Skip to content

Evaluation code for TII paper "3D Facial Landmarks Detection for Intelligent Video Systems".

Notifications You must be signed in to change notification settings

thanhhvnqb/3dface_val

Repository files navigation

HGFPN: 3D Facial Landmarks Detection for Intelligent Video Systems

Prerequisite

  • MXNet>=1.2.1
  • tqdm==4.19.1
  • Matplotlib
  • NumPy
  • scipy
  • torchfile
  • jupyter notebook

Table of results

  • LS3D-W: (Score format: AUC / Mean (StD) NME)

    Method 300VW-3D-CatA 300VW-3D-CatB 300VW-3D-CatC Menpo-3D 300W-3D
    3DDFA [1] 56.51 / 3.29 (2.83) 55.68 / 3.18 (2.01) 39.24 / 4.88 (3.99) 49.93 / 3.92 (3.30) 53.15 / 3.62 (3.13)
    3D-FAN [2] 69.34 / 2.36 (3.75) 70.54 / 2.31 (3.93) 50.05 / 4.17 (6.03) 65.54 / 2.38 (1.27) 81.09 / 1.27 (0.37)
    HGFPN 73.52 / 1.93 (2.12) 74.63 / 1.94 (2.70) 61.78 / 2.93 (3.48) 71.97 / 1.96 (1.72) 78.89 / 1.43 (0.42)
  • AFLW2000-3D

    Method AUC [0, 30] [30, 60] [60, 90] Mean (StD)
    3DDFA [1] - 4.11 4.38 5.16 4.55 (0.54)
    3DDFA + SDM [1] - 3.43 4.24 7.17 4.94 (-)
    3D-FAN [2] - 2.47 3.01 4.31 3.26 (-)
    3DDFA* [1] 49.90 3.11 4.18 5.52 3.68 (2.71)
    3D-FAN* [2] 57.66 2.51 3.27 4.46 2.95 (1.47)
    HGFPN 62.47 2.29 2.90 4.32 2.71 (2.59)

    * denotes results obtained by running public code.

  • AFLW2000-3D-Reannotated

    Method AUC [0, 30] [30, 60] [60, 90] Mean (StD)
    3DDFA* [1] 57.32 2.58 3.48 5.03 3.13 (2.48)
    3D-FAN* [2] 72.69 1.85 1.84 2.24 1.91 (1.77)
    HGFPN 74.22 1.59 1.75 3.16 1.86 (2.46)

    * denotes results obtained by running public code.

Run evaluation

Prepare data

  • You can download LS3D-W datasets from homepage and ALFW-2000-3D from hompage
  • Put LS3W-3D and AFLW2000-3D to data folder
  • Modify path of datasets in get_preds.py file

Run evaluation

  • Run get_preds.py to get the predicted result of the proposed HGFPN.
  • Run evaluation_all.ipynb to get the AUC, NME scores.
  • Run eval_aflw2000.ipynb to get the detailed score of AFLW2000(-Reannotated).
  • Run visualization.py to get the AUC curves.

Output of methods

  • Predicted results of 3DDFA (version 20190822) can be downloaded from Google Drive or can be obtained by run code from their public code.
  • Predicted results of 3D-FAN (version 20190822) can be downloaded from Google Drive or obtained by running code from their public code.
    • You should modifiy the main.lua file. Line predictions[i] = preds_img:clone() + 1.75 to predictions[i] = preds_img:clone() to obtain better results.
  • Predicted results of HGFPN can be downloaded from Google Drive.

Citation

@article{thanh2020tii3dfacial,
    author={Van-Thanh Hoang, De-Shuang Huang, and Kang-Hyun Jo},
    journal={IEEE Transactions on Industrial Informatics},
    title={3D Facial Landmarks Detection for Intelligent Video Systems},
    year={2020},
    ISSN={1551-3203},
}

References

[1] X. Zhu, X. Liu, Z. Lei, and S. Z. Li, “Face alignment in full pose range: A 3d total solution,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 1, pp. 78–92, 2017.

[2] A. Bulat and G. Tzimiropoulos, “Hierarchical binary cnns for landmark localization with limited resources,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.

About

Evaluation code for TII paper "3D Facial Landmarks Detection for Intelligent Video Systems".

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published