-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathmain_cpc_lightning.py
413 lines (336 loc) · 20.8 KB
/
main_cpc_lightning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
###############
#generic
import torch
from torch import nn
import pytorch_lightning as pl
from torch.utils.data import DataLoader, ConcatDataset
from torchvision import transforms
import torch.nn.functional as F
import torchvision
import os
import argparse
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
import copy
#################
#specific
from clinical_ts.timeseries_utils import *
from clinical_ts.ecg_utils import *
from functools import partial
from pathlib import Path
import pandas as pd
import numpy as np
from clinical_ts.xresnet1d import xresnet1d50,xresnet1d101
from clinical_ts.basic_conv1d import weight_init
from clinical_ts.eval_utils_cafa import eval_scores, eval_scores_bootstrap
from clinical_ts.cpc import *
def _freeze_bn_stats(model, freeze=True):
for m in model.modules():
if(isinstance(m,nn.BatchNorm1d)):
if(freeze):
m.eval()
else:
m.train()
def sanity_check(model, state_dict_pre):
"""
Linear classifier should not change any weights other than the linear layer.
This sanity check asserts nothing wrong happens (e.g., BN stats updated).
"""
print("=> loading state dict for sanity check")
state_dict = model.state_dict()
for k in list(state_dict.keys()):
print(k)
# only ignore fc layer
if 'head.1.weight' in k or 'head.1.bias' in k:
continue
assert ((state_dict[k].cpu() == state_dict_pre[k].cpu()).all()), \
'{} is changed in linear classifier training.'.format(k)
print("=> sanity check passed.")
class LightningCPC(pl.LightningModule):
def __init__(self, hparams):
super(LightningCPC, self).__init__()
self.hparams = hparams
self.lr = self.hparams.lr
#these coincide with the adapted wav2vec2 params
if(self.hparams.fc_encoder):
strides=[1]*4
kss = [1]*4
features = [512]*4
else: #strided conv encoder
strides=[2,2,2,2] #original wav2vec2 [5,2,2,2,2,2] original cpc [5,4,2,2,2]
kss = [10,4,4,4] #original wav2vec2 [10,3,3,3,3,2] original cpc [18,8,4,4,4]
features = [512]*4 #wav2vec2 [512]*6 original cpc [512]*5
if(self.hparams.finetune):
self.criterion = F.cross_entropy if self.hparams.finetune_dataset == "thew" else F.binary_cross_entropy_with_logits
if(self.hparams.finetune_dataset == "thew"):
num_classes = 5
elif(self.hparams.finetune_dataset == "ptbxl_super"):
num_classes = 5
if(self.hparams.finetune_dataset == "ptbxl_all"):
num_classes = 71
else:
num_classes = None
self.model_cpc = CPCModel(input_channels=self.hparams.input_channels, strides=strides,kss=kss,features=features,n_hidden=self.hparams.n_hidden,n_layers=self.hparams.n_layers,mlp=self.hparams.mlp,lstm=not(self.hparams.gru),bias_proj=self.hparams.bias,num_classes=num_classes,skip_encoder=self.hparams.skip_encoder,bn_encoder=not(self.hparams.no_bn_encoder),lin_ftrs_head=[] if self.hparams.linear_eval else eval(self.hparams.lin_ftrs_head),ps_head=0 if self.hparams.linear_eval else self.hparams.dropout_head,bn_head=False if self.hparams.linear_eval else not(self.hparams.no_bn_head))
target_fs=100
if(not(self.hparams.finetune)):
print("CPC pretraining:\ndownsampling factor:",self.model_cpc.encoder_downsampling_factor,"\nchunk length(s)",self.model_cpc.encoder_downsampling_factor/target_fs,"\npixels predicted ahead:",self.model_cpc.encoder_downsampling_factor*self.hparams.steps_predicted,"\nseconds predicted ahead:",self.model_cpc.encoder_downsampling_factor*self.hparams.steps_predicted/target_fs,"\nRNN input size:",self.hparams.input_size//self.model_cpc.encoder_downsampling_factor)
def forward(self, x):
return self.model_cpc(x)
def _step(self,data_batch, batch_idx, train):
if(self.hparams.finetune):
preds = self.forward(data_batch[0])
loss = self.criterion(preds,data_batch[1])
