-
Notifications
You must be signed in to change notification settings - Fork 234
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add LLMProfileData to parse and aggregate LLM performance statistics
- Loading branch information
Showing
2 changed files
with
285 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,146 @@ | ||
#!/usr/bin/env python3 | ||
|
||
# Copyright 2023-2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
# | ||
# Redistribution and use in source and binary forms, with or without | ||
# modification, are permitted provided that the following conditions | ||
# are met: * Redistributions of source code must retain the above copyright | ||
# notice, this list of conditions and the following disclaimer. | ||
# * Redistributions in binary form must reproduce the above copyright | ||
# notice, this list of conditions and the following disclaimer in the | ||
# documentation and/or other materials provided with the distribution. | ||
# * Neither the name of NVIDIA CORPORATION nor the names of its | ||
# contributors may be used to endorse or promote products derived | ||
# from this software without specific prior written permission. | ||
# | ||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY | ||
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR | ||
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | ||
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | ||
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | ||
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | ||
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
|
||
import json | ||
from dataclasses import dataclass | ||
from itertools import pairwise | ||
|
||
import numpy as np | ||
from transformers import AutoTokenizer | ||
|
||
|
||
@dataclass | ||
class LLMMetrics: | ||
time_to_first_tokens: list[int] | ||
inter_token_latencies: list[int] | ||
output_token_throughputs: list[int] | ||
|
||
def get_base_name(self, attr_name: str) -> str: | ||
if attr_name == "time_to_first_tokens": | ||
return "time_to_first_token" | ||
elif attr_name == "inter_token_latencies": | ||
return "inter_token_latency" | ||
elif attr_name == "output_token_throughputs": | ||
return "output_token_throughput" | ||
else: | ||
raise ValueError(f"No attribute named '{attr_name}' exists.") | ||
|
||
|
||
class Statistics: | ||
# TODO: make this parameter LLM agnostic | ||
def __init__(self, metrics: LLMMetrics): | ||
# iterate through LLMMetrics to calculate statistics and set attributes | ||
for attr, data in metrics.__dict__.items(): | ||
attr = metrics.get_base_name(attr) | ||
self._calculate_mean(data, attr) | ||
self._calculate_percentiles(data, attr) | ||
self._calculate_minmax(data, attr) | ||
self._calculate_std(data, attr) | ||
|
||
def _calculate_mean(self, data: list[int], attr: str): | ||
avg = np.mean(data) | ||
setattr(self, "avg_" + attr, avg) | ||
|
||
def _calculate_percentiles(self, data: list[int], attr: str): | ||
p50, p90, p95, p99 = np.percentile(data, [50, 90, 95, 99]) | ||
setattr(self, "p50_" + attr, p50) | ||
setattr(self, "p90_" + attr, p90) | ||
setattr(self, "p95_" + attr, p95) | ||
setattr(self, "p99_" + attr, p99) | ||
|
||
def _calculate_minmax(self, data: list[int], attr: str): | ||
min, max = np.min(data), np.max(data) | ||
setattr(self, "min_" + attr, min) | ||
setattr(self, "max_" + attr, max) | ||
|
||
def _calculate_std(self, data: list[int], attr: str): | ||
std = np.std(data) | ||
setattr(self, "std_" + attr, std) | ||
|
||
def __repr__(self): | ||
attr_str = "" | ||
for k, v in self.__dict__.items(): | ||
attr_str += f"{k}={v}," | ||
return f"Statistics({attr_str})" | ||
|
||
|
||
class LLMProfileData: | ||
def __init__(self, filename: str, tokenizer_model: str = "gpt2") -> None: | ||
# load profile export data | ||
with open(filename) as f: | ||
data = json.load(f) | ||
|
||
tokenizer = AutoTokenizer.from_pretrained(tokenizer_model) | ||
|
||
self._profile_results = {} | ||
for experiment in data["experiments"]: | ||
infer_mode = experiment["experiment"]["mode"] | ||
level = experiment["experiment"]["value"] | ||
requests = experiment["requests"] | ||
|
||
metrics = self._collect_llm_metrics(requests, tokenizer) | ||
|
||
# aggregate and calculate statistics | ||
statistics = Statistics(metrics) | ||
self._profile_results[(infer_mode, level)] = statistics | ||
|
||
# TODO: handle single response case | ||
def _collect_llm_metrics( | ||
self, requests: dict, tokenizer: AutoTokenizer | ||
) -> LLMMetrics: | ||
time_to_first_tokens = [] | ||
inter_token_latencies = [] | ||
output_token_throughputs = [] | ||
for request in requests: | ||
req_timestamp = request["timestamp"] | ||
res_timestamps = request["response_timestamps"] | ||
res_outputs = request["response_outputs"] | ||
|
||
# time to first token | ||
time_to_first_tokens.append(res_timestamps[0] - req_timestamp) | ||
|
||
# output token throughput | ||
output_tokens = tokenizer(res_outputs)["input_ids"] | ||
num_output_tokens = list(map(lambda x: len(x), output_tokens)) | ||
Check notice Code scanning / CodeQL Unnecessary lambda Note
This 'lambda' is just a simple wrapper around a callable object. Use that object directly.
