1.3) .. (xd2);
\draw
(xg2) .. controls (4.5,1) and (3.5,-1.2) .. (4.5,-0.4)
.. controls (5.5,0.5) and (5.0,-1.3) .. (xd2);
\draw[line width=1.5mm,white]
(xg3) .. controls (4.3, 0.2) and (4.5,-0.2) .. (xd1);
\draw
(xg3) .. controls (4.3, 0.2) and (4.5,-0.2) .. (xd1);
% in s3
\draw[line width=1.5mm,white]
(xd1) .. controls (8,0.3) and (8,0.1) .. (xend);
\draw
(xd1) .. controls (8,0.3) and (8,0.1) .. (xend);
\node[fill,black,rounded corners,minimum height=1.5cm,minimum width=1cm,
opacity=0.1] at (3,0) {};
\node[fill,black,rounded corners,minimum height=1.5cm,minimum width=1cm,
opacity=0.1] at (6,0) {};
\end{scope}
\fill[green!20] (0.1,3.1) rectangle (11.9,3.7);
\node[anchor=north] at (6,5) {\begin{minipage}{11.5cm}
Planning for manipulation tasks poses three challenges:
\begin{itemize}
\item Challenge 1: Capturing the planning/execution tradeoff..
\item Challenge 2: Incongruent steps impede reuse.
\item Challenge 3: Coupled steps require long planning horizons.
\end{itemize}
\end{minipage}};
\end{tikzpicture}
\end{frame}
\begin{frame}
\frametitle{Motivation: Structure of Manipulation Problems}
\includegraphics[width=\textwidth]{figs/fridge-intro.png}
\end{frame}
\begin{frame}
\frametitle{Motivation: 2D Example}
\begin{tikzpicture}
\draw[step=1,black!15,very thin,opacity=\gridopacity] (0,0) grid (12,8);
\node[inner sep=0] at (5.5,4.75) {
\includegraphics[width=5cm]{figs/alami-intro.png}
};
\node[inner sep=0pt] at (6,0.5) {\begin{minipage}{7.75cm}\scriptsize{
$^\dag$\PaperPortrait\; Alami, Simeon, and Laumond,
``A Geometrical Approach to Planning Manipulation Tasks,'' ISRR 1990.
}\end{minipage}};
\end{tikzpicture}
\end{frame}
\begin{frame}
\frametitle{Motivation: 2D Example}
\begin{tikzpicture}
\draw[step=1,black!15,very thin,opacity=\gridopacity] (0,0) grid (12,8);
\node[inner sep=0] at (5.5,6.75) {
\includegraphics[width=5cm]{figs/alami-intro.png}
};
\node[inner sep=0] at (0.75,4.25) {\includegraphics[width=1cm]{figs/alami-transit-1.png}};
\node[inner sep=0] at (0.75,3.6) {\includegraphics[width=1cm]{figs/alami-intersection.png}};
\node[inner sep=0] at (0.75,2.95) {\includegraphics[width=1cm]{figs/alami-transit-4.png}};
\node[inner sep=0] at (0.75,2.3) {\includegraphics[width=1cm]{figs/alami-transit-3.png}};
\node[inner sep=0] at (0.75,1.65) {\includegraphics[width=1cm]{figs/alami-transit-2.png}};
\node at (3.25,4.9) {Transit Slice:};
\node[inner sep=0] at (3.5,3.5) {%
\only<1>{\includegraphics[width=4cm]{figs/alami-intersection.png}}%
\only<2>{\includegraphics[width=4cm]{figs/alami-transit-1.png}}%
\only<3>{\includegraphics[width=4cm]{figs/alami-intersection.png}}%
\only<4>{\includegraphics[width=4cm]{figs/alami-transit-4.png}}%
\only<5>{\includegraphics[width=4cm]{figs/alami-transit-3.png}}%
\only<6>{\includegraphics[width=4cm]{figs/alami-transit-2.png}}%
\only<7->{\includegraphics[width=4cm]{figs/alami-intersection.png}}%
};
\node[inner sep=0] at (3.5,1.25) {
\includegraphics[width=4cm]{figs/alami-transit-slice.png}
};
\node[inner sep=0] at (11.25,4.25) {\includegraphics[width=1cm]{figs/alami-transfer-1.png}};
\node[inner sep=0] at (11.25,3.6) {\includegraphics[width=1cm]{figs/alami-intersection.png}};
\node[inner sep=0] at (11.25,2.95) {\includegraphics[width=1cm]{figs/alami-transfer-2.png}};
\node at (8.75,4.9) {Transfer Slice:};
\node[inner sep=0] at (8.5,3.5) {%
\only<-7>{\includegraphics[width=4cm]{figs/alami-intersection.png}}%
\only<8>{\includegraphics[width=4cm]{figs/alami-transfer-1.png}}%
\only<9>{\includegraphics[width=4cm]{figs/alami-intersection.png}}%
\only<10>{\includegraphics[width=4cm]{figs/alami-transfer-2.png}}%
\only<11>{\includegraphics[width=4cm]{figs/alami-intersection.png}}%
};
\node[inner sep=0] at (8.5,1.25) {
\includegraphics[width=4cm]{figs/alami-transfer-slice.png}
};
\end{tikzpicture}
\end{frame}
\begin{frame}
\frametitle{Motivation: 2D Example}
\begin{tikzpicture}
\draw[step=1,black!15,very thin,opacity=\gridopacity] (0,0) grid (12,8);
\node[inner sep=0pt] at (6,7) {\begin{minipage}{11.5cm}\centering
After every grasp and release,
the projection of the current manifold of $\Pi\mathcal{C}$ onto
$\mathcal{C}_{\ms{R}}$ changes!
