Welcome to LinkedIn Automate Comment! This project leverages web scraping, sentiment analysis, and AI-driven text generation to automate meaningful LinkedIn interactions. 🎯
- Project Overview
- Featured In
- How It Works
- Features
- Directory Structure
- Setup and Installation
- Usage
- Contributing
- License
💡 LinkedIn Automate Comment simplifies professional networking by:
- ✅ Scraping LinkedIn posts from your feed.
- ✅ Performing sentiment analysis on posts and comments.
- ✅ Generating AI-powered, context-aware comments.
- ✅ Automating the posting of comments on LinkedIn.
Ideal for professionals who want to stay active on LinkedIn with minimal effort! 🚀
1️⃣ Scrape Posts: web_scrapper.py
logs into LinkedIn and collects posts.
2️⃣ Analyze Sentiment: analyze.py
determines the tone of posts/comments.
3️⃣ Generate Comments: llm.py
creates AI-powered, relevant responses.
4️⃣ Post Comments: test.py
automates comment posting via Selenium.
🎯 Web Scraping: Extracts LinkedIn posts efficiently. 📊 Sentiment Analysis: Evaluates post/comment tone. 🤖 AI-Powered Comments: Generates concise, relevant responses. ⚡ Automation: Uses a headless browser to post comments. 📄 PDF Reports: Exports insights as downloadable PDFs.
Directory structure:
└── hiteshydv001-linkedin-automate-comment/
├── README.md
├── anlyze.py
├── contribution.md
├── linkedin_posts.csv
├── llm.py
├── main.py
├── requirements.txt
├── service.json
├── web_scrapper.py
├── .env.local
├── JWoC/
│ └── Readme.md
├── agents/
│ ├── __init__.py
│ ├── agent_base.py
│ ├── generate_comment_agent.py
│ ├── refiner_agent.py
│ ├── sanitize_data_tool.py
│ ├── sanitize_data_validator_agent.py
│ ├── sentiment_analysis_agent.py
│ ├── summarize_tool.py
│ ├── summarize_validator_agent.py
│ ├── validator_agent.py
│ ├── write_post_tool.py
│ └── write_post_validator_agent.py
├── frontend/
│ ├── README.md
│ ├── components.json
│ ├── eslint.config.mjs
│ ├── next.config.ts
│ ├── package-lock.json
│ ├── package.json
│ ├── postcss.config.mjs
│ ├── tailwind.config.ts
│ ├── tsconfig.json
│ ├── .gitignore
│ ├── public/
│ │ └── linkedin-automation-icon.avif
│ └── src/
│ ├── app/
│ │ ├── globals.css
│ │ ├── layout.tsx
│ │ ├── page.tsx
│ │ ├── generate_comments/
│ │ │ └── page.tsx
│ │ ├── sentiment_analysis/
│ │ │ └── page.tsx
│ │ ├── summarize/
│ │ │ └── page.tsx
│ │ └── write_post/
│ │ └── page.tsx
│ ├── components/
│ │ ├── main-nav.tsx
│ │ ├── theme-provider.tsx
│ │ └── ui/
│ │ ├── button.tsx
│ │ ├── card.tsx
│ │ ├── dialog.tsx
│ │ ├── dropdown-menu.tsx
│ │ ├── form.tsx
│ │ ├── input.tsx
│ │ ├── label.tsx
│ │ ├── select.tsx
│ │ ├── tabs.tsx
│ │ ├── textarea.tsx
│ │ ├── toast.tsx
│ │ └── toaster.tsx
│ ├── hooks/
│ │ └── use-toast.ts
│ └── lib/
│ └── utils.ts
└── .github/
├── dependabot.yml
└── workflows/
└── codeql.yml
- 🐍 Python 3.8+
- 🔑 Google API Key (for Generative AI)
- 🌍 Chrome & ChromeDriver (ensure compatibility)
1️⃣ Clone the repository:
git clone https://github.com/hiteshydv001/linkedin-automate-comment.git
cd linkedin-automate-comment
2️⃣ Install required packages:
pip install -r requirements.txt
3️⃣ Configure environment variables in a .env
file:
EMAIL=your_email@example.com
PASSWORD=your_password
GOOGLE_API_KEY=your_google_api_key
4️⃣ Ensure Chrome & ChromeDriver are installed.
python web_scrapper.py
python analyze.py
python llm.py
python test.py
🎯 Contributions are welcome! Follow these steps:
- Fork the repository.
- Create a new branch:
git checkout -b feature-name
- Commit your changes:
git commit -m "Add feature description"
- Push to your branch:
git push origin feature-name
- Open a pull request. 🚀
This project is licensed under the MIT License. See the LICENSE file for details.
🎉 Enjoy automating your LinkedIn interactions with LinkedIn Automate Comment
! 🚀
Please refer to our
- contribution.md for general open source contribution
- JWoC guide for contribution under JGEC Winter of Code