|
||
total_output_tokens = np.sum(num_output_tokens) | ||
output_latency = res_timestamps[-1] - res_timestamps[0] | ||
output_token_throughputs.append(total_output_tokens / output_latency) | ||
|
||
# inter token latency | ||
for t1, t2 in pairwise(res_timestamps): | ||
inter_token_latencies.append(t2 - t1) | ||
|
||
return LLMMetrics( | ||
time_to_first_tokens, | ||
inter_token_latencies, | ||
output_token_throughputs, | ||
) | ||
|
||
def get_statistics(self, infer_mode: str, level: int | float) -> Statistics: | ||
if (infer_mode, level) not in self._profile_results: | ||
raise KeyError(f"Profile with {infer_mode}={level} does not exist.") | ||
return self._profile_results[(infer_mode, level)] |
139 changes: 139 additions & 0 deletions
139
src/c++/perf_analyzer/genai-pa/tests/test_llm_profile.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,139 @@ | ||
#!/usr/bin/env python3 | ||
|
||
# Copyright 2023-2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
# | ||
# Redistribution and use in source and binary forms, with or without | ||
# modification, are permitted provided that the following conditions | ||
# are met: * Redistributions of source code must retain the above copyright | ||
# notice, this list of conditions and the following disclaimer. | ||
# * Redistributions in binary form must reproduce the above copyright | ||
# notice, this list of conditions and the following disclaimer in the | ||
# documentation and/or other materials provided with the distribution. | ||
# * Neither the name of NVIDIA CORPORATION nor the names of its | ||
# contributors may be used to endorse or promote products derived | ||
# from this software without specific prior written permission. | ||
# | ||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY | ||
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR | ||
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | ||
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | ||
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | ||
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | ||
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
|
||
import json | ||
import unittest | ||
from pathlib import Path | ||
|
||
import numpy as np | ||
from genai_pa.llm_profile import LLMProfileData | ||
|
||
|
||
class TestLLMProfileData(unittest.TestCase): | ||
def setUp(self) -> None: | ||
self.path = Path("temp_profile_export.json") | ||
self.profile_data = { | ||
"experiments": [ | ||
{ | ||
"experiment": { | ||
"mode": "concurrency", | ||
"value": 10, | ||
}, | ||
"requests": [ | ||
{ | ||
"timestamp": 1, | ||
"response_timestamps": [3, 5, 8], | ||
"response_outputs": ["dogs", "are", "cool"], | ||
}, | ||
{ | ||
"timestamp": 2, | ||
"response_timestamps": [4, 7, 11], | ||
"response_outputs": ["I", "don't", "cook food"], | ||
}, | ||
], | ||
}, | ||
{ | ||
"experiment": { | ||
"mode": "request_rate", | ||
"value": 2.0, | ||
}, | ||
"requests": [ | ||
{ | ||
"timestamp": 5, | ||
"response_timestamps": [7, 8, 13, 18], | ||
"response_outputs": ["cats", "are", "cool", "too"], | ||
}, | ||
{ | ||
"timestamp": 3, | ||