\end{minipage}};
\node[inner sep=0] at ( 1.50,5.5) {\includegraphics[width=2cm]{figs/alami-slice-01.png}};
\node[inner sep=0] at ( 3.75,5.5) {\includegraphics[width=2cm]{figs/alami-slice-02.png}};
\node[inner sep=0] at ( 6.00,5.5) {\includegraphics[width=2cm]{figs/alami-slice-03.png}};
\node[inner sep=0] at ( 8.25,5.5) {\includegraphics[width=2cm]{figs/alami-slice-04.png}};
\node[inner sep=0] at (10.50,5.5) {\includegraphics[width=2cm]{figs/alami-slice-05.png}};
\node[inner sep=0] at ( 1.50,4.0) {\includegraphics[width=2cm]{figs/alami-slice-06.png}};
\node[inner sep=0] at ( 3.75,4.0) {\includegraphics[width=2cm]{figs/alami-slice-07.png}};
\node[inner sep=0] at ( 6.00,4.0) {\includegraphics[width=2cm]{figs/alami-slice-08.png}};
\node[inner sep=0] at ( 8.25,4.0) {\includegraphics[width=2cm]{figs/alami-slice-09.png}};
\node[inner sep=0] at (10.50,4.0) {\includegraphics[width=2cm]{figs/alami-slice-10.png}};
\node[inner sep=0pt] at (6,2.5) {\begin{minipage}{11.5cm}\centering
Do we need to build a separate roadmap in each slice?
\end{minipage}};
\end{tikzpicture}
\end{frame}
\begin{frame}
\frametitle{Manipulation Example}
\begin{tikzpicture}
\draw[step=1,black!15,very thin,opacity=\gridopacity] (0,0) grid (12,8);
\node at (3,6.5) {\includegraphics[width=4.5cm]{build/example-2d-q1}};
\only<3->{
\node[inner sep=0pt] at (9,7) {\begin{minipage}{5.5cm}\centering
Query C-Space Subsets:
$S_{12} \subseteq \mathcal{C}$
$S_{23} \subseteq \mathcal{C}$
\end{minipage}};
}
\only<3>{
\node at (9,5.25) {\includegraphics[width=4.5cm]{build/example-2d-s12}};
}
\only<4->{
\node at (9,5.25) {\includegraphics[width=4.5cm]{build/example-2d-s12-wtraj}};
}
\only<5->{
\node at (3,4) {\includegraphics[width=4.5cm]{build/example-2d-b}};
}
\only<6>{
\node at (9,2.75) {\includegraphics[width=4.5cm]{build/example-2d-s23}};
}
\only<7->{
\node at (9,2.75) {\includegraphics[width=4.5cm]{build/example-2d-s23-wtraj}};
}
\only<2->{
\node at (3,1.5) {\includegraphics[width=4.5cm]{build/example-2d-q3}};
}
\end{tikzpicture}
\end{frame}
\begin{frame}
\frametitle{Manipulation Example}
\begin{tikzpicture}
\draw[step=1,black!15,very thin,opacity=\gridopacity] (0,0) grid (12,8);
\node at (3,6.5) {\includegraphics[width=4.5cm]{build/example-2d-q1}};
\node at (3,4) {\includegraphics[width=4.5cm]{build/example-2d-b}};
\node at (3,1.5) {\includegraphics[width=4.5cm]{build/example-2d-q3}};
\node at (9,4) {\includegraphics{build/figstar-a-qlabeled}};
\end{tikzpicture}
\end{frame}
\begin{frame}
\frametitle{Workspace Decompositions to C-Space Relations}
\begin{tikzpicture}
\draw[step=1,black!15,very thin,opacity=\gridopacity] (0,0) grid (12,8);
\node[draw,align=center] at (2,6.75) {Workspace\\obstacle\\$W_X$};
\draw[->,line width=1pt] (3.25,6.75) -- (4.25,6.75);
\node[align=center] at (6,6.75) {C-Space\\Transforms};
\draw[->,line width=1pt] (7.75,6.75) -- (8.75,6.75);
\node[draw,align=center] at (10,6.75) {Valid (free)\\$\mathcal{C}$-subset\\$S_X$};
% procedure itself
\only<2->{
\node[fill=blue!20,rounded corners,anchor=north] at (6,5.5) {\begin{minipage}{5cm}\small{
{\bf C-Space Set Union Property}$^\dag$
{\bf If} $W_A = W_B \cup W_C$,
{\bf Then} $S_A = S_B \cap S_C$.
}\end{minipage}};
\node[inner sep=0pt] at (6,0.5) {\begin{minipage}{10.5cm}\scriptsize{
$^\dag$\PaperPortrait\; W. S. Newman and M. S. Branicky.
``Real-time configuration space transforms for obstacle avoidance.''
The International Journal of Robotics Research, 1991.
