-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathQDMLL_2S_parameters.cpp
349 lines (264 loc) · 8.41 KB
/
QDMLL_2S_parameters.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
struct parameters{
//class to collect all parameters of the system.
//define parameters here:
double dt;
double v_g;
double T0;
//geometry of the laser
unsigned int nSec;
unsigned int nSecG;
unsigned int nSecA;
bool NoA;
double device_length;
double l_G;
double l_A;
double r_L;
double r_R;
double J_Q;
double J_G;
bool setJG;
double P_G;
double injEf;
double gamma_N_Q;
double gamma_N_G;
double gamma_ES_Q;
double gamma_ES_G;
double gamma_GS_Q;
double gamma_GS_G;
double T_2_G;
double T_2_Q;
double g_Q;
double g_G;
double etasqrd;
double Delta_omega_Q;
double Delta_omega_G;
double U;
bool setU;
double SARS;
double SARSat10V;
double gamma_ES_Q_0;
double gamma_ES_Q_U;
double Delta_omega_Q_U0;
double Rcap_Q;
double Rcap_G;
double Rrel_Q;
double Rrel_G;
double N_QD;
double D_N;
double exp_ESGS;
double exp_ESQW;
double ESQW;
double w_base;
double A_G;
double A;
double alpha_int_base;
double Gamma_r_base;
double Gamma_base;
double SqrtNoiseStr;
double noiseStr;
//gain paramters
double Gamma_L;
double Gamma;
double e_ph;
double omega;
double a_L;
double mu_GS;
double mu_ES;
double eps_r;
double h_QW;
double nu_GS;
double nu_ES;
//QD subgroup parametes
double QD_GSES;
double QD_ESQW;
double QD_confine;
double QD_GS_inh_FWHM;
double QD_ES_inh_FWHM;
double QD_eps_GS[NSAMPLES];
double QD_eps_ES[NSAMPLES];
double QD_omega_GS[NSAMPLES];
double QD_omega_ES[NSAMPLES];
double QD_inh[NSAMPLES];
double QD_GS_DOS[NSAMPLES];
double QD_ES_DOS[NSAMPLES];
//feedback paras
double K;
double tau;
double C;
//section parameters
double z[NSEC];
double T[NSEC];
double DT[NSEC+1];
int SA[NSEC];
double alpha_int[NSEC];
double alpha_int_A[NSEC];
double delta_z_alpha_int_S[NSEC];
double g_A_Reff[NSEC];
double gamma_2[NSEC];
double gamma_N[NSEC];
double gamma_ES[NSEC];
double gamma_GS[NSEC];
double Rcap[NSEC];
double Rrel[NSEC];
double J[NSEC];
double g[NSEC];
double invetasqrd[NSEC];
std::complex<double> idelta_omega_ES[NSEC][NSAMPLES];
std::complex<double> iDelta_omega[NSEC][NSAMPLES];
double w[NSEC];
// double Gamma[NSEC];
// double Gamma_r[NSEC];
double AvCounter;
int secSEED;
parameters(){}
};
void init_states(parameters &p){
//transition energy sampling step -> considered range from -FWHM to FWHM
double QD_eps_GS_step = 2.0 * p.QD_GS_inh_FWHM / (NSAMPLES-1.0);
double QD_eps_ES_step = 2.0 * p.QD_ES_inh_FWHM / (NSAMPLES-1.0);
//set up transition energy sampling points
