-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMathematics.java
241 lines (206 loc) · 7.71 KB
/
Mathematics.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.LinkedList;
import java.util.List;
import java.util.ListIterator;
import java.util.SortedSet;
import java.util.TreeSet;
final class ArrayEntry <T extends Comparable<? super T>> {
private int index;
private T value;
public ArrayEntry(final int index, final T entry) {
this.index=index;
this.value=entry;
}
public int getIndex() {
return index;
}
public T getValue() {
return value;
}
public void shiftLeft(int nextIndex) {
if(nextIndex<=index) index--;
}
}
public final class Mathematics {
public final static <T extends Comparable<? super T>> ArrayEntry<T> getMinExtremum(final List<T> list) {
return getExtremum(list, Comparator.naturalOrder(), 0);
}
public final static <T extends Comparable<? super T>> ArrayEntry<T> getMaxExtremum(final List<T> list) {
return getExtremum(list, Comparator.reverseOrder(), 0);
}
public final static <T extends Comparable<? super T>> ArrayEntry<T> getExtremum(
final List<T> list, final Comparator<? super T> comp) {
return getExtremum(list, comp, 0);
}
public final static <T extends Comparable<? super T>> ArrayEntry<T> getExtremum(
final List<T> list, final Comparator<? super T> comp, final int startIndex) {
if(list.size()<=startIndex) throw new RuntimeException(String.format("parameter list must have at least %d item(s)",startIndex));
int resultIndex=startIndex;
T result=list.get(startIndex);
for(ListIterator<T> i=list.listIterator(startIndex+1);i.hasNext();) {
final int valueIndex=i.nextIndex();
final T value=i.next();
if(comp.compare(value, result)<0) {
resultIndex=valueIndex;
result=value;
}
}
return new ArrayEntry<T>(resultIndex, result);
}
public final static <T extends Comparable<? super T>> T getMinimum(final List<? extends T> list) {
if(list.isEmpty()) throw new RuntimeException("parameter list must have at least one item");
T min=list.get(0);
for(ListIterator<? extends T> i=list.listIterator(1);i.hasNext();) {
T value=i.next();
min=min.compareTo(value)<0?min:value;
}
return min;
}
public final static <T extends Comparable<? super T>> T getMaximum(final List<? extends T> list) {
if(list.isEmpty()) throw new RuntimeException("parameter list must have at least one item");
T max=list.get(0);
for(ListIterator<? extends T> i=list.listIterator(1);i.hasNext();) {
T value=i.next();
max=max.compareTo(value)>0?max:value;
}
return max;
}
/**
* The method returns sorted set of lucky numbers according to article {@link https://en.wikipedia.org/wiki/Lucky_number}
*
* @param <T> type of resulting numbers
* @param lastOne last lucky number in result set would be less or equal to this parameter
* @return list of lucky numbers up to lastOne parameter
* */
public final static <T extends Integer> SortedSet<T> getLuckyNumbers(final int lastOne){
if(lastOne<=0) throw new RuntimeException("at least one number should be included in lucky numbers sequence");
final boolean[] sieve=new boolean[lastOne+1];//sieve for lucky numbers
Arrays.fill(sieve, true);//consider all numbers initially
int period=2;//every number distanced 'period' steps further should be struck off
do {
final int pace=period-1;
for(int index=1;;) {//'index' refers to inspected number in sieve
for(int step=pace;index<=lastOne && step>0;index++)
if(sieve[index]) step--;//skip next 'pace' marked numbers
while(index<=lastOne && !sieve[index]) index++;//skip all numbers that were stricken out earlier
if(index<=lastOne) sieve[index++]=false;//strike out the number and move right to next position
else break;
}
//find first still non-stricken number
do{ period++; } while(period<=lastOne && !sieve[period]);
}while(period<=lastOne);
//compose result set
SortedSet<T> result=new TreeSet<T>();
for(int value=1;value<=lastOne;value++) {
if(sieve[value]) {
result.add((T) Integer.valueOf(value));
}
}
return result;
}
public final static <T extends Integer> List<T> getFibonacciNumberList(List<T> input){
List<BigInteger> fbNumbers=getFibonacciNumberList(BigInteger.valueOf(getMaximum(input)));
List<T> result=new LinkedList<T>();
for(T item:input) {
if(fbNumbers.contains(BigInteger.valueOf(item))) {
result.add(item);
}
}
return result;
}
public final static List<BigInteger> getFibonacciNumberList(final BigInteger upperLimit) {
final List<BigInteger> list=new LinkedList<BigInteger>();
if(upperLimit.compareTo(BigInteger.ZERO)>=0) {
BigInteger first=BigInteger.ZERO;
list.add(first);
if(upperLimit.compareTo(BigInteger.ONE)>=0) {
BigInteger second=BigInteger.ONE;
list.add(second);
if(upperLimit.compareTo(BigInteger.TWO)>=0) {
BigInteger next;
do{
next=first.add(second);
if(next.compareTo(upperLimit)<=0) {
list.add(next);//add new value to resulting list and
first=second;//save values for next iteration
second=next;
}else break;
}while(true);
}
}
}else throw new RuntimeException("negative upperLimit parameter is inappropriate");
return list;
}
public final static <T extends Integer> List<T> getPrimes(final int lastNumber){
if(lastNumber<=0) throw new RuntimeException("size parameter for getPrimes should be cardinal number");
final int size=lastNumber+1;
boolean[] marks=new boolean[size];
//initialize sieve
for(int k=0;k<size;k++) marks[k]=false;
int probe=2;
do{
//strike out composite numbers
for(int k=2*probe;k<size;k+=probe){
marks[k]=true;
}
// find out next prime divisor
do{
probe++;
}while(probe<size && marks[probe]);
}while(probe<size);
List<T> primes=new ArrayList<T>();
for(int k=2;k<size;k++){
if(!marks[k]){
primes.add((T)Integer.valueOf(k));
}
}
return primes;
}
public final static <T extends Integer> BigInteger getGCD(final List<T> source) {
List<T> list=new LinkedList<T>();//source.stream().filter(x->x>0).collect(Collectors.toList())
for(T item:source) if(item.intValue()>1) list.add(item);
if(list.size()<2) throw new RuntimeException("at least two numbers must be included in parameter list to compute GCD");
BigInteger gcd=null;
do {
ArrayEntry<T> minEntry=getMinExtremum(list);
T min=minEntry.getValue();
for(ListIterator<T> i=list.listIterator();i.hasNext();) {
int nextIndex=i.nextIndex();
T value=i.next();
if(!value.equals(min)) {
T remainder=(T)Integer.valueOf((value.intValue()%min));
if(remainder.equals(0)) {
i.remove();
minEntry.shiftLeft(nextIndex);
}else {
i.set(remainder);
}
}else if(minEntry.getIndex()!=nextIndex) {
i.remove();
minEntry.shiftLeft(nextIndex);
}
}
}while(list.size()>1);
if(list.size()==1) {
gcd=BigInteger.valueOf(list.get(0).longValue());
}
if(gcd==null) throw new RuntimeException(String.format("can't figure out GCD for %s",list));
return gcd;
}
public final static <T extends Integer> BigInteger getProduct(final List<T> list) {
BigInteger product=BigInteger.ONE;
for(T item:list){
product=product.multiply(BigInteger.valueOf(item.longValue()));
}
return product;
}
public final static <T extends Integer> BigInteger getLCM(final List<T> list) {
final BigInteger product=getProduct(list);
final BigInteger gcd=getGCD(list);
return product.divide(BigInteger.valueOf(gcd.longValue()));
}
}