}\end{minipage}};
}
\only<3->{
\node[fill=blue!20,rounded corners,anchor=north] at (6,3.5) {\begin{minipage}{7cm}\small{
{\bf Example Workspace Decomposition}
{\bf Given} $W_{12}$ {\bf and} $W_{23}$,
{\bf Compute any} $W_C \subseteq W_{12} \cap W_{23}$
{\bf Let} $W_A = W_{12} \setminus W_I$ {\bf and} $W_B = W_{23} \setminus W_I$
{\bf Then} $S_{12} = S_C \cap S_A$ {\bf and} $S_{23} = S_C \cap S_B$
}\end{minipage}};
}
\end{tikzpicture}
\end{frame}
\begin{frame}
\frametitle{Manipulation Example}
\begin{tikzpicture}
\draw[step=1,black!15,very thin,opacity=\gridopacity] (0,0) grid (12,8);
\node[font=\small,anchor=east] at (5.25,6.25) {${\hat p}_{12}(q) = 6$};
\node at (3,5.25) {\includegraphics[width=4.5cm]{build/example-2d-s12}};
\node[font=\small,anchor=east] at (5.25,3.75) {${\hat p}_{23}(q) = 6$};
\node at (3,2.75) {\includegraphics[width=4.5cm]{build/example-2d-s23}};
\only<3->{
\node[font=\small,anchor=east] at (11.25,7.5) {${\hat p}_A(q) = 2$};
\node at (9,6.5) {\includegraphics[width=4.5cm]{build/example-2d-sa}};
}
\only<2->{
\node[font=\small,anchor=east] at (11.25,5.0) {${\hat p}_C(q) = 4$};
\node at (9,4.0) {\includegraphics[width=4.5cm]{build/example-2d-sc}};
}
\only<4->{
\node[font=\small,anchor=east] at (11.25,2.5) {${\hat p}_B(q) = 2$};
\node at (9,1.5) {\includegraphics[width=4.5cm]{build/example-2d-sb}};
}
\end{tikzpicture}
\end{frame}
\begin{frame}
\frametitle{Manipulation Example}
\begin{tikzpicture}
\draw[step=1,black!15,very thin,opacity=\gridopacity] (0,0) grid (12,8);
\only<1-2>{\node at (9,3.5) {\includegraphics{build/figstar-wo-abc}};}
% left
\only<1>{
\node[font=\small,anchor=east] at (5.25,6.25) {${\hat p}_{12}(q) = 6$};
\node at (3,5.25) {\includegraphics[width=4.5cm]{build/example-2d-s12}};
\node[font=\small,anchor=east] at (5.25,3.75) {${\hat p}_{23}(q) = 6$};
\node at (3,2.75) {\includegraphics[width=4.5cm]{build/example-2d-s23}};
}
\only<2-3>{
\node[inner sep=0pt] at (3,7.35) {\begin{minipage}{6cm}\centering\small
$W_{12} = W_C \cup W_A$
$W_{23} = W_C \cup W_B$
\end{minipage}};
\node[font=\small,anchor=east] at (5.25,6.50) {${\hat p}_A(q) = 2$};
\node at (3,5.50) {\includegraphics[width=4.5cm]{build/example-2d-sa}};
\node[font=\small,anchor=east] at (5.25,4.25) {${\hat p}_C(q) = 4$};
\node at (3,3.25) {\includegraphics[width=4.5cm]{build/example-2d-sc}};
\node[font=\small,anchor=east] at (5.25,2.00) {${\hat p}_B(q) = 2$};
\node at (3,1.00) {\includegraphics[width=4.5cm]{build/example-2d-sb}};
}
% right
\only<3->{
\node[inner sep=0pt] at (9,6.75) {\begin{minipage}{6cm}\centering\small
$S_{12} = S_C \cap S_A$
$S_{23} = S_C \cap S_B$
\end{minipage}};
\only<3>{\node at (9,3.5) {\includegraphics{build/figstar-w-abc}};}
\only<4>{\node at (9,3.5) {\includegraphics{build/figstar-traj1}};}
\only<5>{\node at (9,3.5) {\includegraphics{build/figstar-traj1-inc}};}
}
% left again
\only<4->{
\node at (3,5.25) {\includegraphics[width=4.5cm]{build/example-2d-s12-wtraj}};
}
\only<5->{
\node at (3,2.75) {\includegraphics[width=4.5cm]{build/example-2d-s23-wtraj}};
}
\end{tikzpicture}
\end{frame}
\begin{frame}
\frametitle{Multi-Set Planning Formulation}
\begin{tikzpicture}
\draw[step=1,black!15,very thin,opacity=\gridopacity] (0,0) grid (12,8);
% right side
\node[inner sep=0pt] at (9,6.75) {\begin{minipage}{6cm}\centering\small
$S_{12} = S_C \cap S_A$
$S_{23} = S_C \cap S_B$
\end{minipage}};
\node at (9,3.5) {\includegraphics{build/figstar-w-abc}};
\node[fill=blue!20,rounded corners] at (3,5.5)
{\begin{minipage}{5cm}
{\setlength{\tabcolsep}{2pt}
\begin{tabular}{ccl}
$\mathcal{C}$ &:& common C-space \\
\noalign{\medskip}
$\mathcal{F}$ &:& family of subsets over $\mathcal{C}$ \\
& & that is, $S \subseteq \mathcal{C} \;\forall\; S \in \mathcal{F}$ \\
\noalign{\medskip}
$\mathcal{R}$ &:& set of subset relations \\
