-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_self_supervision.py
380 lines (324 loc) · 15 KB
/
train_self_supervision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
"""Trainer script for non-sequential weak supervision experiments."""
import argparse
import json
import contextlib
import numpy as np
import os
import pickle as pkl
import random
import sys
sys.path.append('external/NEAR')
import time
import torch
from snorkel.labeling.model.label_model import LabelModel
import zss
from external.NEAR import train_lib
from external.NEAR import dsl_fly, dsl_mouse_extended
from datasets import FlyV1FrameDataset, MouseFrameDatasetExtended
from lib.custom_ap import fly_ap_score, mouse_ap_score
from lib import train_NN, train_DT, train_NN_self_supervision
from lib import discrim_model
parser = argparse.ArgumentParser()
parser.add_argument('--index', type=int, required=False, default=0)
parser.add_argument('--run_id', required=True)
parser.add_argument('--wl_source', required=False, default=None)
parser.add_argument('--num_wl', type=int, required=False, default=0)
parser.add_argument('--seed', type=int, default=0, required=False)
parser.add_argument('--no_weight_loss', default=False, action='store_true')
parser.add_argument('--dset')
parser.add_argument('--best_map', default=False, action='store_true')
parser.add_argument('--num_labeled', type=int, required=True)
parser.add_argument('--use_diversity', default=False, action='store_true')
# use_discrim_model is for testing purposes only
parser.add_argument('--use_discrim_model', default=False, action='store_true')
parser.add_argument('--dt_forest_size', type=int, default=3)
parser.add_argument('--pl_config_path', default=None, required=False)
args = parser.parse_args()
# set seed
torch.manual_seed(args.seed)
random.seed(args.seed)
assert args.wl_source in set([None, 'near', 'student', 'decision_tree'])
assert args.dset in set(['fly', 'mouse_extended'])
def get_dset_dsl_ap(dset, idx=None, mode=None):
if dset == 'fly':
train_set = FlyV1FrameDataset(mode, "train", idx, float('inf'), reduced_inds=True)
valid_set = FlyV1FrameDataset(mode, "val", idx, float('inf'), reduced_inds=True)
test_set = FlyV1FrameDataset(mode, "test", idx, float('inf'), reduced_inds=True)
return train_set, valid_set, test_set, dsl_fly, fly_ap_score
if dset == 'mouse_extended':
train_set = MouseFrameDatasetExtended('train')
valid_set = MouseFrameDatasetExtended('val')
test_set = MouseFrameDatasetExtended('test')
return train_set, valid_set, test_set, dsl_mouse_extended, mouse_ap_score
def KL_uniform(probs):
# D_KL(probs || uniform)
num_classes = len(probs)
uniform = np.ones(num_classes) / num_classes
return np.sum(probs * np.log(probs / uniform))
def get_best_threshold(probs, gt, ap_score, len_frac=1 / 2):
comparr = []
for i in range(len(probs)):
comparr.append((KL_uniform(probs[i]), probs[i], gt[i]))
comparr = sorted(comparr, key=lambda x: x[0])
sorted_probs = np.stack([x[1] for x in comparr])
sorted_gt = np.concatenate([x[2] for x in comparr])
best_thresh = 0.0
best_ap = 0.0
for i in range(0, int(len(comparr) * len_frac), 500):
with contextlib.redirect_stdout(open(os.devnull, 'w')):
test_ap = ap_score(sorted_gt[i:], sorted_probs[i:])
if test_ap > best_ap:
best_ap = test_ap
best_thresh = comparr[i][0]
return best_thresh, best_ap
def get_abstain_lf(probs, threshold):
outarr = []
total_abstain = 0
for prob in probs:
if KL_uniform(prob) < threshold:
outarr.append(-1)
total_abstain += 1
else:
outarr.append(np.argmax(prob))
return outarr, total_abstain
def get_top_n_inds(probs, n):
comparr = []
for i in range(len(probs)):
comparr.append((KL_uniform(probs[i]), i))
comparr = sorted(comparr, reverse=True)
return sorted([comparr[i][1] for i in range(n)])
def train(train_set,
valid_set,
test_set,
