-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpromp.py
executable file
·580 lines (441 loc) · 22.7 KB
/
promp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
#!/usr/bin/env python
import pdb
import rospy
import sys, time, os
import numpy as np
from scipy import linalg
from handover.msg import skeleton
from std_msgs.msg import Float64MultiArray
from geometry_msgs.msg import PointStamped
from geometry_msgs.msg import PoseArray
from reflex_msgs.msg import Command
import baxter_interface
from scipy.optimize import minimize
from scipy.spatial.distance import mahalanobis
class ProMP:
'''
------------------------------------------------------PROMP INITIALIZATION-----------------------------------------------------
'''
def __init__(self, training_address):
self.ndemos = 30
self.obs_dofs = 4
self.bax_dofs = 7
self.stdev = 0.005
self.count = 0
self.phase_z = 0
self.dt = 0.01
self.start = 1
self.p_data, self.q_data = self.loadData(self.dt, training_address)
self.promp = self.pmpRegression(self.q_data)
self.param = {"nTraj":self.p_data["size"], "nTotalJoints":self.promp["nJoints"], "observedJointPos":np.array([0,1,2,3]), "observedJointVel":np.array([])}
print "Initialized"
# Subscribe to observed data
# self.obs_sub = rospy.Subscriber("skeleton_data", skeleton, self.callback, queue_size = 1)
# self.obs_sub = rospy.Subscriber("/objects/3d", PoseArray, self.callback, queue_size=1)
self.limb = baxter_interface.Limb('right')
init_angles = {'right_s0': -0.7815632114276183, 'right_s1': 0.2519563444101792, 'right_w0': 1.2072428800658206, 'right_w1': 0.20862138715241627, 'right_w2': 0.5437961893053792, 'right_e0': -0.16528642989465334, 'right_e1': 1.2448254093690132}
self.limb.move_to_joint_positions(init_angles,timeout=4.0)
self.left_limb = baxter_interface.Limb('left')
left_angles = {'left_w0': -0.38502917775923884, 'left_w1': 0.06212622190935926, 'left_w2': -1.685077895492127, 'left_e0': 0.019558255045539024, 'left_e1': 1.2486603613387268, 'left_s0': 0.7589369948063085, 'left_s1': 0.3129320807286244}
self.left_limb.move_to_joint_positions(left_angles,5)
# print "Trained"
def reset_right_hand(self):
# reset_angles = {'right_s0': -0.1902136176977913, 'right_s1': -0.24236896448589537, 'right_w0': 1.6171992456281974, 'right_w1': 0.4966262800779027, 'right_w2': -2.9931800123614134, 'right_e0': 0.9583544972314122, 'right_e1': 1.2133788032173622}
# reset_angles = init_angles = {'right_s0': -1.469170099597255, 'right_s1': 0.24160197409195266, 'right_w0': -0.2807184841830307, 'right_w1': 0.8364030245945219, 'right_w2': 0.41724277430483253, 'right_e0': 0.5069806503961293, 'right_e1': 1.5500875861582106}
reset_angles = init_angles = {'right_s0': -0.7815632114276183, 'right_s1': 0.2519563444101792, 'right_w0': 1.2072428800658206, 'right_w1': 0.20862138715241627, 'right_w2': 0.5437961893053792, 'right_e0': -0.16528642989465334, 'right_e1': 1.2448254093690132}
self.limb.move_to_joint_positions(reset_angles,timeout=4.0)
def reset_left_hand(self):
left_angles = {'left_w0': -0.38502917775923884, 'left_w1': 0.06212622190935926, 'left_w2': -1.685077895492127, 'left_e0': 0.019558255045539024, 'left_e1': 1.2486603613387268, 'left_s0': 0.7589369948063085, 'left_s1': 0.3129320807286244}
self.left_limb.move_to_joint_positions(left_angles,timeout=4.0)
def to_the_basket(self):
