-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrain & Test SVM.py
executable file
·132 lines (103 loc) · 3.88 KB
/
Train & Test SVM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#!coding: utf-8
from svm import *
from svmutil import *
import os, sys
from PIL import Image
##import psyco
##psyco.full()
##C=10
##KERNEL = RBF
if not os.path.isfile(os.path.join(MODEL_FOLDER, MODEL_FILE)) or GENERATE_ANYWAY:
#Si le modèle n'existe pas ou que l'on veut spécifie GENERATE_ANYWAY=True, on le génère. Sinon, on le charge.
print """
##############################################################################
############################ TRAINING ##################################
##############################################################################
"""
labels = []
samples = []
print "LOADING IMAGES..."
train_elem = '3de2mt'
#Train everything
train_elem = ''
for folder, subfolders, files in os.walk(TRAINING_FOLDER):
if (folder[0] != ".") and (folder[-1] in train_elem or train_elem == ''):
loaded = False
for file in [file for file in files if 'bmp' in file]:
if not loaded:
print "folder", folder, "loaded"
loaded = True
im = Image.open(os.path.join(folder, file))
labels.append(ord(folder[-1])-65)
samples.append(map(lambda e:e/255., list(im.getdata())))
print "Done.\n"
print "GENERATING MODEL..."
problem = svm_problem(labels, samples);
size = len(samples)
#param = svm_parameter(C = 10,nr_weight = 2,weight_label = [1,0],weight = [10,1], probability=1)
#param = svm_parameter(kernel_type = KERNEL, C=C, probability = 1)
param = svm_parameter('-t %s -c %s -b %s' % (KERNEL, C, 1))
#kernels : LINEAR, POLY, RBF, and SIGMOID
#types : C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, and NU_SVR
#model = svm_model(problem,param)
model = libsvm.svm_train(problem, param)
model = toPyModel(model)
#model.save(os.path.join(MODEL_FOLDER, MODEL_FILE))
svm_save_model(os.path.join(MODEL_FOLDER, MODEL_FILE),model)
print "Done.\n"
else:
model = svm_model(os.path.join(MODEL_FOLDER, MODEL_FILE))
print "Model successfully loaded."
def predict(model, chemin_image):
if not os.path.isfile(chemin_image):
print "FICHIER INEXISTANT"
return
data = list(Image.open(chemin_image).convert('L').getdata())
data = map(lambda e:e/255., data)
prediction = model.predict(data)
probability = model.predict_probability(data)
if VERBOSE:
print probability
return prediction
def analyze_folder(folder):
errors = 0
nb = 0
for folder, subfolders, files in os.walk(folder):
for file in [file for file in files if 'bmp' in file]:
prediction = predict(model, os.path.join(folder, file))
if prediction != ord(folder[-1])-65:
errors += 1
nb += 1
print "Errors: %d / %d\n" % (errors, nb)
return 100.*errors/nb
##print """
################################################################################
############################## TEST MODEL ################################
################################################################################
##"""
##
##error_rate_tr = 0
##nb_tr = 0
##print "Test on training set:"
##print "---------------------"
##for subdir in os.listdir(TRAINING_FOLDER):
## if subdir[0] != ".":
## print "Testing on", subdir[-1]
## error_rate_tr += analyze_folder(os.path.join(TRAINING_FOLDER, subdir))
## nb_tr += 1
##error_rate_tr /= nb_tr
##
##error_rate_test = 0
##nb_test = 0
##print "Test on test set:"
##print "-----------------"
##for subdir in os.listdir(TEST_FOLDER):
## if subdir[0] != ".":
## print "Testing on", subdir[-1]
## error_rate_test += analyze_folder(os.path.join(TEST_FOLDER, subdir))
## nb_test += 1
##error_rate_test /= nb_test
##
##print
##print "Error on training set:", error_rate_tr, '%'
##print "Error on test set:", error_rate_test, '%'