-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
230 lines (189 loc) · 10.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import determinism # noqa
determinism.i_do_nothing_but_dont_remove_me_otherwise_things_break() # noqa
import argparse
import bisect
import copy
import os
import sys
import time
from argparse import ArgumentParser
import torch
import wandb
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.engine import PeriodicCheckpointer
from detectron2.engine import launch
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
import config
import losses
import utils
from eval_utils import eval_unsupmf, get_unsup_image_viz, get_vis_header
from mask_former_trainer import setup, Trainer
logger = utils.log.getLogger('gwm')
def freeze(module, set=False):
for param in module.parameters():
param.requires_grad = set
def main(args):
cfg = setup(args)
logger.info(f"Called as {' '.join(sys.argv)}")
logger.info(f'Output dir {cfg.OUTPUT_DIR}')
print('Using seed:', cfg.SEED)
random_state = utils.random_state.PytorchRNGState(seed=cfg.SEED).to(torch.device(cfg.MODEL.DEVICE))
random_state.seed_everything()
utils.log.checkpoint_code(cfg.OUTPUT_DIR)
if not cfg.SKIP_TB:
writer = SummaryWriter(log_dir=cfg.OUTPUT_DIR)
else:
writer = None
# initialize model
model = Trainer.build_model(cfg)
optimizer = Trainer.build_optimizer(cfg, model)
scheduler = Trainer.build_lr_scheduler(cfg, optimizer)
logger.info(f'Optimiser is {type(optimizer)}')
checkpointer = DetectionCheckpointer(model,
save_dir=os.path.join(cfg.OUTPUT_DIR, 'checkpoints'),
random_state=random_state,
optimizer=optimizer,
scheduler=scheduler)
periodic_checkpointer = PeriodicCheckpointer(checkpointer=checkpointer,
period=cfg.SOLVER.CHECKPOINT_PERIOD,
max_iter=cfg.SOLVER.MAX_ITER,
max_to_keep=None if cfg.FLAGS.KEEP_ALL else 5,
file_prefix='checkpoint')
checkpoint = checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=args.resume_path is not None)
iteration = 0 if args.resume_path is None else checkpoint['iteration']
train_loader, val_loader = config.loaders(cfg)
criterion = losses.BCELoss(cfg, model)
if args.eval_only:
if len(val_loader.dataset) == 0:
logger.error("Validation dataset: empty")
sys.exit(0)
model.eval()
iou = eval_unsupmf(cfg=cfg, val_loader=val_loader, model=model, criterion=criterion, writer=writer,
writer_iteration=iteration)
logger.info(f"Results: iteration: {iteration} IOU = {iou}")
return
if len(train_loader.dataset) == 0:
logger.error("Training dataset: empty")
sys.exit(0)
logger.info(
f'Start of training: dataset {cfg.GWM.DATASET},'
f' train {len(train_loader.dataset)}, val {len(val_loader.dataset)}'
f' device {model.device}, keys {cfg.GWM.SAMPLE_KEYS}, '
f'multiple flows {cfg.GWM.USE_MULT_FLOW}')
iou_best = 0
timestart = time.time()
dilate_kernel = torch.ones((2, 2), device=model.device)
total_iter = cfg.TOTAL_ITER if cfg.TOTAL_ITER else cfg.SOLVER.MAX_ITER # early stop
with torch.autograd.set_detect_anomaly(cfg.DEBUG) and \
tqdm(initial=iteration, total=total_iter, disable=utils.environment.is_slurm()) as pbar:
while iteration < total_iter:
for sample in train_loader:
if cfg.MODEL.META_ARCHITECTURE != 'UNET' and cfg.FLAGS.UNFREEZE_AT:
if hasattr(model.backbone, 'frozen_stages'):
assert cfg.MODEL.BACKBONE.FREEZE_AT == -1, f"MODEL initial parameters forced frozen"
stages = [s for s, m in cfg.FLAGS.UNFREEZE_AT]
milest = [m for s, m in cfg.FLAGS.UNFREEZE_AT]
pos = bisect.bisect_right(milest, iteration) - 1
if pos >= 0:
curr_setting = model.backbone.frozen_stages
if curr_setting != stages[pos]:
logger.info(f"Updating backbone freezing stages from {curr_setting} to {stages[pos]}")
model.backbone.frozen_stages = stages[pos]
model.train()
else:
assert cfg.MODEL.BACKBONE.FREEZE_AT == -1, f"MODEL initial parameters forced frozen"
stages = [s for s, m in cfg.FLAGS.UNFREEZE_AT]