for(unsigned int k = 0; k<NSAMPLES; k++){
p.QD_eps_GS[k] = -p.QD_GS_inh_FWHM + k*QD_eps_GS_step;
p.QD_eps_ES[k] = p.QD_GSES - p.QD_ES_inh_FWHM + k*QD_eps_ES_step;
}
//transition frequencies
for(unsigned int k = 0; k<NSAMPLES; k++){
p.QD_omega_GS[k] = ( p.QD_eps_GS[k] * sm::e0 / sm::hbar ) * (1e-12/tsf) ; // in ps
p.QD_omega_ES[k] = ( p.QD_eps_ES[k] * sm::e0 / sm::hbar ) * (1e-12/tsf) ; // in ps
}
//Gaussian distribution of the energy states
double norm = 0.0;
for(unsigned int k = 0; k<NSAMPLES; k++){
p.QD_inh[k] = exp(-4.0*log(2)*((p.QD_eps_GS[k]*p.QD_eps_GS[k])/(p.QD_GS_inh_FWHM*p.QD_GS_inh_FWHM)));
norm += p.QD_inh[k];
}
//normalization such that QD_inh[k] in [0,1] and the sum = 1.0
for(unsigned int k = 0; k<NSAMPLES; k++){
p.QD_inh[k] /= norm;
}
//calc QD DOS
for(unsigned int k = 0; k<NSAMPLES; k++){
p.QD_GS_DOS[k] = p.nu_GS * p.N_QD * p.QD_inh[k];
p.QD_ES_DOS[k] = p.nu_ES * p.N_QD * p.QD_inh[k];
}
}
//function that computes parameters from other parameters
void compute_parameters(parameters &p){
p.A_G = p.l_G * p.w_base;
if(p.NoA == true) p.A_G = p.l_G * p.w_base + p.l_A * p.w_base;
p.A = p.l_G * p.w_base + p.l_A * p.w_base;
double PJconversionF = (p.a_L * sm::e0 / p.injEf) * 1e12;
if(p.setJG == true) p.P_G = p.J_G * p.A_G * PJconversionF;
else p.J_G = p.P_G / (p.A_G * PJconversionF);
std::cout << "pump current density: " << p.J_G << std::endl;
if(p.setU){
p.gamma_ES_Q = p.gamma_ES_Q_0 * exp((p.U)/p.gamma_ES_Q_U);
p.Delta_omega_Q = p.SARSat10V * (p.U/p.Delta_omega_Q_U0);
}
else p.U = 2.0 * log(p.gamma_ES_Q / p.gamma_ES_Q_0);
p.a_L = (int)p.a_L;
p.Gamma = p.Gamma_L * p.a_L;
//calc gain
const double T2G = p.T_2_G * 1e-12;
const double T2Q = p.T_2_Q * 1e-12;
const double NQD = p.N_QD * 1e4;
const double vg = p.v_g * 1e10;
const double gG = p.omega * p.Gamma * T2G * NQD * p.nu_GS * (p.mu_GS * p.mu_GS) / ( 2.0 * p.eps_r * sm::eps0 * sm::hbar * vg * p.h_QW );
const double gQ = p.omega * p.Gamma * T2Q * NQD * p.nu_GS * (p.mu_GS * p.mu_GS) / ( 2.0 * p.eps_r * sm::eps0 * sm::hbar * vg * p.h_QW );
// p.g_G = p.omega * p.Gamma * p.T_2_G * p.a_L * p.N_QD * p.nu_GS * (p.mu_GS * p.mu_GS) / ( 2.0 * p.eps_r * sm::eps0 * sm::hbar * p.v_g * p.h_QW );
// p.g_Q = p.omega * p.Gamma * p.T_2_Q * p.a_L * p.N_QD * p.nu_GS * (p.mu_GS * p.mu_GS) / ( 2.0 * p.eps_r * sm::eps0 * sm::hbar * p.v_g * p.h_QW );
std::cout << "g_G: " << gG << std::endl;
std::cout << "g_Q: " << gQ << std::endl;
p.g_G = gG * 1e-2;
p.g_Q = gQ * 1e-2;
// std::cout << "p.v_g: " << p.v_g << std::endl;
}
//function that computes parameters for the individual sections
void compute_section_parameters(parameters &p){