basket_angles = {'right_s0': 0.5882816321540562, 'right_s1': 0.05560680356084625, 'right_w0': 0.43526704856248616, 'right_w1': 1.0239321759135136, 'right_w2': 0.28877188331942916, 'right_e0': 0.2051699303796741, 'right_e1': 1.4074273728848672}
self.limb.move_to_joint_positions(basket_angles, timeout=4.0)
def safe_right_dist(self):
safe_angle = {'right_s0': -1.4442429117941171, 'right_s1': 0.2519563444101792, 'right_w0': 1.2570972556720965, 'right_w1': 0.6197282383057071, 'right_w2': 1.750272078977257, 'right_e0': -0.5530000740326917, 'right_e1': -0.0502378708032473}
self.limb.move_to_joint_positions(safe_angle, timeout=2.5)
def safe_45_dist(self):
safe_angle = {'right_s0': -0.1787087617886507, 'right_s1': 0.41609228871391846, 'right_w0': 1.002456444883118, 'right_w1': 0.6124418295632514, 'right_w2': 1.3993739737484687, 'right_e0': -0.05944175553055978, 'right_e1': 0.30602916718314005}
self.limb.move_to_joint_positions(safe_angle, timeout=2.5)
def safe_front_dist(self):
safe_angle = {'right_s0': -0.01687378866673955, 'right_s1': 0.22856313739492665, 'right_w0': 1.1765632643081123, 'right_w1': 1.300048717732888, 'right_w2': 1.0530778108833365, 'right_e0': 0.06711165946998685, 'right_e1': -0.049854375606275945}
self.limb.move_to_joint_positions(safe_angle, timeout=2.5)
def test_promp(self, obs_realtime):
'''
Test ProMP
'''
time.sleep(2)
self.this_phase = 98
self.obs_pose = obs_realtime
# print len(self.q_data)
# print self.q_data[1].shape
self.runPromp()
def replay_motion(self):
time.sleep(2)
self.this_phase = 98
self.obs_pose = self.q_data[2][self.this_phase,0:3]
print self.obs_pose
otp_angles = self.runPromp()
# self.limb.move_to_joint_positions(otp_angles, timeout=4.0)
# time.sleep(2)
# self.this_phase = 98
# promp = np.array(self.q_data[2][self.this_phase,4:11])
# otp_angles = {'right_s0': promp[0,0], 'right_s1': promp[0,1], 'right_w0': promp[0,4], 'right_w1': promp[0,5], 'right_w2': promp[0,6], 'right_e0': promp[0,2], 'right_e1': promp[0,3]}
# self.limb.move_to_joint_positions(otp_angles, timeout=2.75)
# self.obs_pose = self.q_data[1][self.this_phase,4:11]
# print self.obs_pose
# self.runPromp()
# print promp
# print self.obs_pose
# promp = np.array(promp[4:11])
# P = Float64MultiArray()
# P.data = self.hand
# self.goal_pub.publish(P)
# def callback(self,data):
# pos = data.poses
# point = np.array([pos[0].position.x,pos[0].position.y,pos[0].position.z])
# obs = self.Observation(self.stdev,self.param,self.p_data,point)
# self.kf = self.kfLoop(self.promp,self.param,obs)
# self.P_rw = np.matrix([data.joints[2].x, data.joints[2].y, data.joints[2].z, float(data.joints[2].stamp)])
# self.P_rw = np.matrix([data.joints[2].x, data.joints[2].y, data.joints[2].z, data.joints[2].stamp])
#User-Adaptive Frame
# P_rs = np.array([data.joints[0].x, data.joints[0].y, data.joints[0].z])
# P_ls = np.array([data.joints[1].x, data.joints[1].y, data.joints[1].z])
# P_o = (P_rs + P_ls)/2
# theta = np.pi - np.arctan2((P_rs[2] - P_ls[2]),(P_rs[0] - P_ls[0]))
# # print np.rad2deg(theta)
# self.tf_k2h = np.array([[np.cos(theta), 0, -np.sin(theta), P_o[0]], [0, 1, 0, P_o[1]], [np.sin(theta), 0, np.cos(theta), P_o[2]], [0, 0, 0, 1]])
# self.tf_h2k = np.linalg.inv(self.tf_k2h)
# self.otp_point = np.matrix([data.joints[2].x, data.joints[2].y, data.joints[2].z, 1.0])
# self.otp_point = np.matmul(self.tf_k2h, self.otp_point.T)
# self.otp_point[3,0] = self.P_rw[0,3]
# self.P_rw = self.otp_point.T
# self.D = np.append(self.D, self.P_rw, axis=0)
# self.D = self.D[(np.shape(self.D)[0] - 2):np.shape(self.D)[0],:]
#Extracting wrist and shoulder positions of human and baxter