ap_score,
synthesis_args=None,
sizes=[1, 2, 3, 4, 5],
num_wl=0,
device=0):
X = np.expand_dims(train_set.features, 1)
Y = np.expand_dims(train_set.annotations, 1)
vX = np.expand_dims(valid_set.features, 1)
vY = np.expand_dims(valid_set.annotations, 1)
tX = np.expand_dims(test_set.features, 1)
tY = np.expand_dims(test_set.annotations, 1)
sizes = [int(_ * args.num_labeled) for _ in sizes]
sizes = sorted(sizes)
avail_inds = list(range(len(X)))
random.shuffle(avail_inds)
labeled_inds = avail_inds[0:args.num_labeled]
avail_inds = avail_inds[args.num_labeled:]
_, counts = np.unique(Y[labeled_inds], return_counts=True)
if not args.no_weight_loss:
class_weights = np.sqrt(1 / counts)
class_weights = torch.tensor(class_weights / sum(class_weights)).float().to(device)
else:
class_weights = torch.tensor(np.ones(len(counts)) / len(counts)).float().to(device)
if args.wl_source is not None:
if args.wl_source == 'near':
assert 'DSL' in synthesis_args and 'CUSTOM_WT' in synthesis_args
# prep data
prepped_data = train_lib.get_ds_tuple(X[labeled_inds], Y[labeled_inds], vX, vY,
np.concatenate([X, vX, tX], 0))
# get near WL
weak_labels = []
pl_config = json.load(open(args.pl_config_path))
existing_progs = []
while len(weak_labels) < num_wl:
with contextlib.redirect_stdout(open(os.devnull, 'w')):
start_time = time.time()
near_wl, near_prog_str, near_prog = train_lib.run_near(
prepped_data,
class_weights=class_weights,
config=pl_config,
return_raw=True,
dsl=synthesis_args['DSL'],
custom_edge_costs=synthesis_args['CUSTOM_WT'],
device=device,
existing_progs=existing_progs)
print('NEAR TOOK {} SECONDS TO RUN'.format(time.time() - start_time))
weak_labels.append(near_wl)
existing_progs.append(near_prog)
print('SYNTHESIZED_PROGRAM', near_prog_str)
weak_labels = weak_labels[0:num_wl]
weak_labels_train = []
weak_labels_valid = []
weak_labels_test = []
for i in range(len(weak_labels)):
wl = weak_labels[i]
weak_labels_train.append(wl[:len(X)])
weak_labels_valid.append(wl[len(X):len(X) + len(vX)])
weak_labels_test.append(wl[len(X) + len(vX):])
ap = ap_score(vY, weak_labels_valid[-1])
print('NEAR {} BEST AP {}'.format(i, ap))
elif args.wl_source == 'student':
assert num_wl > 0
weak_labels_train = []
weak_labels_valid = []
weak_labels_test = []
for i in range(num_wl):
(wlt, wlv, wlts), bap = train_NN.train_NN_student(
(X, np.squeeze(Y)), (vX, np.squeeze(vY)), (tX, np.squeeze(tY)),
ap_score,
labeled_inds,
True,
device=device,
no_weight_loss=args.no_weight_loss,
best_map=args.best_map)
print('STUDENT {} BEST AP {}'.format(i, bap))
weak_labels_train.append(wlt)
weak_labels_valid.append(wlv)
weak_labels_test.append(wlts)
elif args.wl_source == 'decision_tree':
assert num_wl > 0
weak_labels_train = []
weak_labels_valid = []
weak_labels_test = []
if args.use_diversity:
assert args.dt_forest_size >= args.num_wl
dt_forest_preds = []
dt_forest_baps = []
dt_forest_trees = []
for i in range(args.dt_forest_size):
dt_preds, bap, zss_tree = train_DT.train_DT(
(X, np.squeeze(Y)),
(vX, np.squeeze(vY)),
(tX, np.squeeze(tY)),
ap_score,
labeled_inds,
)
dt_forest_preds.append(dt_preds)
dt_forest_baps.append(bap)
dt_forest_trees.append(zss_tree)
selected_dt = set([np.argmax(dt_forest_baps)])
while len(selected_dt) != args.num_wl:
candidates = []
for i in range(len(dt_forest_trees)):
if i in selected_dt:
continue
div_sum = 0
for selected_idx in selected_dt:
div_sum += zss.simple_distance(dt_forest_trees[selected_idx],
dt_forest_trees[i])
candidates.append((div_sum, i))
candidates = sorted(candidates, reverse=True)
selected_dt.add(candidates[0][1])
for selected_idx in selected_dt:
print(f'DECISION_TREE {selected_idx} BEST AP {dt_forest_baps[selected_idx]}')
wlt, wlv, wlts = dt_forest_preds[selected_idx]
weak_labels_train.append(wlt)
weak_labels_valid.append(wlv)
