-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdatasets.py
238 lines (192 loc) · 7.94 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import os
import csv
import numpy as np
from torch.utils.data import Dataset
from torchvision import transforms
from PIL import Image
from scipy import signal
import random
import json
import xml.etree.ElementTree as ET
from audio_io import load_audio_av, open_audio_av
def load_image(path):
return Image.open(path).convert('RGB')
def load_spectrogram(path, dur=3.):
# Load audio
audio_ctr = open_audio_av(path)
audio_dur = audio_ctr.streams.audio[0].duration * audio_ctr.streams.audio[0].time_base
audio_ss = max(float(audio_dur)/2 - dur/2, 0)
audio, samplerate = load_audio_av(container=audio_ctr, start_time=audio_ss, duration=dur)
# To Mono
audio = np.clip(audio, -1., 1.).mean(0)
# Repeat if audio is too short
if audio.shape[0] < samplerate * dur:
n = int(samplerate * dur / audio.shape[0]) + 1
audio = np.tile(audio, n)
audio = audio[:int(samplerate * dur)]
frequencies, times, spectrogram = signal.spectrogram(audio, samplerate, nperseg=512, noverlap=274)
spectrogram = np.log(spectrogram + 1e-7)
return spectrogram
def load_all_bboxes(annotation_dir, format='flickr'):
gt_bboxes = {}
if format == 'flickr':
anno_files = os.listdir(annotation_dir)
for filename in anno_files:
file = filename.split('.')[0]
gt = ET.parse(f"{annotation_dir}/{filename}").getroot()
bboxes = []
for child in gt:
for childs in child:
bbox = []
if childs.tag == 'bbox':
for index, ch in enumerate(childs):
if index == 0:
continue
bbox.append(int(224 * int(ch.text)/256))
bboxes.append(bbox)
gt_bboxes[file] = bboxes
elif format == 'vggss':
with open('metadata/vggss.json') as json_file:
annotations = json.load(json_file)
for annotation in annotations:
bboxes = [(np.clip(np.array(bbox), 0, 1) * 224).astype(int) for bbox in annotation['bbox']]
gt_bboxes[annotation['file']] = bboxes
return gt_bboxes
def bbox2gtmap(bboxes, format='flickr'):
gt_map = np.zeros([224, 224])
for xmin, ymin, xmax, ymax in bboxes:
temp = np.zeros([224, 224])
temp[ymin:ymax, xmin:xmax] = 1
gt_map += temp
if format == 'flickr':
# Annotation consensus
gt_map = gt_map / 2
gt_map[gt_map > 1] = 1
elif format == 'vggss':
# Single annotation
gt_map[gt_map > 0] = 1
return gt_map
class AudioVisualDataset(Dataset):
def __init__(self, image_files, audio_files, image_path, audio_path, audio_dur=3., image_transform=None, audio_transform=None, all_bboxes=None, bbox_format='flickr'):
super().__init__()
self.audio_path = audio_path
self.image_path = image_path
self.audio_dur = audio_dur
self.audio_files = audio_files
self.image_files = image_files
self.all_bboxes = all_bboxes
self.bbox_format = bbox_format
self.image_transform = image_transform
self.audio_transform = audio_transform
def getitem(self, idx):
file = self.image_files[idx]
file_id = file.split('.')[0]
# Image
img_fn = os.path.join(self.image_path, self.image_files[idx])
frame = self.image_transform(load_image(img_fn))
# Audio
audio_fn = os.path.join(self.audio_path, self.audio_files[idx])
spectrogram = self.audio_transform(load_spectrogram(audio_fn))
bboxes = {}
if self.all_bboxes is not None:
bboxes['bboxes'] = self.all_bboxes[file_id]
bboxes['gt_map'] = bbox2gtmap(self.all_bboxes[file_id], self.bbox_format)
return frame, spectrogram, bboxes, file_id
def __len__(self):
return len(self.image_files)
def __getitem__(self, idx):
try:
return self.getitem(idx)
except Exception:
return self.getitem(random.sample(range(len(self)), 1)[0])
def get_train_dataset(args):
audio_path = f"{args.train_data_path}/audio/"
image_path = f"{args.train_data_path}/frames/"
# List directory
audio_files = {fn.split('.wav')[0] for fn in os.listdir(audio_path) if fn.endswith('.wav')}
image_files = {fn.split('.jpg')[0] for fn in os.listdir(image_path) if fn.endswith('.jpg')}
avail_files = audio_files.intersection(image_files)
print(f"{len(avail_files)} available files")
# Subsample if specified
if args.trainset.lower() in {'vggss', 'flickr'}:
pass # use full dataset
else:
subset = set(open(f"metadata/{args.trainset}.txt").read().splitlines())
avail_files = avail_files.intersection(subset)
print(f"{len(avail_files)} valid subset files")
avail_files = sorted(list(avail_files))
audio_files = sorted([dt+'.wav' for dt in avail_files])
image_files = sorted([dt+'.jpg' for dt in avail_files])
# Transforms
image_transform = transforms.Compose([
transforms.Resize(int(224 * 1.1), Image.BICUBIC),
transforms.RandomCrop((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
audio_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.0], std=[12.0])])
return AudioVisualDataset(
image_files=image_files,
audio_files=audio_files,
image_path=image_path,
audio_path=audio_path,
audio_dur=3.,
image_transform=image_transform,
audio_transform=audio_transform
)
def get_test_dataset(args):
audio_path = args.test_data_path + 'audio/'
image_path = args.test_data_path + 'frames/'
if args.testset == 'flickr':
testcsv = 'metadata/flickr_test.csv'
elif args.testset == 'vggss':
testcsv = 'metadata/vggss_test.csv'
elif args.testset == 'vggss_heard':
testcsv = 'metadata/vggss_heard_test.csv'
elif args.testset == 'vggss_unheard':
testcsv = 'metadata/vggss_unheard_test.csv'
else:
raise NotImplementedError
bbox_format = {'flickr': 'flickr',
'vggss': 'vggss',
'vggss_heard': 'vggss',
'vggss_unheard': 'vggss'}[args.testset]
# Retrieve list of audio and video files
testset = set([item[0] for item in csv.reader(open(testcsv))])
# Intersect with available files
audio_files = {fn.split('.wav')[0] for fn in os.listdir(audio_path)}
image_files = {fn.split('.jpg')[0] for fn in os.listdir(image_path)}
avail_files = audio_files.intersection(image_files)
testset = testset.intersection(avail_files)
testset = sorted(list(testset))
image_files = [dt+'.jpg' for dt in testset]
audio_files = [dt+'.wav' for dt in testset]
# Bounding boxes
all_bboxes = load_all_bboxes(args.test_gt_path, format=bbox_format)
# Transforms
image_transform = transforms.Compose([
transforms.Resize((224, 224), Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
audio_transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(mean=[0.0], std=[12.0])])
return AudioVisualDataset(
image_files=image_files,
audio_files=audio_files,
image_path=image_path,
audio_path=audio_path,
audio_dur=3.,
image_transform=image_transform,
audio_transform=audio_transform,
all_bboxes=all_bboxes,
bbox_format=bbox_format
)
def inverse_normalize(tensor):
inverse_mean = [-0.485/0.229, -0.456/0.224, -0.406/0.225]
inverse_std = [1.0/0.229, 1.0/0.224, 1.0/0.225]
tensor = transforms.Normalize(inverse_mean, inverse_std)(tensor)
return tensor