& & e.g. $S_A = S_B \cap S_C$ \\
\noalign{\medskip}
$\mathcal{U}$ &:& set of planning queries \\
& & e.g. $u = (q_{\ms{init}}, q_{\ms{goal}}, S_u)$ \\
\end{tabular}}
\end{minipage}};
\node[fill=blue!20,rounded corners] at (3,2)
{\begin{minipage}{5cm}
Validity checking model:
{\setlength{\tabcolsep}{2pt}
\begin{tabular}{ccl}
${\bf 1}_A(\cdot)$ &:& indicator for $S_A$ \\
$p_A(\cdot)$ &:& cost to evaluate ${\bf 1}_A(\cdot)$ \\
\end{tabular}}
\end{minipage}};
\end{tikzpicture}
\end{frame}
\begin{frame}
\frametitle{Instances of Multi-Set Problems in Manipulation}
\begin{tikzpicture}
\draw[step=1,black!15,very thin,opacity=\gridopacity] (0,0) grid (12,8);
\node[anchor=north,fill=black!15,rounded corners]
at (6,7.5) {\begin{minipage}{11.5cm}
\begin{itemize}
\item Dynamic environments
\item Grasped objects
\item Workcell decomposition
\item Self-collision checking
\item Padded robots
\item Multi-fidelity geometric models
\end{itemize}
\end{minipage}};
\end{tikzpicture}
\end{frame}
\begin{frame}
\frametitle{Instances of Multi-Set Problems: Intersections}
\begin{tikzpicture}
\draw[step=1,black!15,very thin,opacity=\gridopacity] (0,0) grid (12,8);
\node[inner sep=0pt] at (6,6.25) {%
\only<5>{\includegraphics[height=3cm]{build/multiset-manip-instances,dyna}}%
\only<6>{\includegraphics[height=3cm]{build/multiset-manip-instances,dynb}}%
\only<1-4,7>{\includegraphics[height=3cm]{build/multiset-manip-instances,dync}}%
};
\only<2->{
\node[font=\scriptsize] at (2,4.25) {Dynamic Environments};
\node[draw,rounded corners,inner ysep=1pt] at (2,2.25)
{
\only<1-5>{\includegraphics[height=3.5cm]{figs/herb-fridge-sets-b.png}}%
\only<6>{\includegraphics[height=3.5cm]{figs/herb-fridge-sets-a.png}}%
\only<7>{\includegraphics[height=3.5cm]{figs/herb-fridge-sets-b.png}}%
};
\node at (2,0) {\begin{minipage}{3.7cm}\tiny{
\PaperPortrait\; Jaillet, Simeon.
A PRM-based motion planner for dynamically changing environments.
IROS 2004.
}\end{minipage}};
}
\only<3->{
\node[font=\scriptsize] at (6,4.25) {Grasped Objects};
\node[draw,rounded corners,inner ysep=1pt] at (6,2.25) {%
\only<1-5>{\includegraphics[height=3.5cm]{figs/herb-fridge-sets-c.png}}%
\only<6>{\includegraphics[height=3.5cm]{figs/herb-fridge-sets-a.png}}%
\only<7>{\includegraphics[height=3.5cm]{figs/herb-fridge-sets-c.png}}%
};
\node at (6,0) {\begin{minipage}{3.7cm}\tiny{
\PaperPortrait\; Garrett, Lozano-P\'{e}rez, Kaelbling.
FFRob: An efficient heuristic for task and motion planning.
WAFR 2014.
}\end{minipage}};
}
\only<4->{
\node[font=\scriptsize] at (10,4.25) {Self-Collision Checking};
\node[draw,rounded corners,inner ysep=1pt] at (10,2.25) {%
\only<1-5>{\includegraphics[height=3.5cm]{figs/herb-fridge-sets-a.png}}%
\only<6>{\includegraphics[height=3.5cm]{figs/herb-fridge-sets-d.png}}%
\only<7>{\includegraphics[height=3.5cm]{figs/herb-fridge-sets-a.png}}%
};
\node at (10,0) {\begin{minipage}{3.7cm}\tiny{
\PaperPortrait\; Leven, Hutchinson.
Toward real-time path planning in changing environments.
WAFR 2000.
}\end{minipage}};
}
\end{tikzpicture}
\end{frame}
\begin{frame}
\frametitle{Instances of Multi-Set Problems: Inclusions}
\begin{tikzpicture}
\draw[step=1,black!15,very thin,opacity=\gridopacity] (0,0) grid (12,8);
\node[inner sep=0pt] at (6,6.25) {%
\only<5>{\includegraphics[height=3cm]{build/multiset-manip-instances-blob,outside}}%
\only<1-3,4,6>{\includegraphics[height=3cm]{build/multiset-manip-instances-blob,inside}}%
};
\only<2->{
\node[font=\scriptsize] at (2,4.25) {Conservative Objs. Volumes};
\node[draw,rounded corners,inner ysep=1pt] at (2,2.25)
{
\only<5>{\includegraphics[height=3.5cm]{figs/herb-fridge-sets-h.png}}%
\only<1-4,6>{\includegraphics[height=3.5cm]{figs/herb-fridge-sets-e.png}}%
};
%\node at (2,0) {\begin{minipage}{3.7cm}\tiny{
% \PaperPortrait\; Leven, Hutchinson.