# self.otp_s = (P_rs+P_ls)/2
# self.otp_s[2] = self.otp_s[2]/2
# #Human wrist position: current and previous
# P_new = self.D[1, 0:3]
# P_old = self.D[0, 0:3]
# #Distance between current location and goal position
# e_old = np.linalg.norm(P_old - self.otp_s)
# e_new = np.linalg.norm(P_new - self.otp_s)
# # if (((e_old - e_new) > 0.0001) and self.start == 1) or self.phase_z > 30:
# if self.count==0:
# self.t0 = self.D[0,3]
# self.timer_begin = time.time()
# self.count += 1
# self.phase_t = self.D[1,3]-self.t0
# '''
# Phase Estimation
# '''
# t_sum = np.zeros((100,len(self.q_data)))
# for i in range(0,len(self.q_data)):
# t_sum[:,i] = self.q_data[i][:,3].T
# t_mean = t_sum.sum(axis=1)/self.ndemos
# self.phase_z = (np.abs(t_mean - self.phase_t)).argmin()
# print self.phase_z
# # if 1 <= self.phase_z and self.phase_z < 50:
# # self.moveBaxter()
# # if 10 <= self.phase_z and self.phase_z <= 60:
# # self.this_phase = self.phase_z
# # print self.phase_z
# self.runPromp()
# # if self.phase_z > 90:
# error = self.D[1,0:3] - self.hand
# error = np.linalg.norm(error)
# print 'error is', error
# def moveBaxter(self):
# final_angles = {'right_s0': -0.09127185687918211, 'right_s1': 0.018407769454624964, 'right_w0': 0.9311263382464462, 'right_w1': 1.1083011192472114, 'right_w2': 0.5606699779721187, 'right_e0': 1.2778059963085497, 'right_e1': 1.45076233014263}
# self.limb.set_joint_positions(final_angles)
# self.limb.move_to_joint_positions(final_angles,timeout=2.75,threshold=0.05)
# # elapsed_time = time.time() - self.timer_begin
# # print 'time is', elapsed_time
# self.hand = np.matrix([0.06,0.002,0.57])
def runPromp(self):
'''
ProMP Estimation
'''
# obs_pose = self.D[1,:3]
# print obs_pose
param = {"nTraj":self.p_data["size"], "nTotalJoints":self.promp["nJoints"], "observedJointPos":np.array([0,1,2]), "observedJointVel":np.array([])}
obs = self.Observation(self.stdev,param,self.p_data,self.obs_pose)
self.kf = self.kfLoop(self.promp,param,obs)
'''
Populate data for publishing
'''
promp = []
for i in range(len(self.kf["q_mean"])):
promp.append(self.kf["q_mean"][i][98])
promp = np.array(promp[4:11])
otp_angles = {'right_s0': promp[0], 'right_s1': promp[1], 'right_w0': promp[4], 'right_w1': promp[5], 'right_w2': promp[6], 'right_e0': promp[2], 'right_e1': promp[3]}
self.limb.move_to_joint_positions(otp_angles, timeout=4.0)
# return otp_angles
def loadData(self,dt,training_address):
bax_data, obs_data = [], []
for i in range(self.ndemos):
bax = np.loadtxt(open(training_address + "/demo_baxter_"+ str(i+1) +".csv", "rb"), delimiter=",")
bax_data.append(bax)
obs = np.loadtxt(open(training_address + "/demo_human_"+ str(i+1) +".csv", "rb"), delimiter=",")
obs_data.append(obs[:,:4])
bax, bax_mean = self.addVelocity(bax_data)
print
obs, obs_mean = self.addVelocity(obs_data)
demo_data = []
for i in range(len(bax)):
demo_data.append(np.concatenate((obs[i],bax[i]),axis=1))
demo_mean = np.concatenate((obs_mean,bax_mean),axis=1)
demo = {"q":[], "qdot":[], "q_mean":[], "q_cov":[], "q_var":[], "qdot_mean":[], "qdot_cov":[], "qdot_var":[]}
for i in range(demo_data[0].shape[1]/2):
q = q_dot = []
for j in range(len(demo_data)):
q.append(demo_data[j][:,2*i].T)
q_dot.append(demo_data[j][:,(2*i)+1].T) #TODO: Velocity not recalculated like in MATLAB. VERIFY!!???