weak_labels_test.append(wlts)
else:
for i in range(num_wl):
(wlt, wlv, wlts), bap, _ = train_DT.train_DT(
(X, np.squeeze(Y)),
(vX, np.squeeze(vY)),
(tX, np.squeeze(tY)),
ap_score,
labeled_inds,
)
print('DECISION TREE {} BEST AP {}'.format(i, bap))
weak_labels_train.append(wlt)
weak_labels_valid.append(wlv)
weak_labels_test.append(wlts)
# train weak label generative model
if args.use_discrim_model:
generated_wl = discrim_model.train_discrim_model(X,
Y,
weak_labels_train,
vX,
vY,
weak_labels_valid,
tX,
tY,
weak_labels_test,
ap_score,
labeled_inds,
device=device,
no_weight_loss=args.no_weight_loss,
best_map=args.best_map,
is_seq=False)
else:
abstain_labels_train = []
for i in range(len(weak_labels_valid)):
thresh, _ = get_best_threshold(weak_labels_valid[i], vY, ap_score, 3 / 5)
abstain_labels, num_abstain = get_abstain_lf(weak_labels_train[i], thresh)
print(f'ABSTAIN WEAK LABEL {i} ABSTAINED FROM {num_abstain}')
abstain_labels_train.append(abstain_labels)
abstain_labels_train = np.stack(abstain_labels_train, 1)
weak_label_model = LabelModel(cardinality=weak_labels_train[0].shape[-1], device=device)
weak_label_model.fit(abstain_labels_train, class_balance=counts / sum(counts))
generated_wl = weak_label_model.predict_proba(abstain_labels_train)
else:
generated_wl = np.zeros((len(Y), int(np.max(Y.flatten())) + 1))
generated_wl[np.arange(len(generated_wl)), Y[:, 0].astype(int)] = 1
print('WEAK LABEL TRAIN AP')
ap_scores = []
for size in sizes:
labeled_X = X[labeled_inds]
labeled_Y = Y[labeled_inds][:, 0]
labeled_Y_onehot = np.zeros((labeled_Y.shape[0], generated_wl.shape[-1]))
labeled_Y_onehot[np.arange(len(labeled_Y_onehot)), labeled_Y.astype(int)] = 1
vY_onehot = np.zeros((vY.shape[0], generated_wl.shape[-1]))
vY_onehot[np.arange(len(vY_onehot)), vY[:, 0].astype(int)] = 1
tY_onehot = np.zeros((tY.shape[0], generated_wl.shape[-1]))
tY_onehot[np.arange(len(tY_onehot)), tY[:, 0].astype(int)] = 1
unlabeled_X = X[avail_inds[0:size]]
unlabeled_Y = generated_wl[avail_inds[0:size]]
total_downstream_X = np.concatenate([labeled_X, unlabeled_X], 0)
total_downstream_Y = np.concatenate([labeled_Y_onehot, unlabeled_Y], 0)
print('CLASS FRACTIONS')
print(counts / sum(counts))
print(np.sum(total_downstream_Y, 0) / np.sum(total_downstream_Y.flatten()))
_, bap = train_NN_self_supervision.train_NN_self_supervision(
(total_downstream_X, total_downstream_Y),
(vX, vY_onehot),
(tX, tY_onehot),
ap_score,
device,
no_weight_loss=args.no_weight_loss,
best_map=True,
override_weights=class_weights,
)
print('BEST AP WITH {} LABELED, {} UNLABELED SAMPLES: {}'.format(
args.num_labeled, size, bap))
ap_scores.append((size / args.num_labeled, bap))
return ap_scores
def run_and_log(index, logdir):
# index and features aren't used for mouse
train_set, valid_set, test_set, dsl, ap_score = get_dset_dsl_ap(args.dset, index, 'features')
if args.wl_source == 'near':
synthesis_args = {'DSL': dsl.DSL_DICT, 'CUSTOM_WT': dsl.CUSTOM_EDGE_COSTS}
else:
synthesis_args = None
if logdir is not None:
with open(os.path.join(logdir, '{}.args'.format(index)), 'w') as f:
f.write(json.dumps(vars(args), indent=2))
with open(os.path.join(logdir, '{}.log'.format(index)), 'w') as f:
with contextlib.redirect_stdout(f):
ap_scores = train(train_set,
valid_set,
test_set,
ap_score,
synthesis_args=synthesis_args,
num_wl=args.num_wl)
with open(os.path.join(logdir, '{}_ap.pkl'.format(index)), 'wb') as out_f:
pkl.dump(ap_scores, out_f)
else:
train(train_set,
valid_set,
test_set,
ap_score,
synthesis_args=synthesis_args,
num_wl=args.num_wl)
if __name__ == '__main__':
if args.run_id == 'debug':
logdir = None
else:
logdir = os.path.join('logs', '{}'.format(args.run_id))
if not os.path.exists(logdir):
try:
os.mkdir(logdir)
except:
assert os.path.exists(logdir)
run_and_log(args.index, logdir)