"response_timestamps": [6, 8, 11], | ||
"response_outputs": ["it's", "very", "simple work"], | ||
}, | ||
], | ||
}, | ||
], | ||
} | ||
with open(self.path, "w") as f: | ||
json.dump(self.profile_data, f) | ||
|
||
def test_llm_profile_data(self): | ||
"""Collect LLM metrics from profile export data and check values. | ||
Metrics | ||
* time to first tokens | ||
- experiment 1: [3 - 1, 4 - 2] = [2, 2] | ||
- experiment 2: [7 - 5, 6 - 3] = [2, 3] | ||
* inter token latencies | ||
- experiment 1: [5 - 3, 8 - 5, 7 - 4, 10 - 7] = [2, 3, 3, 4] | ||
- experiment 2: [8 - 7, 13 - 8, 18 - 13, 8 - 6, 11 - 8] = [1, 5, 5, 2, 3] | ||
* output token throughputs | ||
- experiment 1: [3/(8 - 3), 5/(11 - 4)] = [3/5, 5/7] | ||
- experiment 2: [4/(18 - 7), 5/(11 - 6)] = [4/11, 1] | ||
""" | ||
pd = LLMProfileData("temp_profile_export.json") | ||
|
||
# experiment 1 statistics | ||
stat = pd.get_statistics(infer_mode="concurrency", level=10) | ||
self.assertEqual(stat.avg_time_to_first_token, 2) | ||
self.assertEqual(stat.avg_inter_token_latency, 3) | ||
self.assertEqual(stat.avg_output_token_throughput, 23 / 35) | ||
self.assertEqual(stat.p50_time_to_first_token, 2) | ||
self.assertEqual(stat.p50_inter_token_latency, 3) | ||
self.assertEqual(stat.p50_output_token_throughput, 23 / 35) | ||
self.assertEqual(stat.min_time_to_first_token, 2) | ||
self.assertEqual(stat.min_inter_token_latency, 2) | ||
self.assertEqual(stat.min_output_token_throughput, 0.6) | ||
self.assertEqual(stat.max_time_to_first_token, 2) | ||
self.assertEqual(stat.max_inter_token_latency, 4) | ||
self.assertEqual(stat.max_output_token_throughput, 5 / 7) | ||
self.assertEqual(stat.std_time_to_first_token, np.std([2, 2])) | ||
self.assertEqual(stat.std_inter_token_latency, np.std([2, 3, 3, 4])) | ||
self.assertEqual(stat.std_output_token_throughput, np.std([3 / 5, 5 / 7])) | ||
|
||
# experiment 2 statistics | ||
stat = pd.get_statistics(infer_mode="request_rate", level=2.0) | ||
self.assertEqual(stat.avg_time_to_first_token, 2.5) | ||
self.assertEqual(stat.avg_inter_token_latency, 3.2) | ||
self.assertAlmostEqual(stat.avg_output_token_throughput, 15 / 22) | ||
self.assertEqual(stat.p50_time_to_first_token, 2.5) | ||
self.assertEqual(stat.p50_inter_token_latency, 3) | ||
self.assertAlmostEqual(stat.p50_output_token_throughput, 15 / 22) | ||
self.assertEqual(stat.min_time_to_first_token, 2) | ||
self.assertEqual(stat.min_inter_token_latency, 1) | ||
self.assertEqual(stat.min_output_token_throughput, 4 / 11) | ||
self.assertEqual(stat.max_time_to_first_token, 3) | ||
self.assertEqual(stat.max_inter_token_latency, 5) | ||
self.assertEqual(stat.max_output_token_throughput, 1) | ||
self.assertEqual(stat.std_time_to_first_token, np.std([2, 3])) | ||
self.assertEqual(stat.std_inter_token_latency, np.std([1, 5, 5, 2, 3])) | ||
self.assertEqual(stat.std_output_token_throughput, np.std([4 / 11, 1])) | ||
|
||
# check non-existing profile data | ||
with self.assertRaises(KeyError): | ||
pd.get_statistics(infer_mode="concurrency", level=30) | ||
|
||
def tearDown(self) -> None: | ||
self.path.unlink(missing_ok=True) |