forked from autowarefoundation/autoware.universe
-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathttc.py
executable file
·304 lines (275 loc) · 10.8 KB
/
ttc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#!/usr/bin/env python3
# Copyright 2023 TIER IV, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from dataclasses import dataclass
from itertools import cycle
import math
from threading import Lock
import time
from PIL import Image
import imageio
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import rclpy
from rclpy.node import Node
from tier4_debug_msgs.msg import Float64MultiArrayStamped
matplotlib.use("TKAgg")
@dataclass
class NPC:
x: float
y: float
th: float
width: float
height: float
speed: float
dangerous: bool
ref_object_enter_time: float
ref_object_exit_time: float
collision_start_time: float
collision_start_dist: float
collision_end_time: float
collision_end_dist: float
pred_x: list[float]
pred_y: list[float]
def __init__(self, data: list[float]):
self.x = data[0]
self.y = data[1]
self.th = data[2]
self.width = data[3]
self.height = data[4]
self.speed = data[5]
self.dangerous = bool(int(data[6]))
self.ref_object_enter_time = data[7]
self.ref_object_exit_time = data[8]
self.collision_start_time = data[9]
self.collision_start_dist = data[10]
self.collision_end_time = data[11]
self.collision_end_dist = data[12]
self.first_collision_x = data[13]
self.first_collision_y = data[14]
self.last_collision_x = data[15]
self.last_collision_y = data[16]
self.pred_x = data[17:58:2]
self.pred_y = data[18:58:2]
class TTCVisualizer(Node):
def __init__(self, args):
super().__init__("ttc_visualizer")
self.ttc_dist_pub = self.create_subscription(
Float64MultiArrayStamped,
"/planning/scenario_planning/lane_driving/behavior_planning/behavior_velocity_planner/debug/intersection/ego_ttc",
self.on_ego_ttc,
1,
)
self.ttc_time_pub = self.create_subscription(
Float64MultiArrayStamped,
"/planning/scenario_planning/lane_driving/behavior_planning/behavior_velocity_planner/debug/intersection/object_ttc",
self.on_object_ttc,
1,
)
self.args = args
self.lane_id = args.lane_id
self.ego_ttc_data = None
self.object_ttc_data = None
self.npc_vehicles = []
self.images = []
self.last_sub = time.time()
self.plot_timer = self.create_timer(0.2, self.on_plot_timer)
self.fig = plt.figure(figsize=(13, 6))
self.ttc_ax = self.fig.add_subplot(1, 2, 1)
self.ttc_vel_ax = self.ttc_ax.twinx()
self.world_ax = self.fig.add_subplot(1, 2, 2)
self.lock = Lock()
self.color_list = [
"#e41a1c",
"#377eb8",
"#4daf4a",
"#984ea3",
"#ff7f00",
"#ffff33",
"#a65628",
"#f781bf",
]
plt.ion()
plt.show(block=False)
def plot_ttc(self):
self.ttc_ax.cla()
self.ttc_vel_ax.cla()
n_ttc_data = int(self.ego_ttc_data.layout.dim[1].size)
ego_ttc_time = self.ego_ttc_data.data[n_ttc_data : 2 * n_ttc_data]
ego_ttc_dist = self.ego_ttc_data.data[2 * n_ttc_data : 3 * n_ttc_data]
self.ttc_ax.grid()
self.ttc_ax.set_xlabel("ego time")
self.ttc_ax.set_ylabel("ego dist")
time_dist_plot = self.ttc_ax.plot(ego_ttc_time, ego_ttc_dist, label="time-dist", c="orange")
self.ttc_ax.set_xlim(
min(ego_ttc_time) - 2.0,
min(max(ego_ttc_time) + 3.0, self.args.max_time),
)
# self.ttc_ax.set_ylim(min(ego_ttc_dist) - 2.0, max(ego_ttc_dist) + 3.0)
for npc, color in zip(self.npc_vehicles, cycle(self.color_list)):
t0, t1 = npc.collision_start_time, npc.collision_end_time
d0, d1 = npc.collision_start_dist, npc.collision_end_dist
self.ttc_ax.fill(
[t0, t0, t1, t1, 0, 0],
[d0, 0, 0, d1, d1, d0],
c=color,
alpha=0.2,
)
dd = [d1 - d0 for d0, d1 in zip(ego_ttc_dist, ego_ttc_dist[1:])]
dt = [t1 - t0 for t0, t1 in zip(ego_ttc_time, ego_ttc_time[1:])]
v = [d / t for d, t in zip(dd, dt)]
self.ttc_vel_ax.yaxis.set_label_position("right")
self.ttc_vel_ax.set_ylabel("ego velocity")
# self.ttc_vel_ax.set_ylim(0.0, max(v) + 1.0)
time_velocity_plot = self.ttc_vel_ax.plot(ego_ttc_time[1:], v, label="time-v", c="red")
lines = time_dist_plot + time_velocity_plot
labels = [line.get_label() for line in lines]
self.ttc_ax.legend(lines, labels, loc="upper left")
def plot_world(self):
detect_range = self.args.range
self.world_ax.cla()