milest = [m for s, m in cfg.FLAGS.UNFREEZE_AT]
pos = bisect.bisect_right(milest, iteration) - 1
freeze(model, set=False)
freeze(model.sem_seg_head.predictor, set=True)
if pos >= 0:
stage = stages[pos]
if stage <= 2:
freeze(model.sem_seg_head, set=True)
if stage <= 1:
freeze(model.backbone, set=True)
model.train()
else:
logger.debug_once(f'Unfreezing disabled schedule: {cfg.FLAGS.UNFREEZE_AT}')
raw_sem_seg = False
if cfg.GWM.FLOW_RES is not None:
raw_sem_seg = cfg.MODEL.SEM_SEG_HEAD.PIXEL_DECODER_NAME == 'MegaBigPixelDecoder'
preds = model.forward_base(sample, keys=cfg.GWM.SAMPLE_KEYS, get_eval=True, raw_sem_seg=raw_sem_seg)
masks_raw = torch.stack([x['sem_seg'] for x in preds], 0)
logger.debug_once(f'mask shape: {masks_raw.shape}')
masks_softmaxed_list = [torch.sigmoid(masks_raw)]
total_losses = []
for mask_idx, masks_softmaxed in enumerate(masks_softmaxed_list):
pseudo_gt = torch.stack([x["pseudo_gt"].to(model.device) for x in sample], dim=0)
loss = criterion(masks_softmaxed, pseudo_gt)
total_losses.append(loss)
loss = total_losses[0]
train_log_dict = {}
train_log_dict['train/learning_rate'] = optimizer.param_groups[-1]['lr']
train_log_dict['train/loss_total'] = loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
pbar.set_postfix(loss=loss.item())
pbar.update()
# Sanity check for RNG state
if (iteration + 1) % 1000 == 0 or iteration + 1 in {1, 50}:
logger.info(
f'Iteration {iteration + 1}. RNG outputs {utils.random_state.get_randstate_magic_numbers(model.device)}')
if cfg.DEBUG or (iteration + 1) % 100 == 0:
logger.info(
f'Iteration: {iteration + 1}, time: {time.time() - timestart:.01f}s, loss: {loss.item():.02f}.')
for k, v in train_log_dict.items():
if writer:
writer.add_scalar(k, v, iteration + 1)
if cfg.WANDB.ENABLE:
wandb.log(train_log_dict, step=iteration + 1)
if (iteration + 1) % cfg.LOG_FREQ == 0 or (iteration + 1) in [1]: # or (iteration + 1) in [1, 50, 500]
model.eval()
if cfg.WANDB.ENABLE and (iteration + 1) % 2500 == 0:
image_viz = get_unsup_image_viz(model, cfg, sample)
wandb.log({'train/viz': wandb.Image(image_viz.float())}, step=iteration + 1)
if iou := eval_unsupmf(cfg=cfg, val_loader=val_loader, model=model, criterion=criterion,
writer=writer, writer_iteration=iteration + 1, use_wandb=cfg.WANDB.ENABLE):
if cfg.SOLVER.CHECKPOINT_PERIOD:
if iou > iou_best:
iou_best = iou
if not args.wandb_sweep_mode:
checkpointer.save(name='checkpoint_best', iteration=iteration + 1, loss=loss,
iou=iou_best)
logger.info(f'New best IoU {iou_best:.02f} after iteration {iteration + 1}')
else:
logger.info(f'Current best IoU: {iou_best}')
if cfg.WANDB.ENABLE:
wandb.log({'eval/IoU_best': iou_best}, step=iteration + 1)
if writer:
writer.add_scalar('eval/IoU_best', iou_best, iteration + 1)
model.train()
periodic_checkpointer.step(iteration=iteration + 1, loss=loss)
iteration += 1
timestart = time.time()
def get_argparse_args():
parser = ArgumentParser()
parser.add_argument('--resume_path', type=str, default=None) # default='../outputs/fbms/20230521_145239/checkpoints/checkpoint_best.pth'
parser.add_argument('--use_wandb', dest='wandb_sweep_mode', action='store_true') # for sweep
parser.add_argument('--config-file', type=str,
default='configs/maskformer/maskformer_R50_bs16_160k_dino.yaml')
parser.add_argument('--eval_only', action='store_true')
parser.add_argument(
"opts",
help="Modify config options by adding 'KEY VALUE' pairs at the end of the command. "
"See config references at "
"https://detectron2.readthedocs.io/modules/config.html#config-references",
default=None,
nargs=argparse.REMAINDER,
)
return parser
if __name__ == "__main__":
args = get_argparse_args().parse_args()
if args.resume_path:
args.config_file = "/".join(args.resume_path.split('/')[:-2]) + '/config.yaml'
print('Using config from:', args.config_file)
main(args)