% Toward real-time path planning in changing environments.
% WAFR 2000.
%}\end{minipage}};
}
\only<3->{
\node[font=\scriptsize] at (6,4.25) {Conservative Grasped Objs.};
\node[draw,rounded corners,inner ysep=1pt] at (6,2.25) {%
\only<5>{\includegraphics[height=3.5cm]{figs/herb-fridge-sets-c.png}}%
\only<1-4,6>{\includegraphics[height=3.5cm]{figs/herb-fridge-sets-i.png}}%
};
%\node at (6,0) {\begin{minipage}{3.7cm}\tiny{
% \PaperPortrait\; Garrett, Lozano-P\'{e}rez, Kaelbling.
% Ffrob: An efficient heuristic for task and motion planning.
% WAFR 2014.
%}\end{minipage}};
}
\only<4->{
\node[font=\scriptsize] at (10,4.25) {Conservative Robot Models};
\node[draw,rounded corners,inner ysep=1pt] at (10,2.25) {%
\only<5>{\includegraphics[height=3.5cm]{figs/herb-fridge-sets-j.png}}%
\only<1-4,6->{\includegraphics[height=3.5cm]{figs/herb-fridge-sets-k.png}}%
};
%\node at (10,0) {\begin{minipage}{3.7cm}\tiny{
% \PaperPortrait\; Leven, Hutchinson.
% Toward real-time path planning in changing environments.
% WAFR 2000.
%}\end{minipage}};
}
\end{tikzpicture}
\end{frame}
\begin{frame}
\frametitle{Instances of Multi-Set Problems in Manipulation}
\begin{tikzpicture}
\draw[step=1,black!15,very thin,opacity=\gridopacity] (0,0) grid (12,8);
\node[anchor=north,fill=black!15,rounded corners]
at (6,7.5) {\begin{minipage}{11.5cm}
\begin{itemize}
\item Dynamic environments
\item Grasped objects
\item Workcell decomposition
\item Self-collision checking
\item Padded robots
\item Multi-fidelity geometric models
\end{itemize}
\end{minipage}};
\only<2->{
\node[fill=blue!20,rounded corners,anchor=north]
at (6,3.5) {\begin{minipage}{9.5cm}
{\bf Research Question Q3:}
\smallskip
Perform a comprehensive literature survey to identify
and classify instances of multi-set motion planning.
\smallskip
Also characterize other approaches to caching and
relating similar problems that cannot be represented
as a multi-set problem.
\end{minipage}};
}
\end{tikzpicture}
\end{frame}
\begin{frame}
\frametitle{Applying the E$^8$-PRM to the Multi-Set Problem}
\begin{tikzpicture}
\draw[step=1,black!15,very thin,opacity=\gridopacity] (0,0) grid (12,8);
\node[fill=blue!20,align=center,rounded corners,
inner sep=5pt] at (1.5,5.3) {
Propositional\\
Logic Solver
};
\draw[<->,line width=1pt] (2.8,5.3) -- (3.3,5.3);
\node[shape=document,draw,inner sep=0.25cm,align=center,
font=\small,anchor=south] at (5,4.5) {
Multi-Set\\
ensemble effort\\
model $\mathcal{M}_{\ms{multi}}$};
\node[anchor=south,shape=document,draw,align=center]
at (9,4.5) {
Graph G\\
\includegraphics[width=2.5cm]{build/roadmap-2d-simple}
%\includegraphics[width=2.5cm]{build/talk-act1-2d,graph}
};
\draw[->,line width=1pt] (6.3,4.4) -- (6.3,3.9);
\draw[->,line width=1pt] (7.8,4.4) -- (7.8,3.9);
\node[fill=blue!20,minimum height=1.5cm,minimum width=2.5cm,
align=center,rounded corners,inner ysep=0.7cm]
at (7,2.5) {
E$^8$-PRM\\
\small{$\min
\left[ (1 - \lambda) \hat{f}_x + \lambda \hat{f}_p \right]$}
};
\node[shape=document,draw,align=center,inner xsep=10pt]
at (2.4,3) {
Query $V_{s1}$, $V_{g1}$, $\lambda_1$
};
\draw[->,line width=1pt] (4.5,3) -- (5.0,3);
\draw[->,line width=1pt] (9,3) -- (9.5,3);
\node[shape=document,draw,align=center,inner xsep=5pt]
at (10.1,3) {$\pi^*_1$\;\;};
\node[shape=document,draw,align=center,inner xsep=10pt]
at (2.4,2) {
Query $V_{s2}$, $V_{g2}$, $\lambda_2$
};
\draw[->,line width=1pt] (4.5,2) -- (5.0,2);
\draw[->,line width=1pt] (9,2) -- (9.5,2);
\node[shape=document,draw,align=center,inner xsep=5pt]
at (10.1,2) {$\pi^*_2$\;\;};
\node[inner sep=0pt] at (6,0.5) {\begin{minipage}{11.5cm}\centering
This is the Multi-Set PRM.