n_ttc_data = int(self.ego_ttc_data.layout.dim[1].size)
ego_path_x = self.ego_ttc_data.data[3 * n_ttc_data : 4 * n_ttc_data]
ego_path_y = self.ego_ttc_data.data[4 * n_ttc_data : 5 * n_ttc_data]
self.world_ax.set_aspect("equal")
self.world_ax.scatter(ego_path_x[0], ego_path_y[0], marker="x", c="red", s=15)
min_x, max_x = min(ego_path_x), max(ego_path_x)
min_y, max_y = min(ego_path_y), max(ego_path_y)
x_dir = 1 if ego_path_x[-1] > ego_path_x[0] else -1
y_dir = 1 if ego_path_y[-1] > ego_path_y[0] else -1
min_x = min_x - detect_range if x_dir == 1 else min_x - 20
max_x = max_x + detect_range if x_dir == -1 else max_x + 20
min_y = min_y - detect_range if y_dir == 1 else min_y - 20
max_y = max_y + detect_range if y_dir == -1 else max_y + 20
self.world_ax.set_xlim(min_x, max_x)
self.world_ax.set_ylim(min_y, max_y)
arrows = [
(x0, y0, math.atan2(x1 - x0, y1 - y0))
for (x0, y0, x1, y1) in zip(
ego_path_x[0:-1:5],
ego_path_y[0:-1:5],
ego_path_x[4:-1:5],
ego_path_y[4:-1:5],
)
]
for x, y, th in arrows:
self.world_ax.arrow(
x,
y,
math.sin(th) * 0.5,
math.cos(th) * 0.5,
head_width=0.1,
head_length=0.1,
)
for npc, color in zip(self.npc_vehicles, cycle(self.color_list)):
x, y, th, w, h = npc.x, npc.y, npc.th, npc.width, npc.height
bbox = np.array(
[
[-w / 2, -h / 2],
[+w / 2, -h / 2],
[+w / 2, +h / 2],
[-w / 2, +h / 2],
[-w / 2, -h / 2],
]
).transpose()
Rth = np.array([[math.cos(th), -math.sin(th)], [math.sin(th), math.cos(th)]])
bbox_rot = Rth @ bbox
self.world_ax.fill(bbox_rot[0, :] + x, bbox_rot[1, :] + y, color, alpha=0.5)
self.world_ax.plot(
[npc.first_collision_x, npc.last_collision_x],
[npc.first_collision_y, npc.last_collision_y],
c=color,
linewidth=3.0,
)
if npc.dangerous:
self.world_ax.plot(npc.pred_x, npc.pred_y, c=color, linewidth=1.5)
else:
self.world_ax.plot(npc.pred_x, npc.pred_y, c=color, linestyle="--")
self.world_ax.plot(ego_path_x, ego_path_y, c="k", linestyle="--")
def cleanup(self):
if self.args.save:
kwargs_write = {"fps": self.args.fps, "quantizer": "nq"}
max_size_total = 0
max_size = None
for image in self.images:
(w, h) = image.size
if w * h > max_size_total:
max_size = image.size
max_size_total = w * h
reshaped = []
for image in self.images:
reshaped.append(image.resize(max_size))
imageio.mimsave("./" + self.args.gif + ".gif", reshaped, **kwargs_write)
print("saved fig")
rclpy.shutdown()
def on_plot_timer(self):
with self.lock:
if (not self.ego_ttc_data) or (not self.object_ttc_data):
return
if not self.last_sub:
return
now = time.time()
if (now - self.last_sub) > 1.0:
print("elapsed more than 1sec from last sub, exit/save fig")
self.cleanup()
self.plot_ttc()
self.plot_world()
self.fig.canvas.flush_events()
if self.args.save:
image = np.frombuffer(self.fig.canvas.tostring_rgb(), dtype="uint8")
image = image.reshape(self.fig.canvas.get_width_height()[::-1] + (3,))
image = Image.fromarray(image.astype(np.uint8))
self.images.append(image)
def on_ego_ttc(self, msg):
with self.lock:
if int(msg.data[0]) == self.lane_id:
self.ego_ttc_data = msg
self.last_sub = time.time()
def parse_npc_vehicles(self):
self.npc_vehicles = []
n_npc_vehicles = int(self.object_ttc_data.layout.dim[0].size)
npc_data_size = int(self.object_ttc_data.layout.dim[1].size)
for i in range(1, n_npc_vehicles):
data = self.object_ttc_data.data[i * npc_data_size : (i + 1) * npc_data_size]
self.npc_vehicles.append(NPC(data))
def on_object_ttc(self, msg):
with self.lock:
if int(msg.data[0]) == self.lane_id:
self.object_ttc_data = msg
self.parse_npc_vehicles()
self.last_sub = time.time()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--lane_id",
type=int,
required=True,
help="lane_id to analyze",
)
parser.add_argument(
"--range",
type=float,
default=60,
help="detect range for drawing",
)
parser.add_argument("--max_time", type=float, default=100, help="max plot limit for time")
parser.add_argument("-s", "--save", action="store_true", help="flag to save gif")
parser.add_argument("--gif", type=str, default="ttc", help="filename of gif file")
parser.add_argument("--fps", type=float, default=5, help="fps of gif")
args = parser.parse_args()
rclpy.init()
visualizer = TTCVisualizer(args)
rclpy.spin(visualizer)