-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_reco_image.py
189 lines (154 loc) · 7.36 KB
/
face_reco_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
"""
Face detection
"""
import cv2
import os
from time import sleep
import numpy as np
import argparse
from wide_resnet import WideResNet
from keras.utils.data_utils import get_file
import matplotlib.pyplot as plt
import pylab
from utils import load_image
import dlib
import copy
from utils import display_cv2_image
from face_reco_base import FaceRecognizer
import src.emotionpred as emotion
# Flag to recognize faces
# This requires face_reco_base.py to be run in console first
RECOGNIZE_FACES = True
# Transparency level for text overlay
OVERLAY_ALPHA = 0.5
# Display image via OpenCV or matplotlib
DISPLAY_CV_IMAGE=True
# Test FaceImage class
TEST_FACE_IMAGE=False
class FaceImage(object):
"""
Singleton class for face recognition task
"""
CASE_PATH = "./models/haarcascade_frontalface_alt.xml"
WRN_WEIGHTS_PATH = "https://github.com/Tony607/Keras_age_gender/releases/download/V1.0/weights.18-4.06.hdf5"
def __new__(cls, weight_file=None, depth=16, width=8, face_size=64):
if not hasattr(cls, 'instance'):
cls.instance = super(FaceImage, cls).__new__(cls)
return cls.instance
def __init__(self, depth=16, width=8, face_size=64):
self.face_size = face_size
print("Loading WideResNet model...")
self.model = WideResNet(face_size, depth=depth, k=width)()
model_dir = os.path.join(os.getcwd(), "models").replace("//", "\\")
fpath = get_file('weights.18-4.06.hdf5',
self.WRN_WEIGHTS_PATH,
cache_subdir=model_dir)
self.model.load_weights(fpath)
print("Loaded WideResNet model")
# Load emotion models
print("Loading emotion model...")
self.emotion_model = emotion.load_model_dir("models")
print("Loaded emotion model")
if RECOGNIZE_FACES:
print("Loading face recognizer...")
self.face_recognizer = FaceRecognizer()
print("Loaded face recognizer")
@classmethod
def draw_label_top(cls, image, point, label, font=cv2.FONT_HERSHEY_SIMPLEX,
font_scale=1, thickness=2, alpha=OVERLAY_ALPHA):
size = cv2.getTextSize(label, font, font_scale, thickness)[0]
x, y = point
overlay = image.copy()
cv2.rectangle(overlay, (x, y - size[1]), (x + size[0], y), (255, 0, 0), cv2.FILLED)
cv2.putText(overlay, label, point, font, font_scale, (255, 255, 255), thickness)
cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0, image)
@classmethod
def draw_label_bottom(cls, image, point, label, font=cv2.FONT_HERSHEY_SIMPLEX,
font_scale=0.5, thickness=1, row_index=0, alpha=OVERLAY_ALPHA):
size = cv2.getTextSize(label, font, font_scale, thickness)[0]
point = (point[0], point[1] + (row_index * size[1]))
x, y = point
overlay = image.copy()
cv2.rectangle(overlay, (x, y), (x + size[0], y + size[1]), (255, 0, 0), cv2.FILLED)
point = x, y+size[1]
cv2.putText(overlay, label, point, font, font_scale, (255, 255, 255), thickness)
cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0, image)
def get_regular_face(self, img, bb):
return img[bb.top():bb.bottom()+1, bb.left():bb.right()+1, :]
def get_expanded_face(self, img, bb):
img_h, img_w, _ = np.shape(img)
x1, y1, x2, y2, w, h = bb.left(), bb.top(), bb.right() + 1, bb.bottom() + 1, bb.width(), bb.height()
xw1 = max(int(x1 - 0.4 * w), 0)
yw1 = max(int(y1 - 0.4 * h), 0)
xw2 = min(int(x2 + 0.4 * w), img_w - 1)
yw2 = min(int(y2 + 0.4 * h), img_h - 1)
return cv2.resize(img[yw1:yw2 + 1, xw1:xw2 + 1, :], (self.face_size, self.face_size))
def detect_face(self, img):
# workaround for CV2 bug
img = copy.deepcopy(img)
# for face detection
detector = dlib.get_frontal_face_detector()
input_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_h, img_w, _ = np.shape(input_img)
# detect faces using dlib detector
if RECOGNIZE_FACES == True:
face_bbs, identities = self.face_recognizer.identify_image_faces(img)
else:
face_bbs = detector(input_img, 1)
expanded_face_imgs = np.empty((len(face_bbs), self.face_size, self.face_size, 3))
emotion2_results = []
# Get face images
for i, bb in enumerate(face_bbs):
x1, y1, x2, y2, w, h = bb.left(), bb.top(), bb.right() + 1, bb.bottom() + 1, bb.width(), bb.height()
expanded_face_imgs[i, :, :, :] = self.get_expanded_face(img, bb)
reg_face = self.get_regular_face(img, bb)
#reg_face = copy.deepcopy(reg_face)
emotion2_results.append(emotion.emotionof(self.emotion_model, reg_face)[0])
if len(expanded_face_imgs) > 0:
# predict ages and genders of the detected faces
results = self.model.predict(expanded_face_imgs)
predicted_genders = results[0]
ages = np.arange(0, 101).reshape(101, 1)
predicted_ages = results[1].dot(ages).flatten()
# draw results
for i, bb in enumerate(face_bbs):
if RECOGNIZE_FACES == True:
# Display name
label1 = "{}".format(identities[i])
self.draw_label_bottom(img, (bb.left(), bb.bottom()), label1)
## Display age, gender and emotion
if identities[i] == "Unknown" or "customer" in identities[i]:
label2 = "{}, {}, {}".format(int(predicted_ages[i]),
"F" if predicted_genders[i][0] > 0.5 else "M",
emotion2_results[i])
else:
label2 = "{}".format(emotion2_results[i])
self.draw_label_bottom(img, (bb.left(), bb.bottom()+1), label2, row_index=1)
else:
## Display age, gender and emotion
label2 = "{}, {}, {}".format(int(predicted_ages[i]),
"F" if predicted_genders[i][0] > 0.5 else "M",
emotion2_results[i])
self.draw_label_bottom(img, (bb.left(), bb.bottom()), label2, row_index=0)
# draw face rectangles
for i, bb in enumerate(face_bbs):
x1, y1, x2, y2, w, h = bb.left(), bb.top(), bb.right() + 1, bb.bottom() + 1, bb.width(), bb.height()
cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), 2)
return img
def display_labeled_image(face, file_path):
img = load_image(file_path)
image = face.detect_face(img)
if DISPLAY_CV_IMAGE == True:
display_cv2_image(image, is_rgb=True)
else:
plt.figure()
plt.imshow(image)
def display_labeled_images(face, dir_path):
files = os.listdir(dir_path)
for i, file in enumerate(files):
print("Displaying image {}".format(i+1))
file_path = os.path.join(dir_path, file)
display_labeled_image(face, file_path)
if TEST_FACE_IMAGE:
face = FaceImage()
display_labeled_image(face, "sample/sample01.jpg")