-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathpanda.py
109 lines (83 loc) · 4.03 KB
/
panda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import numpy as np
import torch
from sklearn.metrics import roc_auc_score
import torch.optim as optim
import argparse
from losses import CompactnessLoss, EWCLoss
import utils
from copy import deepcopy
from tqdm import tqdm
def train_model(model, train_loader, test_loader, device, args, ewc_loss):
model.eval()
auc, feature_space = get_score(model, device, train_loader, test_loader)
print('Epoch: {}, AUROC is: {}'.format(0, auc))
optimizer = optim.SGD(model.parameters(), lr=args.lr, weight_decay=0.00005, momentum=0.9)
center = torch.FloatTensor(feature_space).mean(dim=0)
criterion = CompactnessLoss(center.to(device))
for epoch in range(args.epochs):
running_loss = run_epoch(model, train_loader, optimizer, criterion, device, args.ewc, ewc_loss)
print('Epoch: {}, Loss: {}'.format(epoch + 1, running_loss))
auc, feature_space = get_score(model, device, train_loader, test_loader)
print('Epoch: {}, AUROC is: {}'.format(epoch + 1, auc))
def run_epoch(model, train_loader, optimizer, criterion, device, ewc, ewc_loss):
running_loss = 0.0
for i, (imgs, _) in enumerate(train_loader):
images = imgs.to(device)
optimizer.zero_grad()
_, features = model(images)
loss = criterion(features)
if ewc:
loss += ewc_loss(model)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1e-3)
optimizer.step()
running_loss += loss.item()
return running_loss / (i + 1)
def get_score(model, device, train_loader, test_loader):
train_feature_space = []
with torch.no_grad():
for (imgs, _) in tqdm(train_loader, desc='Train set feature extracting'):
imgs = imgs.to(device)
_, features = model(imgs)
train_feature_space.append(features)
train_feature_space = torch.cat(train_feature_space, dim=0).contiguous().cpu().numpy()
test_feature_space = []
with torch.no_grad():
for (imgs, _) in tqdm(test_loader, desc='Test set feature extracting'):
imgs = imgs.to(device)
_, features = model(imgs)
test_feature_space.append(features)
test_feature_space = torch.cat(test_feature_space, dim=0).contiguous().cpu().numpy()
test_labels = test_loader.dataset.targets
distances = utils.knn_score(train_feature_space, test_feature_space)
auc = roc_auc_score(test_labels, distances)
return auc, train_feature_space
def main(args):
print('Dataset: {}, Normal Label: {}, LR: {}'.format(args.dataset, args.label, args.lr))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
model = utils.get_resnet_model(resnet_type=args.resnet_type)
model = model.to(device)
ewc_loss = None
# Freezing Pre-trained model for EWC
if args.ewc:
frozen_model = deepcopy(model).to(device)
frozen_model.eval()
utils.freeze_model(frozen_model)
fisher = torch.load(args.diag_path)
ewc_loss = EWCLoss(frozen_model, fisher)
utils.freeze_parameters(model)
train_loader, test_loader = utils.get_loaders(dataset=args.dataset, label_class=args.label, batch_size=args.batch_size)
train_model(model, train_loader, test_loader, device, args, ewc_loss)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='')
parser.add_argument('--dataset', default='cifar10')
parser.add_argument('--diag_path', default='./data/fisher_diagonal.pth', help='fim diagonal path')
parser.add_argument('--ewc', action='store_true', help='Train with EWC')
parser.add_argument('--epochs', default=15, type=int, metavar='epochs', help='number of epochs')
parser.add_argument('--label', default=0, type=int, help='The normal class')
parser.add_argument('--lr', type=float, default=1e-2, help='The initial learning rate.')
parser.add_argument('--resnet_type', default=152, type=int, help='which resnet to use')
parser.add_argument('--batch_size', default=32, type=int)
args = parser.parse_args()
main(args)