self.log("train_loss" if train else "val_loss", loss)
return {'loss':loss, "preds":preds.detach(), "targs": data_batch[1]}
else:
loss, acc = self.model_cpc.cpc_loss(data_batch[0],steps_predicted=self.hparams.steps_predicted,n_false_negatives=self.hparams.n_false_negatives, negatives_from_same_seq_only=self.hparams.negatives_from_same_seq_only, eval_acc=True)
self.log("loss" if train else "val_loss", loss)
self.log("acc" if train else "val_acc", acc)
return loss
def training_step(self, train_batch, batch_idx):
if(self.hparams.linear_eval):
_freeze_bn_stats(self)
return self._step(train_batch,batch_idx,True)
def validation_step(self, val_batch, batch_idx, dataloader_idx=0):
return self._step(val_batch,batch_idx,False)
def validation_epoch_end(self, outputs_all):
if(self.hparams.finetune):
for dataloader_idx,outputs in enumerate(outputs_all): #multiple val dataloaders
preds_all = torch.cat([x['preds'] for x in outputs])
targs_all = torch.cat([x['targs'] for x in outputs])
if(self.hparams.finetune_dataset=="thew"):
preds_all = F.softmax(preds_all,dim=-1)
targs_all = torch.eye(len(self.lbl_itos))[targs_all].to(preds.device)
else:
preds_all = torch.sigmoid(preds_all)
preds_all = preds_all.cpu().numpy()
targs_all = targs_all.cpu().numpy()
#instance level score
res = eval_scores(targs_all,preds_all,classes=self.lbl_itos)
idmap = self.val_dataset.get_id_mapping()
preds_all_agg,targs_all_agg = aggregate_predictions(preds_all,targs_all,idmap,aggregate_fn=np.mean)
res_agg = eval_scores(targs_all_agg,preds_all_agg,classes=self.lbl_itos)
self.log_dict({"macro_auc_agg"+str(dataloader_idx):res_agg["label_AUC"]["macro"], "macro_auc_noagg"+str(dataloader_idx):res["label_AUC"]["macro"]})
print("epoch",self.current_epoch,"macro_auc_agg"+str(dataloader_idx)+":",res_agg["label_AUC"]["macro"],"macro_auc_noagg"+str(dataloader_idx)+":",res["label_AUC"]["macro"])
def on_fit_start(self):
if(self.hparams.linear_eval):
print("copying state dict before training for sanity check after training")
self.state_dict_pre = copy.deepcopy(self.state_dict().copy())
def on_fit_end(self):
if(self.hparams.linear_eval):
sanity_check(self,self.state_dict_pre)
def setup(self, stage):
# configure dataset params
chunkify_train = False
chunk_length_train = self.hparams.input_size if chunkify_train else 0
stride_train = self.hparams.input_size
chunkify_valtest = True
chunk_length_valtest = self.hparams.input_size if chunkify_valtest else 0
stride_valtest = self.hparams.input_size//2
train_datasets = []
val_datasets = []
test_datasets = []
for i,target_folder in enumerate(self.hparams.data):
target_folder = Path(target_folder)
df_mapped, lbl_itos, mean, std = load_dataset(target_folder)
# always use PTB-XL stats
mean = np.array([-0.00184586, -0.00130277, 0.00017031, -0.00091313, -0.00148835, -0.00174687, -0.00077071, -0.00207407, 0.00054329, 0.00155546, -0.00114379, -0.00035649])
std = np.array([0.16401004, 0.1647168 , 0.23374124, 0.33767231, 0.33362807, 0.30583013, 0.2731171 , 0.27554379, 0.17128962, 0.14030828, 0.14606956, 0.14656108])
#specific for PTB-XL
if(self.hparams.finetune and self.hparams.finetune_dataset.startswith("ptbxl")):
if(self.hparams.finetune_dataset=="ptbxl_super"):
ptb_xl_label = "label_diag_superclass"
elif(self.hparams.finetune_dataset=="ptbxl_all"):
ptb_xl_label = "label_all"
lbl_itos= np.array(lbl_itos[ptb_xl_label])
def multihot_encode(x, num_classes):
res = np.zeros(num_classes,dtype=np.float32)
for y in x:
res[y]=1
return res
df_mapped["label"]= df_mapped[ptb_xl_label+"_filtered_numeric"].apply(lambda x: multihot_encode(x,len(lbl_itos)))
self.lbl_itos = lbl_itos
tfms_ptb_xl_cpc = ToTensor() if self.hparams.normalize is False else transforms.Compose([Normalize(mean,std),ToTensor()])
max_fold_id = df_mapped.strat_fold.max() #unfortunately 1-based for PTB-XL; sometimes 100 (Ribeiro)
