-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
59 lines (47 loc) · 1.87 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import cv2
import numpy as np
import os
from matplotlib import pyplot as plt
import time
import mediapipe as mp
DATA_PATH = os.path.join('dataset')
actions = np.array(['hello', 'thanks', 'iloveyou'])
num_sequences = 40
sequence_length = 30
# Preprocessing the data
from sklearn.model_selection import train_test_split
from tensorflow.keras.utils import to_categorical
label_map = {label: num for num, label in enumerate(actions)}
sequences, labels = [], []
for action in actions:
for sequence in range(num_sequences):
window = []
for frame_num in range(sequence_length):
res = np.load(os.path.join(DATA_PATH, action, str(sequence), "{}.npy".format(frame_num)))
window.append(res)
sequences.append(window)
labels.append(label_map[action])
# Creating training and testing set
X = np.array(sequences)
y = to_categorical(labels).astype(int)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1)
# Model
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.callbacks import TensorBoard
log_dir = os.path.join('Logs')
tb_callback = TensorBoard(log_dir=log_dir)
model = Sequential()
model.add(LSTM(64, return_sequences=True, activation='relu', input_shape=(30, 1662)))
model.add(LSTM(128, return_sequences=True, activation='relu'))
model.add(LSTM(64, return_sequences=False, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(actions.shape[0], activation='softmax'))
model.compile(optimizer='Adam', loss='categorical_crossentropy', metrics=['categorical_accuracy'])
try:
model.fit(X_train, y_train, epochs=500, callbacks=[tb_callback])
except KeyboardInterrupt:
print("Training interrupted. Saving model...")
model.save('saved_model.h5')
print("Model saved as 'saved_model.h5'")