\end{minipage}};
\end{tikzpicture}
\end{frame}
\begin{frame}
\frametitle{Multi-Set Reasoning with Propositional Logic}
\begin{tikzpicture}
\draw[step=1,black!15,very thin,opacity=\gridopacity] (0,0) grid (12,8);
\node[inner sep=0pt] at (5,6.15) {%
\only<1>{\includegraphics[width=4.5cm]{build/multiset-roadmap-example,start}}%
\only<2>{\includegraphics[width=4.5cm]{build/multiset-roadmap-example,roadmap}}%
\only<3>{\includegraphics[width=4.5cm]{build/multiset-roadmap-example,straightsol}}%
\only<4-5>{\includegraphics[width=4.5cm]{build/multiset-roadmap-example,basesets}}%
\only<6>{\includegraphics[width=4.5cm]{build/multiset-roadmap-example,blackgraph}}%
\only<7>{\includegraphics[width=4.5cm]{build/multiset-roadmap-example,rightsol}}%
\only<8>{\includegraphics[width=4.5cm]{build/multiset-roadmap-example,leftspec}}%
\only<9>{\includegraphics[width=4.5cm]{build/multiset-roadmap-example,leftsol}}%
};
\node[font=\scriptsize,anchor=west] at (7.7,7) {%
${\hat p}_u = 2$%
\only<5->{, \; ${\hat p}_A = {\hat p}_B = 1$}
};
\only<2->{
\draw[dotted] (7.7,6.5) -- (8.2,6.5);
\fill (7.7,6.5) circle (0.04cm);
\fill (8.2,6.5) circle (0.04cm);
\node[font=\scriptsize,anchor=west] at (8.3,6.5) {unknown};
}
\only<3->{
\draw[color=black!20,line width=5,line cap=round] (7.7,6) -- (8.2,6);
\node[font=\scriptsize,anchor=west] at (8.3,6) {candidate path ${\hat \pi}^*$};
}
\only<4->{
\node[font=\scriptsize,anchor=west] at (7.7,5.5) {$S_u = S_A \cap S_B$};
}
\only<6->{
\draw (7.7,5) -- (8.2,5);
\fill (7.7,5) circle (0.04cm);
\fill (8.2,5) circle (0.04cm);
\node[font=\scriptsize,anchor=west] at (8.3,5) {known in $S_A$};
}
\node[fill=blue!20,rounded corners,font=\scriptsize] at (5,2.1)
{\begin{minipage}{8cm}
\begin{algorithmic}[1]
\Function {MultiOptCert}{$q_e, S_u, P_{\ms{known}}$}
\State $\mathcal{T}_{\ms{imply}} \leftarrow \emptyset$
\ForAll {$\mathcal{F}_{\ms{cert}} \in \mathcal{P}(\mathcal{F})$}
\label{line:power-set}
\State ${\hat p}_{\ms{cert}} \leftarrow \sum_{S \in \mathcal{F}_{\ms{cert}}} \hat{p}_S[q_e]$
\ForAll {$b_{\ms{res}} \mbox{ \textbf{s.t.} }
b_{\ms{res}} : \mathcal{F}_{\ms{cert}} \rightarrow \{\mbox{True},\mbox{False}\}$}
\label{line:all-binary-functions}
\State $\arraycolsep=2pt
P_{\ms{res}} \leftarrow
\left\{\left. \begin{array}{rl}
\mathbf{1}_S & \mbox{if } b_{\ms{res}}(S) \\
\lnot \mathbf{1}_S & \mbox{otherwise} \\
\end{array}
\right|
S \in \mathcal{F}_{\ms{cert}}
\right\}$
\If {$P_{\ms{known}} \cup P_{\ms{res}}
\Rightarrow \mathbf{1}_u$ is valid}
\State $\mathcal{T}_{\ms{imply}} \leftarrow
\mathcal{T}_{\ms{imply}} \cup
\{ (\mathcal{F}_{\ms{cert}}, b_{\ms{res}}, {\hat p}_{\ms{cert}}) \}$
\EndIf
\EndFor
\EndFor
\State \Return $(\mathcal{F}_{\ms{cert}}, b_{\ms{res}}, {\hat p}_{\ms{cert}})
\in \mathcal{T}_{\ms{imply}}$
with lowest ${\hat p}_{\ms{cert}}$
\EndFunction
\end{algorithmic}
\end{minipage}};
\draw[->,line width=1pt] (9.3,2.1) -- (9.8,2.1);
\node[draw,shape=document,align=center,font=\scriptsize,minimum height=2cm]
at (10.9,2.1) {Optimistic\\Edge\\Certificate};
\end{tikzpicture}
\end{frame}
\begin{frame}
\frametitle{Multi-Set PRM Complexity in the Number of Subsets}
\begin{tikzpicture}
\draw[step=1,black!15,very thin,opacity=\gridopacity] (0,0) grid (12,8);
\node[fill=blue!20,rounded corners,font=\scriptsize] at (5,5.6)
{\begin{minipage}{8cm}
\begin{algorithmic}[1]
\Function {MultiOptCert}{$q_e, S_u, P_{\ms{known}}$}
\State $\mathcal{T}_{\ms{imply}} \leftarrow \emptyset$
\ForAll {$\mathcal{F}_{\ms{cert}} \in \mathcal{P}(\mathcal{F})$}
\label{line:power-set}
\State ${\hat p}_{\ms{cert}} \leftarrow \sum_{S \in \mathcal{F}_{\ms{cert}}} \hat{p}_S[q_e]$
\ForAll {$b_{\ms{res}} \mbox{ \textbf{s.t.} }
b_{\ms{res}} : \mathcal{F}_{\ms{cert}} \rightarrow \{\mbox{True},\mbox{False}\}$}
\label{line:all-binary-functions}
\State $\arraycolsep=2pt
P_{\ms{res}} \leftarrow
\left\{\left. \begin{array}{rl}
\mathbf{1}_S & \mbox{if } b_{\ms{res}}(S) \\
\lnot \mathbf{1}_S & \mbox{otherwise} \\
\end{array}
\right|
S \in \mathcal{F}_{\ms{cert}}
\right\}$
\If {$P_{\ms{known}} \cup P_{\ms{res}}
\Rightarrow \mathbf{1}_u$ is valid}