demo["q"].append(np.matrix(q))
demo["qdot"].append(np.matrix(q_dot))
for i in range(demo_data[0].shape[1]/2):
demo["q_mean"].append(np.mean(demo["q"][i],axis=0))
demo["q_cov"].append(np.cov(demo["q"][i].T))
demo["q_var"].append(np.var(demo["q"][i],axis=0,ddof=1).T)
demo["qdot_mean"].append(np.mean(demo["qdot"][i],axis=0))
demo["qdot_cov"].append(np.cov(demo["qdot"][i].T))
demo["qdot_var"].append(np.var(demo["qdot"][i],axis=0,ddof=1).T)
demo["size"] = demo_data[0].shape[0]
# print demo["qdot_mean"][4]
# print demo["q"][0].shape, demo["qdot"][0].shape, demo["q_mean"][0].shape, demo["q_cov"][0].shape, demo["q_var"][0].shape, demo["qdot_mean"][0].shape, demo["qdot_cov"][0].shape, demo["qdot_var"][0].shape
demo_q = []
for i in range(len(demo_data)):
q = []
for j in range(demo_data[0].shape[1]/2):
q.append(demo_data[i][:,2*j])
demo_q.append(np.matrix(q).T)
print demo_q[1].shape
print "Data Loaded"
return demo, demo_q
def addVelocity(self,data):
for k in range(len(data)):
d = data[k]
vel = np.zeros((d.shape[0],2*d.shape[1]))
for i in range(d.shape[1]):
vel[:,2*i] = d[:,i]
for j in range(1,d.shape[0]):
vel[j,(2*i)+1] = (d[j,i] - d[j-1,i])/self.dt
vel_d = np.zeros((100,vel.shape[1]))
for i in range(vel.shape[1]):
xo = np.linspace(0,99,100)
xp = np.linspace(0,99,d.shape[0])
vel_d[:,i] = np.interp(xo,xp,vel[:,i])
data[k] = vel_d
mean = sum(data)/len(data)
return data, mean
def pmpRegression(self,data,nBasis=30):
nJoints = data[0].shape[1]
nDemo = len(data)
nTraj = data[0].shape[0]
mu_location = np.linspace(0, 1, nBasis)
phase = self.Phase(self.dt)
weight = {"nBasis":nBasis, "nJoints":nJoints, "nTraj":nTraj, "nDemo":nDemo}
weight["my_linRegRidgeFactor"] = 1e-08 * np.identity(nBasis)
sigma = 0.05 * np.ones((1, nBasis))
basis = self.generateGaussianBasis(phase, mu_location, sigma)
weight = self.leastSquareOnWeights(weight, basis["Gn"], data)
pmp = {"phase":phase, "w":weight, "basis":basis, "nBasis":nBasis, "nJoints":nJoints, "nDemo":nDemo, "nTraj":nTraj}
return pmp
def Phase(self,t):
phase = {"dt":t}
phase["z"] = np.linspace(t,1,1/t)
zd = np.diff(phase["z"])/t
phase["zd"] = np.append(zd,zd[-1])
zdd = np.diff(phase["zd"])/t
phase["zdd"] = np.append(zdd,zdd[-1])
return phase
# def Weight(nBasis,nJoints,nTraj,nDemo):
# weight = {"nBasis":nBasis, "nJoints":nJoints, "nTraj":nTraj, "nDemo":nDemo}
# weight["my_linRegRidgeFactor"] = 1e-08 * np.ones((nBasis,nBasis))
def generateGaussianBasis(self,phase,mu,sigma):
basisCenter = mu
z = phase["z"]
zd = phase["zd"]
zdd = phase["zdd"]
z_minus_center = np.matrix(z).T - np.matrix(basisCenter)
at = np.multiply(z_minus_center, (1.0/sigma))
Basis = {}
basis = np.multiply(np.exp(-0.5*np.power(at,2)), 1./sigma/np.sqrt(2*np.pi))
basis_sum = np.sum(basis, axis = 1)
basis_n = np.multiply(basis, 1.0/basis_sum)
z_minus_center_sigma = np.multiply(-z_minus_center, 1.0/np.power(sigma,2))
basisD = np.multiply(z_minus_center_sigma, basis)
# normalizing basisD
basisD_sum = np.sum(basisD, axis = 1)
basisD_n_a = np.multiply(basisD, basis_sum)
basisD_n_b = np.multiply(basis, basisD_sum)