df_train = df_mapped[df_mapped.strat_fold<(max_fold_id-1 if self.hparams.finetune else max_fold_id)]
df_val = df_mapped[df_mapped.strat_fold==(max_fold_id-1 if self.hparams.finetune else max_fold_id)]
if(self.hparams.finetune):
df_test = df_mapped[df_mapped.strat_fold==max_fold_id]
train_datasets.append(TimeseriesDatasetCrops(df_train,self.hparams.input_size,num_classes=len(lbl_itos),data_folder=target_folder,chunk_length=chunk_length_train,min_chunk_length=self.hparams.input_size, stride=stride_train,transforms=tfms_ptb_xl_cpc,annotation=False,col_lbl ="label" if self.hparams.finetune else None,memmap_filename=target_folder/("memmap.npy")))
val_datasets.append(TimeseriesDatasetCrops(df_val,self.hparams.input_size,num_classes=len(lbl_itos),data_folder=target_folder,chunk_length=chunk_length_valtest,min_chunk_length=self.hparams.input_size, stride=stride_valtest,transforms=tfms_ptb_xl_cpc,annotation=False,col_lbl ="label" if self.hparams.finetune else None,memmap_filename=target_folder/("memmap.npy")))
if(self.hparams.finetune):
test_datasets.append(TimeseriesDatasetCrops(df_test,self.hparams.input_size,num_classes=len(lbl_itos),data_folder=target_folder,chunk_length=chunk_length_valtest,min_chunk_length=self.hparams.input_size, stride=stride_valtest,transforms=tfms_ptb_xl_cpc,annotation=False,col_lbl ="label",memmap_filename=target_folder/("memmap.npy")))
print("\n",target_folder)
print("train dataset:",len(train_datasets[-1]),"samples")
print("val dataset:",len(val_datasets[-1]),"samples")
if(self.hparams.finetune):
print("test dataset:",len(test_datasets[-1]),"samples")
if(len(train_datasets)>1): #multiple data folders
print("\nCombined:")
self.train_dataset = ConcatDataset(train_datasets)
self.val_dataset = ConcatDataset(val_datasets)
print("train dataset:",len(self.train_dataset),"samples")
print("val dataset:",len(self.val_dataset),"samples")
if(self.hparams.finetune):
self.test_dataset = ConcatDataset(test_datasets)
print("test dataset:",len(self.test_dataset),"samples")
else: #just a single data folder
self.train_dataset = train_datasets[0]
self.val_dataset = val_datasets[0]
if(self.hparams.finetune):
self.test_dataset = test_datasets[0]
def train_dataloader(self):
return DataLoader(self.train_dataset, batch_size=self.hparams.batch_size, num_workers=4, shuffle=True, drop_last = True)
def val_dataloader(self):
if(self.hparams.finetune):#multiple val dataloaders
return [DataLoader(self.val_dataset, batch_size=self.hparams.batch_size, num_workers=4),DataLoader(self.test_dataset, batch_size=self.hparams.batch_size, num_workers=4)]
else:
return DataLoader(self.val_dataset, batch_size=self.hparams.batch_size, num_workers=4)
def configure_optimizers(self):
if(self.hparams.optimizer == "sgd"):
opt = torch.optim.SGD
elif(self.hparams.optimizer == "adam"):
opt = torch.optim.AdamW
else:
raise NotImplementedError("Unknown Optimizer.")
if(self.hparams.finetune and (self.hparams.linear_eval or self.hparams.train_head_only)):
optimizer = opt(self.model_cpc.head.parameters(), self.lr, weight_decay=self.hparams.weight_decay)
elif(self.hparams.finetune and self.hparams.discriminative_lr_factor != 1.):#discrimative lrs
optimizer = opt([{"params":self.model_cpc.encoder.parameters(), "lr":self.lr*self.hparams.discriminative_lr_factor*self.hparams.discriminative_lr_factor},{"params":self.model_cpc.rnn.parameters(), "lr":self.lr*self.hparams.discriminative_lr_factor},{"params":self.model_cpc.head.parameters(), "lr":self.lr}],self.hparams.lr, weight_decay=self.hparams.weight_decay)
else:
optimizer = opt(self.parameters(), self.lr, weight_decay=self.hparams.weight_decay)
return optimizer
def load_weights_from_checkpoint(self, checkpoint):
""" Function that loads the weights from a given checkpoint file.