double zmin = p.device_length;
for(std::size_t k = 0; k<NSEC; k++){
if(k < p.nSecA){
p.z[k] = p.l_A / (double)(p.nSecA);
}
else{
p.z[k] = p.l_G / (double)(p.nSecG);
}
if(p.z[k] < zmin) zmin = p.z[k];
}
// randomize section lengths to avoid spurious frequencies
p.secSEED = 817;
std::mt19937 secGENERATOR(p.secSEED);
std::uniform_real_distribution<double> secDIST(-1.0, 1.0);
// std::normal_distribution<double> secDIST{0.0,1.0};
secDIST(secGENERATOR);
for(unsigned int k = 0; k < NSEC-1; k++){
if(k != p.nSecA-1){
const double scale = std::min(p.z[k],p.z[k+1])/10.0;
const double shift = secDIST(secGENERATOR)*scale;
p.z[k] += shift;
p.z[k+1] -= shift;
}
}
//section propagation times
for(std::size_t k = 0; k<NSEC; k++){
p.T[k] = p.z[k] / p.v_g;
}
//delay coupling times
p.DT[0] = p.T[0];
for(unsigned int k = 1; k < NSEC; k++){
p.DT[k] = 0.5*(p.T[k-1] + p.T[k]);
}
p.DT[NSEC] = p.T[NSEC-1];
// for(unsigned int k = 0; k < NSEC; k++){
// std::cout << p.DT[k] << std::endl;
// }
//laser parameters
for(std::size_t k = 0; k<NSEC; k++){
if(k < p.nSecA){
if(p.NoA) p.SA[k] = 0;
else p.SA[k] = 1;
}
else{
p.SA[k] = 0;
}
p.w[k] = p.w_base;
p.alpha_int[k] = p.alpha_int_base;
// p.Gamma_r[k] = p.Gamma_r_base;
//equation parameters
if(p.SA[k] == 0){
// p.gamma_2[k] = p.gamma_Gain_G;
p.gamma_2[k] = 1.0/p.T_2_G;
p.gamma_N[k] = p.gamma_N_G;
p.gamma_ES[k] = p.gamma_ES_G;
p.gamma_GS[k] = p.gamma_GS_G;
p.J[k] = p.J_G;
p.g[k] = p.g_G;
p.Rcap[k] = p.Rcap_G;
p.Rrel[k] = p.Rrel_G;
// p.idelta_omega_ES[k] = sm::img * p.g[k] * 2.0 * p.delta_omega_G;
for(unsigned int l = 0; l<NSAMPLES;l++){
p.iDelta_omega[k][l] = sm::img * (p.QD_omega_GS[l] + p.Delta_omega_G);
p.idelta_omega_ES[k][k] = sm::img * (p.g[k] * 2.0 * (p.T_2_G * p.QD_omega_ES[l])/(1.0 + (p.T_2_G * p.QD_omega_ES[l]) * (p.T_2_G * p.QD_omega_ES[l])));
}
}
if(p.SA[k] == 1){
// p.gamma_2[k] = p.gamma_Gain_Q;
p.gamma_2[k] = 1.0/p.T_2_Q;
p.gamma_N[k] = p.gamma_N_Q;
p.gamma_ES[k] = p.gamma_ES_Q;
p.gamma_GS[k] = p.gamma_GS_Q;
p.J[k] = p.J_Q;
p.g[k] = p.g_Q;
p.Rcap[k] = p.Rcap_Q;
p.Rrel[k] = p.Rrel_Q;
// p.idelta_omega_ES[k] = sm::img * p.g[k] * 2.0 * p.delta_omega_Q;
for(unsigned int l = 0; l<NSAMPLES;l++){
p.iDelta_omega[k][l] = sm::img * (p.QD_omega_GS[l] + p.Delta_omega_Q);
p.idelta_omega_ES[k][k] = sm::img * (p.g[k] * 2.0 * (p.T_2_Q * p.QD_omega_ES[l])/(1.0 + (p.T_2_Q * p.QD_omega_ES[l]) * (p.T_2_Q * p.QD_omega_ES[l])));
}
}
p.invetasqrd[k] = (1.0/p.etasqrd);
p.alpha_int_A[k] = (1 - 0.25*p.z[k]*p.alpha_int[k])/(1 + 0.25*p.z[k]*p.alpha_int[k]);
p.delta_z_alpha_int_S[k] = p.z[k] / ( 2 + 0.5*p.z[k]*p.alpha_int[k]);
}
}