-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutils.py
90 lines (67 loc) · 2.72 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import os
import json
from torch.optim import *
import numpy as np
from sklearn import metrics
class Evaluator(object):
def __init__(self):
super(Evaluator, self).__init__()
self.ciou = []
def cal_CIOU(self, infer, gtmap, thres=0.01):
infer_map = np.zeros((224, 224))
infer_map[infer >= thres] = 1
ciou = np.sum(infer_map*gtmap) / (np.sum(gtmap) + np.sum(infer_map * (gtmap==0)))
self.ciou.append(ciou)
return ciou, np.sum(infer_map*gtmap), (np.sum(gtmap)+np.sum(infer_map*(gtmap==0)))
def finalize_AUC(self):
cious = [np.sum(np.array(self.ciou) >= 0.05*i) / len(self.ciou)
for i in range(21)]
thr = [0.05*i for i in range(21)]
auc = metrics.auc(thr, cious)
return auc
def finalize_AP50(self):
ap50 = np.mean(np.array(self.ciou) >= 0.5)
return ap50
def finalize_cIoU(self):
ciou = np.mean(np.array(self.ciou))
return ciou
def clear(self):
self.ciou = []
def normalize_img(value, vmax=None, vmin=None):
vmin = value.min() if vmin is None else vmin
vmax = value.max() if vmax is None else vmax
if not (vmax - vmin) == 0:
value = (value - vmin) / (vmax - vmin) # vmin..vmax
return value
def visualize(raw_image, boxes):
import cv2
boxes_img = np.uint8(raw_image.copy())[:, :, ::-1]
for box in boxes:
xmin,ymin,xmax,ymax = int(box[0]),int(box[1]),int(box[2]),int(box[3])
cv2.rectangle(boxes_img[:, :, ::-1], (xmin, ymin), (xmax, ymax), (0,0,255), 1)
return boxes_img[:, :, ::-1]
def build_optimizer_and_scheduler_adam(model, args):
optimizer_grouped_parameters = filter(lambda p: p.requires_grad, model.parameters())
optimizer = Adam(optimizer_grouped_parameters, lr=args.init_lr)
scheduler = None
return optimizer, scheduler
def build_optimizer_and_scheduler_sgd(model, args):
optimizer_grouped_parameters = model.parameters()
optimizer = SGD(optimizer_grouped_parameters, lr=args.init_lr)
scheduler = None
return optimizer, scheduler
def save_json(data, filename, save_pretty=False, sort_keys=False):
with open(filename, mode='w', encoding='utf-8') as f:
if save_pretty:
f.write(json.dumps(data, indent=4, sort_keys=sort_keys))
else:
json.dump(data, f)
def save_iou(iou_list, suffix, output_dir):
# sorted iou
sorted_iou = np.sort(iou_list).tolist()
sorted_iou_indices = np.argsort(iou_list).tolist()
file_iou = open(os.path.join(output_dir,"iou_test_{}.txt".format(suffix)),"w")
for indice, value in zip(sorted_iou_indices, sorted_iou):
line = str(indice) + ',' + str(value) + '\n'
file_iou.write(line)
file_iou.close()