\State $\mathcal{T}_{\ms{imply}} \leftarrow
\mathcal{T}_{\ms{imply}} \cup
\{ (\mathcal{F}_{\ms{cert}}, b_{\ms{res}}, {\hat p}_{\ms{cert}}) \}$
\EndIf
\EndFor
\EndFor
\State \Return $(\mathcal{F}_{\ms{cert}}, b_{\ms{res}}, {\hat p}_{\ms{cert}})
\in \mathcal{T}_{\ms{imply}}$
with lowest ${\hat p}_{\ms{cert}}$
\EndFunction
\end{algorithmic}
\end{minipage}};
\draw[->,line width=1pt] (9.3,5.5) -- (9.8,5.5);
\node[draw,shape=document,align=center,font=\scriptsize,minimum height=2cm]
at (10.9,5.5) {Optimistic\\Edge\\Certificate};
\only<2->{
\node[fill=blue!20,rounded corners,anchor=north]
at (6,3.2) {\begin{minipage}{10.5cm}
{\bf Research Question Q4:}
\smallskip
How should the planner manage the potential explosion
of known subsets over its lifetime?
\smallskip
Ideas: limiting roadmap depth,
periodically force-evaluating and/or pruning old subsets
\end{minipage}};
}
%Talk about failure modes!
%This is a research question.
%Complexity, triple-exponential in number of sets?
\end{tikzpicture}
\end{frame}
\begin{frame}
\frametitle{Multi-Set PRM Behavior: Conservative Volumes}
\begin{tikzpicture}
\draw[step=1,black!15,very thin,opacity=\gridopacity] (0,0) grid (12,8);
\node[draw,color=black!25,inner sep=1pt] (lambda0) at (3,6) {%
\only<1>{\includegraphics[width=5cm]{figs/bean-allpaths-lambda0.png}}%
\only<2-3>{\includegraphics[width=5cm]{figs/bean-allpaths-padded-lambda0.png}}%
};
\node[font=\small,below left=0cm of lambda0.north east] {$\lambda = 0$};
\node[draw,color=black!25,inner sep=1pt] (lambda1) at (3,2) {%
\only<1-2>{\includegraphics[width=5cm]{figs/bean-allpaths-lambda1.png}}%
\only<3>{\includegraphics[width=5cm]{figs/bean-allpaths-padded-lambda1.png}}%
};
\node[font=\small,below left=0cm of lambda1.north east] {$\lambda = 1$};
\begin{scope}[shift={(7.5,2.5)},font=\small]
\begin{axis}[
xlabel=Collision Checks,
ylabel=Path Length,
ylabel near ticks,
xlabel near ticks,
scaled x ticks=base 10:-3,
scaled y ticks=base 10:-2,
every x tick scale label/.style={
at={(1,-0.2075)}
},
%ticks=none,
axis lines=left,
xmin=0,xmax=8000,
ymin=700,ymax=950,
width=5.5cm, height=5.5cm]
\coordinate (l0) at (axis cs:7219.5, 733.0);
\coordinate (l1) at (axis cs:4692.6, 836.5);
\coordinate (l0pad) at (axis cs:2685.7, 733.0);
\coordinate (l1pad) at (axis cs:1064.5, 907.1);
\addplot[mark=*] plot coordinates { (7219.5, 733.0) };
\addplot[mark=*] plot coordinates { (4692.6, 836.5) };
\node (labl0) at ($ (l0) + (-10,20) $) {$\lambda=0$};
\node (labl1) at ($ (l1) + (70,20) $) {$\lambda=1$};
%\draw[->] (labl0) -- ($ (l0)!0.25cm!(labl0) $);
%\draw[->] (labl1) -- ($ (l1)!0.25cm!(labl1) $);
% padded nodes
\only<2-3>{
\addplot[mark=*] plot coordinates { (2685.7, 733.0) };
\draw[->,line width=1pt] ($ (l0)!0.15cm!(l0pad) $) -- ($ (l0pad)!0.15cm!(l0) $);
}
\only<3>{
\addplot[mark=*] plot coordinates { (1064.5, 907.1) };
\draw[->,line width=1pt] ($ (l1)!0.15cm!(l1pad) $) -- ($ (l1pad)!0.15cm!(l1) $);
}
\end{axis}
\end{scope}
\end{tikzpicture}
\end{frame}
\begin{frame}
\frametitle{HERB Example Problem}
\begin{tikzpicture}
\draw[step=1,black!15,very thin,opacity=\gridopacity] (0,0) grid (12,8);
\node[inner sep=0pt]
at ( 1.50,6.6) {\includegraphics[width=2cm]{figs/testherb-a.png}};
\node[inner sep=0pt]
at ( 3.75,6.6) {\includegraphics[width=2cm]{figs/testherb-b.png}};
\node[inner sep=0pt]
at ( 6.00,6.6) {\includegraphics[width=2cm]{figs/testherb-c.png}};
\node[inner sep=0pt]
at ( 8.25,6.6) {\includegraphics[width=2cm]{figs/testherb-d.png}};
\node[inner sep=0pt]
at (10.50,6.6) {\includegraphics[width=2cm]{figs/testherb-e.png}};
\node[inner sep=0pt]
at ( 2,3.6) {\includegraphics[width=3.9cm]{build/herb-mugbin-plot-1}};
\node[inner sep=0pt]
at ( 6,3.6) {\includegraphics[width=3.9cm]{build/herb-mugbin-plot-2}};
\node[inner sep=0pt]
at ( 10,3.6) {\includegraphics[width=3.9cm]{build/herb-mugbin-plot-3}};
\only<2->{
\node[fill=blue!20,rounded corners,anchor=north]
at (6,1.7) {\begin{minipage}{10.5cm}
{\bf Research Question Q5:}\\
Extend experimental evaluation to (a) more problem instances,
(b) more platforms, (c) more baseline approaches.