based on https://github.com/PyTorchLightning/pytorch-lightning/issues/525
"""
checkpoint = torch.load(checkpoint, map_location=lambda storage, loc: storage,)
pretrained_dict = checkpoint["state_dict"]
model_dict = self.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
self.load_state_dict(model_dict)
#####################################################################################################
#ARGPARSERS
#####################################################################################################
def add_model_specific_args(parser):
parser.add_argument("--input-channels", type=int, default=12)
parser.add_argument("--normalize", action='store_true', help='Normalize input using PTB-XL stats')
parser.add_argument('--mlp', action='store_true', help="False: original CPC True: as in SimCLR")
parser.add_argument('--bias', action='store_true', help="original CPC: no bias")
parser.add_argument("--n-hidden", type=int, default=512)
parser.add_argument("--gru", action="store_true")
parser.add_argument("--n-layers", type=int, default=2)
parser.add_argument("--steps-predicted", dest="steps_predicted", type=int, default=12)
parser.add_argument("--n-false-negatives", dest="n_false_negatives", type=int, default=128)
parser.add_argument("--skip-encoder", action="store_true", help="disable the convolutional encoder i.e. just RNN; for testing")
parser.add_argument("--fc-encoder", action="store_true", help="use a fully connected encoder (as opposed to an encoder with strided convs)")
parser.add_argument("--negatives-from-same-seq-only", action="store_true", help="only draw false negatives from same sequence (as opposed to drawing from everywhere)")
parser.add_argument("--no-bn-encoder", action="store_true", help="switch off batch normalization in encoder")
parser.add_argument("--dropout-head", type=float, default=0.5)
parser.add_argument("--train-head-only", action="store_true", help="freeze everything except classification head (note: --linear-eval defaults to no hidden layer in classification head)")
parser.add_argument("--lin-ftrs-head", type=str, default="[512]", help="hidden layers in the classification head")
parser.add_argument('--no-bn-head', action='store_true', help="use no batch normalization in classification head")
return parser
def add_default_args():
parser = argparse.ArgumentParser(description='PyTorch Lightning CPC Training')
parser.add_argument('--data', metavar='DIR',type=str,
help='path(s) to dataset',action='append')
parser.add_argument('--epochs', default=30, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--batch-size', default=64, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--wd', '--weight-decay', default=1e-3, type=float,
metavar='W', help='weight decay (default: 0.)',
dest='weight_decay')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--pretrained', default='', type=str, metavar='PATH',
help='path to pretrained checkpoint (default: none)')
parser.add_argument('--optimizer', default='adam', help='sgd/adam')#was sgd
parser.add_argument('--output-path', default='.', type=str,dest="output_path",
help='output path')
parser.add_argument('--metadata', default='', type=str,
help='metadata for output')
parser.add_argument("--gpus", type=int, default=1, help="number of gpus")
parser.add_argument("--num-nodes", dest="num_nodes", type=int, default=1, help="number of compute nodes")
parser.add_argument("--precision", type=int, default=16, help="16/32")
parser.add_argument("--distributed-backend", dest="distributed_backend", type=str, default=None, help="None/ddp")
parser.add_argument("--accumulate", type=int, default=1, help="accumulate grad batches (total-bs=accumulate-batches*bs)")
parser.add_argument("--input-size", dest="input_size", type=int, default=16000)
parser.add_argument("--finetune", action="store_true", help="finetuning (downstream classification task)", default=False )
parser.add_argument("--linear-eval", action="store_true", help="linear evaluation instead of full finetuning", default=False )
parser.add_argument(
"--finetune-dataset",
type=str,
help="thew/ptbxl_super/ptbxl_all",
default="thew"
)
parser.add_argument(
"--discriminative-lr-factor",
type=float,
help="factor by which the lr decreases per layer group during finetuning",
default=0.1
)
parser.add_argument(
"--lr-find",
action="store_true",
help="run lr finder before training run",
default=False
)
return parser
###################################################################################################
#MAIN
###################################################################################################
if __name__ == '__main__':
parser = add_default_args()
parser = add_model_specific_args(parser)
hparams = parser.parse_args()
hparams.executable = "cpc"
if not os.path.exists(hparams.output_path):
os.makedirs(hparams.output_path)
model = LightningCPC(hparams)
if(hparams.pretrained!=""):
print("Loading pretrained weights from",hparams.pretrained)
model.load_weights_from_checkpoint(hparams.pretrained)
logger = TensorBoardLogger(
save_dir=hparams.output_path,
#version="",#hparams.metadata.split(":")[0],
name="")
print("Output directory:",logger.log_dir)
checkpoint_callback = ModelCheckpoint(
filepath=os.path.join(logger.log_dir,"best_model"),#hparams.output_path
save_top_k=1,
save_last=True,
verbose=True,
monitor='macro_auc_agg0' if hparams.finetune else 'val_loss',#val_loss/dataloader_idx_0
mode='max' if hparams.finetune else 'min',
prefix='')
lr_monitor = LearningRateMonitor()
trainer = pl.Trainer(
#overfit_batches=0.01,
auto_lr_find = hparams.lr_find,
accumulate_grad_batches=hparams.accumulate,
max_epochs=hparams.epochs,
min_epochs=hparams.epochs,
default_root_dir=hparams.output_path,
num_sanity_val_steps=0,
logger=logger,
checkpoint_callback=checkpoint_callback,
callbacks = [],#lr_monitor],
benchmark=True,
gpus=hparams.gpus,
num_nodes=hparams.num_nodes,
precision=hparams.precision,
distributed_backend=hparams.distributed_backend,
progress_bar_refresh_rate=0,
weights_summary='top',
resume_from_checkpoint= None if hparams.resume=="" else hparams.resume)
if(hparams.lr_find):#lr find
trainer.tune(model)
trainer.fit(model)