-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpse_enjoy.py
155 lines (130 loc) · 5.62 KB
/
pse_enjoy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# -*- coding:utf-8 -*-
#psenet-PyTorch-single-test
import os
import cv2
from PIL import Image
import sys
import time
import collections
import torch
import argparse
import numpy as np
from torch.autograd import Variable
import torchvision.transforms as transforms
import models
# c++ version pse based on opencv 3+
from pse import pse
# python pse
#from pypse import pse as pypse
def load_psenet(filepath=None,cuda=torch.cuda.is_available()):
model = models.resnet50(pretrained=True, num_classes=7, scale=1)
for param in model.parameters():
param.requires_grad = False
model = model.cuda() if cuda else model
if filepath is not None:
if os.path.isfile(filepath):
print("Loading model and optimizer from checkpoint '{}'".format(filepath))
checkpoint = torch.load(filepath) if cuda else torch.load(filepath,map_location=lambda storage, loc: storage)
# model.load_state_dict(checkpoint['state_dict'])
d = collections.OrderedDict()
for key, value in checkpoint['state_dict'].items():
tmp = key[7:]
d[tmp] = value
model.load_state_dict(d)
print("Loaded checkpoint '{}' (epoch {})"
.format(filepath, checkpoint['epoch']))
sys.stdout.flush()
else:
print("No checkpoint found at '{}'".format(filepath))
sys.stdout.flush()
else:
print("You must specify a filepath")
sys.stdout.flush()
return model.eval()
def use_psenet(img,model,precession=960,kernel_num=7,min_kernel_area=5.0,min_area=800,min_score=0.93,cuda=torch.cuda.is_available()):
org_img = img[:, :, [2, 1, 0]]
h, w = org_img.shape[0:2]
scale = precession * 1.0 / max(h, w)
scaled_img = cv2.resize(org_img, dsize=None, fx=scale, fy=scale)
scaled_img = Image.fromarray(scaled_img)
scaled_img = scaled_img.convert('RGB')
scaled_img = transforms.ToTensor()(scaled_img)
scaled_img = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(scaled_img)
scaled_img = scaled_img.unsqueeze(0)
text_box = org_img.copy()
with torch.no_grad():
if cuda:
img = Variable(scaled_img.cuda())
torch.cuda.synchronize()
outputs = model(img)
score = torch.sigmoid(outputs[:, 0, :, :])
outputs = (torch.sign(outputs - 1) + 1) / 2
text = outputs[:, 0, :, :]
kernels = outputs[:, 0:kernel_num, :, :] * text
score = score.data.cpu().numpy()[0].astype(np.float32)
text = text.data.cpu().numpy()[0].astype(np.uint8)
kernels = kernels.data.cpu().numpy()[0].astype(np.uint8)
else:
img = Variable(scaled_img)
outputs = model(img)
score = torch.sigmoid(outputs[:, 0, :, :])
outputs = (torch.sign(outputs - 1) + 1) / 2
text = outputs[:, 0, :, :]
kernels = outputs[:, 0:kernel_num, :, :] * text
score = score.data.numpy()[0].astype(np.float32)
text = text.data.numpy()[0].astype(np.uint8)
kernels = kernels.data.numpy()[0].astype(np.uint8)
# c++ version pse
pred = pse(kernels, min_kernel_area)
# python version pse
# pred = pypse(kernels, min_kernel_area)
scale = (org_img.shape[1] * 1.0 / pred.shape[1], org_img.shape[0] * 1.0 / pred.shape[0])
label = pred
label_num = np.max(label) + 1
bboxes = []
for i in range(1, label_num):
points = np.array(np.where(label == i)).transpose((1, 0))[:, ::-1]
if points.shape[0] < min_area:
continue
score_i = np.mean(score[label == i])
if score_i < min_score:
continue
rect = cv2.minAreaRect(points)
bbox = cv2.boxPoints(rect) * scale
bbox = bbox.astype('int32')
bboxes.append(bbox.reshape(-1))
if cuda:
torch.cuda.synchronize()
return bboxes
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('--filepath', nargs='?', type=str, default='test.jpg',
help='Image file for PSENet detection')
parser.add_argument('--modelpath', nargs='?', type=str, default="./checkpoints_1108_best/XH_resnet50_bs_8_ep_50/checkpoint.pth.tar",
help='Path to restore trained model')
parser.add_argument('--kernel_num', nargs='?', type=int, default=3,
help='Number of kernels')
parser.add_argument('--precession', nargs='?', type=int, default=960,
help='Long size of intermediate image')
parser.add_argument('--min_kernel_area', nargs='?', type=float, default=5.0,
help='min kernel area')
parser.add_argument('--min_area', nargs='?', type=float, default=80.0,
help='min area')
parser.add_argument('--min_score', nargs='?', type=float, default=0.93,
help='min score')
parser.add_argument('--Polygon', nargs='?', type=bool, default=False,
help='Parallelogram outputs or Polygon outpus')
args = parser.parse_args()
model = load_psenet(args.modelpath)
img = cv2.imread(args.filepath)
#full version
#bboxes = use_psenet(img,model,args.precession,args.kernel_num,args.min_kernel_area,args.min_area,args.min_score)
#simple version
t0 = time.time()
bboxes = use_psenet(img,model,args.precession)
t1 = time.time()
print(t1-t0)
#print(bboxes)
for bbox in bboxes:
cv2.drawContours(img, [bbox.reshape(4, 2)], -1, (0, 255, 0), 2)
cv2.imwrite('res_enjoy_'+args.filepath,img)