basisD_n = np.multiply(basisD_n_a - basisD_n_b, 1.0/np.power(basis_sum,2))
# second derivative of the basis
tmp = np.multiply(basis, -1.0/np.power(sigma,2))
basisDD = tmp + np.multiply(z_minus_center_sigma, basisD)
basisDD_sum = np.sum(basisDD, axis = 1)
# normalizing basisDD
basisDD_n_a = np.multiply(basisDD, np.power(basis_sum,2))
basisDD_n_b1 = np.multiply(basisD, basis_sum)
basisDD_n_b = np.multiply(basisDD_n_b1, basisD_sum)
basisDD_n_c1 = 2 * np.power(basisD_sum,2) - np.multiply(basis_sum, basisDD_sum)
basisDD_n_c = np.multiply(basis, basisDD_n_c1)
basisDD_n_d = basisDD_n_a - 2 * basisDD_n_b + basisDD_n_c
basisDD_n = np.multiply(basisDD_n_d, 1.0/np.power(basis_sum,3))
basisDD_n = np.multiply(basisDD_n, np.matrix(np.power(zd,2)).T) + np.multiply(basisD_n, np.matrix(zdd).T)
basisD_n = np.multiply(basisD_n, np.matrix(zd).T)
Basis["Gn"] = basis_n
Basis["Gndot"] = basisD_n
Basis["Gnddot"] = basisDD_n
return Basis
def leastSquareOnWeights(self,weight,Gn,data):
weight["demo_q"] = data
nDemo = weight["nDemo"]
nJoints = weight["nJoints"]
nBasis = weight["nBasis"]
my_linRegRidgeFactor = weight["my_linRegRidgeFactor"]
MPPI = np.linalg.solve(Gn.T*Gn + my_linRegRidgeFactor, Gn.T)
w, ind = [], []
for i in range(nJoints):
w_j = np.empty((0,nBasis), float)
for j in range(nDemo):
w_ = MPPI*data[j][:,i]
w_j = np.append(w_j,w_.T,axis=0)
w.append(w_j)
ind.append(np.matrix(range(i*nBasis,(i+1)*nBasis)))
weight["index"] = ind
weight["w_full"] = np.empty((nDemo,0), float)
for i in range(nJoints):
weight["w_full"] = np.append(weight["w_full"],w[i],axis=1)
weight["cov_full"] = np.cov(weight["w_full"].T)
weight["mean_full"] = np.mean(weight["w_full"],axis=0).T
return weight
def Observation(self,stdev,param,p_data,obs_data):
obs = {"joint":param["observedJointPos"], "jointvel":param["observedJointVel"], "stdev":stdev}
obs["q"] = np.zeros((param["nTotalJoints"],param["nTraj"]))
obs["qdot"] = np.zeros((param["nTotalJoints"],param["nTraj"]))
obs["index"] = [99]
# print obs_data
# print obs
# for i in obs["joint"]:
# obs["q"][i,obs["index"]] = obs_data[i]
obs["q"] = obs_data
return obs
def kfLoop(self,promp,param,obs):
sigma_obs = obs["stdev"]
P0 = promp["w"]["cov_full"]
x0 = promp["w"]["mean_full"]
R_obs = (sigma_obs**2)*np.identity(2*param["nTotalJoints"])
for k in obs["index"]:
H0 = self.observationMatrix(k,promp,obs["joint"],obs["jointvel"])
z0 = np.empty((0,0), float)
for i in range(promp["nJoints"]):
# z0 = np.append(z0, obs["q"][i,k])
z0 = np.append(z0, obs["q"])
z0 = np.append(z0, obs["qdot"][i,k])
z0 = np.matrix(z0).T
# print "x0", x0.shape
# print "P0", P0.shape
# print "H0", H0.shape
# print "z0", z0.shape
# print "R_obs", R_obs.shape
# x0, P0 = self.kfRecursion(x0,P0,H0,z0,R_obs)
jointKF = self.perJointPromp(x0,P0,promp)
return jointKF
def kfRecursion(self,x_old,P_old,H,z,R_obs):
H, P_old = np.matrix(H), np.matrix(P_old)
tmp = np.matmul(H,np.matmul(P_old,H.T)) + R_obs
K = np.matmul(np.matmul(P_old,H.T),np.linalg.inv(tmp))
P_new = P_old - (K*H*P_old)
