- MXNet>=1.2.1
- tqdm==4.19.1
- Matplotlib
- NumPy
- scipy
- torchfile
- jupyter notebook
-
LS3D-W: (Score format:
AUC / Mean (StD) NME
)Method 300VW-3D-CatA 300VW-3D-CatB 300VW-3D-CatC Menpo-3D 300W-3D 3DDFA [1] 56.51 / 3.29 (2.83) 55.68 / 3.18 (2.01) 39.24 / 4.88 (3.99) 49.93 / 3.92 (3.30) 53.15 / 3.62 (3.13) 3D-FAN [2] 69.34 / 2.36 (3.75) 70.54 / 2.31 (3.93) 50.05 / 4.17 (6.03) 65.54 / 2.38 (1.27) 81.09 / 1.27 (0.37) HGFPN 73.52 / 1.93 (2.12) 74.63 / 1.94 (2.70) 61.78 / 2.93 (3.48) 71.97 / 1.96 (1.72) 78.89 / 1.43 (0.42) -
AFLW2000-3D
Method AUC [0, 30] [30, 60] [60, 90] Mean (StD) 3DDFA [1] - 4.11 4.38 5.16 4.55 (0.54) 3DDFA + SDM [1] - 3.43 4.24 7.17 4.94 (-) 3D-FAN [2] - 2.47 3.01 4.31 3.26 (-) 3DDFA* [1] 49.90 3.11 4.18 5.52 3.68 (2.71) 3D-FAN* [2] 57.66 2.51 3.27 4.46 2.95 (1.47) HGFPN 62.47 2.29 2.90 4.32 2.71 (2.59) * denotes results obtained by running public code.
-
AFLW2000-3D-Reannotated
Method AUC [0, 30] [30, 60] [60, 90] Mean (StD) 3DDFA* [1] 57.32 2.58 3.48 5.03 3.13 (2.48) 3D-FAN* [2] 72.69 1.85 1.84 2.24 1.91 (1.77) HGFPN 74.22 1.59 1.75 3.16 1.86 (2.46) * denotes results obtained by running public code.
- You can download LS3D-W datasets from homepage and ALFW-2000-3D from hompage
- Put LS3W-3D and AFLW2000-3D to
data
folder - Modify path of datasets in
get_preds.py
file
- Run
get_preds.py
to get the predicted result of the proposed HGFPN. - Run
evaluation_all.ipynb
to get the AUC, NME scores. - Run
eval_aflw2000.ipynb
to get the detailed score of AFLW2000(-Reannotated). - Run
visualization.py
to get the AUC curves.
- Predicted results of 3DDFA (version 20190822) can be downloaded from Google Drive or can be obtained by run code from their public code.
- Predicted results of 3D-FAN (version 20190822) can be downloaded from Google Drive or obtained by running code from their public code.
- You should modifiy the
main.lua
file. Linepredictions[i] = preds_img:clone() + 1.75
topredictions[i] = preds_img:clone()
to obtain better results.
- You should modifiy the
- Predicted results of HGFPN can be downloaded from Google Drive.
@article{thanh2020tii3dfacial,
author={Van-Thanh Hoang, De-Shuang Huang, and Kang-Hyun Jo},
journal={IEEE Transactions on Industrial Informatics},
title={3D Facial Landmarks Detection for Intelligent Video Systems},
year={2020},
ISSN={1551-3203},
}
[1] X. Zhu, X. Liu, Z. Lei, and S. Z. Li, “Face alignment in full pose range: A 3d total solution,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 1, pp. 78–92, 2017.
[2] A. Bulat and G. Tzimiropoulos, “Hierarchical binary cnns for landmark localization with limited resources,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.