forked from axolotl-ai-cloud/axolotl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_expand_mask.py
44 lines (37 loc) · 1.4 KB
/
test_expand_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
"""
Unit tests for the monkey patch for expand mask to handle packed sequences
"""
import unittest
import torch
from axolotl.monkeypatch.llama_expand_mask import _expand_mask
class TestExpandMask(unittest.TestCase):
"""
Test class for attention mask expansion for packed sequences
"""
def test_output(self):
mask = torch.tensor([[1, 1, 1, 2], [2, 3, 3, 0]])
dtype = torch.float32
expected_output = torch.tensor(
[
[
[
[0.0000e00, -3.4028e38, -3.4028e38, -3.4028e38],
[0.0000e00, 0.0000e00, -3.4028e38, -3.4028e38],
[0.0000e00, 0.0000e00, 0.0000e00, -3.4028e38],
[-3.4028e38, -3.4028e38, -3.4028e38, 0.0000e00],
]
],
[
[
[0.0000e00, -3.4028e38, -3.4028e38, -3.4028e38],
[-3.4028e38, 0.0000e00, -3.4028e38, -3.4028e38],
[-3.4028e38, 0.0000e00, 0.0000e00, -3.4028e38],
[-3.4028e38, -3.4028e38, -3.4028e38, -3.4028e38],
]
],
]
)
# Check that the output matches the expected output
self.assertTrue(torch.allclose(_expand_mask(mask, dtype), expected_output))
if __name__ == "__main__":
unittest.main()