# print P_new.shape
# print "x_old", x_old.shape
# print "K", K.shape
# print "z", z.shape
# print "H", H.shape
x_new = x_old + K*(z - (H*x_old))
# print x_new
# return x_new, P_new
def observationMatrix(self,k,p,observedJointPos,observedJointVel):
nJoints = p["nJoints"]
nTraj = p["nTraj"]
Gn = p["basis"]["Gn"]
Gn_d = p["basis"]["Gndot"]
normalizedTime = k
Hq_measured = Gn[normalizedTime,:]
Hqdot_measured = Gn_d[normalizedTime,:]
Hq_unmeasured = np.zeros((1, p["nBasis"]))
Hqdot_unmeasured = np.zeros((1, p["nBasis"]))
H = []
for i in range(nJoints):
if not observedJointPos.all:
H_temp = Hq_unmeasured
else:
if np.sum(i==observedJointPos)==0:
H_temp = Hq_unmeasured
else:
H_temp = Hq_measured
if not observedJointVel: #when joint vel not observed
H_temp = np.append(H_temp, Hqdot_unmeasured, axis = 0)
else:
if np.sum(j==observedJointVel)==0:
H_temp = np.append(H_temp, Hqdot_unmeasured, axis = 0)
else:
H_temp = np.append(H_temp, Hqdot_measured, axis = 0)
H.append(H_temp)
H = linalg.block_diag(*H)
return H
def perJointPromp(self,xFull,Pfull,pmp):
nBasis = pmp["nBasis"]
nTraj = pmp["nTraj"]
kf = {"w_mean":[],"w_sigma":[],"w_sigma_ii":[],"q_mean":[],"q_sigma_ii":[],"qdot_mean":[],"qdot_sigma_ii":[]}
for i in range(pmp["nJoints"]):
ind = np.array(range(i*nBasis,(i+1)*nBasis))
kf["w_mean"].append(xFull[ind])
kf["w_sigma"].append(Pfull[ind,:][:,ind])
kf["w_sigma_ii"].append(np.diag(kf["w_sigma"][i]))
q_mean, q_sigma_ii, qdot_mean, qdot_sigma_ii = self.thetaToTraj(kf["w_mean"][i], kf["w_sigma"][i], pmp["basis"], pmp["phase"]["dt"], nTraj)
kf["q_mean"].append(q_mean)
kf["q_sigma_ii"].append(q_sigma_ii)
kf["qdot_mean"].append(qdot_mean)
kf["qdot_sigma_ii"].append(qdot_sigma_ii)
return kf
def thetaToTraj(self,w_mean,P_w,basis,phase_dt,nTraj):
x_mean = []
x_sigma_ii = []
xdot_mean = []
xdot_sigma_ii = []
for i in range(nTraj-1):
timePoint = i*phase_dt
mu_x,_,sigma_t = self.getDistribtionsAtTimeT1(w_mean,P_w,basis,phase_dt,timePoint)
x_mean = np.append(x_mean, mu_x[0])
xdot_mean = np.append(xdot_mean, mu_x[1])
x_sigma_ii = np.append(x_sigma_ii, sigma_t[0,0]) #TODO: check indexing
xdot_sigma_ii = np.append(x_sigma_ii, sigma_t[1,1])
return x_mean, x_sigma_ii, xdot_mean, xdot_sigma_ii
def getDistribtionsAtTimeT1(self,w_mu,w_cov,basis,dt,timePoint):
timePointIndex = int(round(timePoint/dt))
Psi_t = basis["Gn"][timePointIndex,:]
Psi_td = basis["Gndot"][timePointIndex,:]
Psi_tdd = basis["Gnddot"][timePointIndex,:]
Psi_t1 = basis["Gn"][timePointIndex+1,:]
Psi_t1d = basis["Gndot"][timePointIndex+1,:]
Phi_t = np.append(Psi_t.T, Psi_td.T, axis=1)
Phi_t1 = np.append(Psi_t1.T, Psi_t1d.T, axis=1)
Phi_td = np.append(Psi_td.T, Psi_tdd.T, axis=1)
mu_x = Phi_t.T * w_mu
mu_xd = Phi_td.T * w_mu
# print w_cov.shape
sigma_t = Phi_t.T * w_cov * Phi_t
sigma_t1 = Phi_t1.T * w_cov * Phi_t1
sigma_t_t1 = Phi_t.T * w_cov * Phi_t1
sigma_td_half = Phi_td.T * w_cov * Phi_t
return mu_x, mu_xd, sigma_t #, sigma_t1, sigma_t_t1, sigma_td_half
def main(args):
rospy.init_node('ProMP', anonymous=True)
pmp = ProMP()
try:
rospy.spin()
except KeyboardInterrupt:
print ("Shutting down")
if __name__ == '__main__':
main(sys.argv)