\end{minipage}};
}
\end{tikzpicture}
\end{frame}
\begin{frame}
\frametitle{Part 2: Reusing Computation Between Steps}
\begin{tikzpicture}
\draw[step=1,black!15,very thin,opacity=\gridopacity] (0,0) grid (12,8);
% figure adapted from proposal doc
\begin{scope}[font=\scriptsize,shift={(1.5,6.25)}]
% root sets
\node[draw,black,rounded corners,minimum height=1.5cm,minimum width=0.7cm]
(Xgrasp) at (3,0) {};
\node[above=0cm of Xgrasp] {Grasp};
\node[draw,black,rounded corners,minimum height=1.5cm,minimum width=0.7cm]
(Xdrop) at (6,0) {};
\node[above=0cm of Xdrop] {Place};
% nodes
\node[circle,fill=black,inner sep=2] (xstart) at (0,0) {};
\node[above=0.1cm of xstart] {$q_{\mbox{\scriptsize start}}$};
% grasp choices
\node[circle,fill=black,inner sep=2] (xg1) at (2.8,0.5) {};
\node[circle,fill=black,inner sep=2] (xg2) at (3.1,0.1) {};
\node[circle,fill=black,inner sep=2] (xg3) at (2.9,-0.5) {};
% place choices
\node[circle,fill=black,inner sep=2] (xd1) at (5.9,0.3) {};
\node[circle,fill=black,inner sep=2] (xd2) at (6.0,-0.4) {};
% xend
\node[circle,fill=black,inner sep=2] (xend) at (9,0) {};
\node[above=0.1cm of xend] {$q_{\mbox{\scriptsize end}}$};
\draw[line width=1.5mm,white]
(xstart) .. controls (1,0.2) and (1.4,0.9) .. (xg1);
\draw[line width=1.5mm,white]
(xstart) .. controls (1.5,0.2) .. (xg2);
\draw[line width=1.5mm,white]
(xstart) .. controls (1.8,-0.6) and (1.6,-0.8) .. (xg3);
\draw
(xstart) .. controls (1,0.2) and (1.4,0.9) .. (xg1);
\draw
(xstart) .. controls (1.5,0.2) .. (xg2);
\draw
(xstart) .. controls (1.8,-0.6) and (1.6,-0.8) .. (xg3);
\draw[line width=1.5mm,white]
(xg1) -- (4.7,0.6);
\draw
(xg1) -- (4.7,0.6);
\draw[line width=1.5mm,white]
(xg2) .. controls (4.5,1) and (3.5,-1.2) .. (4.5,-0.4)
.. controls (5.5,0.5) and (5.0,-1.3) .. (xd2);
\draw
(xg2) .. controls (4.5,1) and (3.5,-1.2) .. (4.5,-0.4)
.. controls (5.5,0.5) and (5.0,-1.3) .. (xd2);
\draw[line width=1.5mm,white]
(xg3) .. controls (4.3, 0.2) and (4.5,-0.2) .. (xd1);
\draw
(xg3) .. controls (4.3, 0.2) and (4.5,-0.2) .. (xd1);
% in s3
\draw[line width=1.5mm,white]
(xd1) .. controls (8,0.3) and (8,0.1) .. (xend);
\draw
(xd1) .. controls (8,0.3) and (8,0.1) .. (xend);
\node[fill,black,rounded corners,minimum height=1.5cm,minimum width=0.7cm,
opacity=0.1] at (3,0) {};
\node[fill,black,rounded corners,minimum height=1.5cm,minimum width=0.7cm,
opacity=0.1] at (6,0) {};
\end{scope}
\fill[green!20] (0.1,3.1) rectangle (11.9,3.7);
\node[anchor=north] at (6,5) {\begin{minipage}{11.5cm}
Planning for manipulation tasks poses three challenges:
\begin{itemize}
\item Challenge 1: Capturing the planning/execution tradeoff..
\item Challenge 2: Incongruent steps impede reuse.
\item Challenge 3: Coupled steps require long planning horizons.
\end{itemize}
\end{minipage}};
\end{tikzpicture}
\end{frame}