This repository has been archived by the owner on Jan 6, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathjkidson.Rmd
544 lines (411 loc) · 12.1 KB
/
jkidson.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
---
title: "R Markdown Assignment, Week 2-4"
author: "Jennifer Kidson"
date: "January 15, 2016"
output:
html_document:
toc: true
toc_depth: 2
---
#### Managing the working directory in R markdown
```{r setwd students, eval=T, echo=T, include=T}
# set working directory if has child directory
dir_child = 'students'
if (dir_child %in% list.files()){
if (interactive()) {
# R Console
setwd(dir_child)
} else {
# knitting
knitr::opts_knit$set(root.dir=dir_child)
}
}
```
## 1. Reproducible Science Tools
and
## 2. Programming Concepts
### Content
For this class, the group will be working to create a program to take in survey data in real time, reorganize it, and output summary statistics. For my group project (on Santa Barbara water supply) and future work, I'm most interested in learning data management strategies and ways to visualize data.
### Techniques
1. Wrangling data
2. Cleaning up data
3. Visualizing data
+ **interactive maps**
+ *interactive time series*
### Data
A group member has data on survey responses on solid waste. Data is received via text message and associated timestamps. The responses need to be tied to a specific survey question and organized.
### Image

<!--- hist(ugandasms$age, main="Age Distribution of Survey Respondents", xlab="Age (Years)", xlim=c(0, 80))-->
Fig. 1. Histogram of age distribution of survey respondents.
### Summary of Survey Response Data
```{r read csv traditional}
# read csv
d = read.csv('data/jkidson_ugandasms.csv')
# output summary
summary(d)
```
### [Citizen Monitoring Github Page](https://github.com/citizen-monitoring)
## 3. Data Wrangling
### Reading CSV with readr
```{r read csv with readr}
library(readr)
d = read_csv('data/jkidson_ugandasms.csv')
head(d)
summary(d)
```
### dplyr Demo
#### Pseudocode
```{r pseudocode}
# read in csv
# view data
# limit columns to Zone and satis
# limit rows to just zone "CORNER"
# get count for each satisfaction level
# write out csv
```
#### Multiple Variables
```{r multiple variables}
# read in csv
surveys = read.csv('data/jkidson_ugandasms.csv')
# view data
head(surveys)
summary(surveys)
# limit columns to species and year
surveys_2 = surveys[,c('Zone', 'satis')]
# limit rows to just species "NL"
surveys_3 = surveys_2[surveys_2$Zone == 'CORNER',]
# get count per year
surveys_4 = aggregate(Zone ~ satis, data=surveys_3, FUN='length')
# write to csv
write.csv(surveys_4, 'data/surveys_jkidson.csv', row.names = FALSE)
```
#### Nested Functions
(For some reason this nested function is giving me an error, so I commented it out for now. I'll come back to it if I have time after the group assignment.)
```{r nested function}
# read in data
surveys = read.csv('data/jkidson_ugandasms.csv')
# view data
head(surveys)
summary(surveys)
# limit data with [], aggregate to count, write to csv
# write.csv(
# aggregate(
# Zone ~ satis,
# data = surveys[surveys$satis == 'CORNER', c('Zone', 'satis')],
# FUN = 'length'),
# 'data/surveys_jkidson.csv',
# row.names = FALSE)
```
#### Using dplyr
```{r load reard and dplyr}
# load libraries
library(readr)
library(dplyr)
```
```{r dplyr example}
# read in csv
surveys = read_csv('data/jkidson_ugandasms.csv')
# dplyr elegance
surveys %T>% # note tee operator %T>% for glimpse
glimpse() %>% # view data
select(Zone, satis) %>% # limit columns
filter(Zone == 'CORNER') %>% # limit rows
group_by(satis) %>% # get count by first grouping
summarize(n = n()) %>% # then summarize
write_csv('data/surveys_jkidson.csv') # write out csv
```
## 4. Tidying Up Data
### EDAWR
```{r EDAWR, eval=F}
install.packages("devtools")
devtools::install_github("rstudio/EDAWR")
library(EDAWR)
help(package='EDAWR')
?storms # wind speed data for 6 hurricanes
?cases # subset of WHO tuberculosis
?pollution # pollution data from WHO Ambient Air Pollution, 2014
?tb # tuberculosis data
View(storms)
View(cases)
View(pollution)
```
### slicing
```{r traditional R slicing, eval=F}
# storms
storms$storm
storms$wind
storms$pressure
storms$date
# cases
cases$country
names(cases)[-1]
unlist(cases[1:3, 2:4])
# pollution
pollution$city[c(1,3,5)]
pollution$amount[c(1,3,5)]
pollution$amount[c(2,4,6)]
# ratio
storms$pressure / storms$wind
```
## tidyr
Two main functions: gather() and spread()
```{r tidyr, eval=F}
# install.packages("tidyr")
library(tidyr)
?gather # gather to long
?spread # spread to wide
```
### `gather`
```{r gather, eval=F}
cases %>%
# gather(cases, "year", "n", 2:4) # gathers by key of year
# if you wanted to removed a column you could enter -2 instead of 2:4 (but this makes country weird)
gather("year", "n", -country) %>%
# France and US for 2011 and 2013
filter(
year %in% c(2011,2013) &
country %in% c('FR','US'))
```
### `spread`
```{r spread, eval=F}
pollution
spread(pollution, size, amount)
```
Other functions to extract and combine columns...
### `separate`
```{r separate, eval=F}
storms
storms2 = separate(storms, date, c("year", "month", "day"), sep = "-")
library(stringr)
# Splitting date strings!!!
#storms%>%
# mutate(date_str = as.character(date)) %>%
# separate(date_str, c("year","month","day"), sep = "-")
```
### `unite`
```{r unite, eval=F}
storms2
unite(storms2, "date", year, month, day, sep = "-")
```
**Recap: tidyr**:
- A package that reshapes the layout of data sets.
- Make observations from variables with `gather()` Make variables from observations with `spread()`
- Split and merge columns with `unite()` and `separate()`
From the [data-wrangling-cheatsheet.pdf](./refs/cheatsheets/data-wrangling-cheatsheet.pdf):
### tidy CO<sub>2</sub> emissions
_**Task**. Convert the following table [CO<sub>2</sub> emissions per country since 1970](http://edgar.jrc.ec.europa.eu/overview.php?v=CO2ts1990-2014&sort=des9) from wide to long format and output the first few rows into your Rmarkdown. I recommend consulting `?gather` and you should have 3 columns in your output._
```{r read co2}
library(readxl) # install.packages('readxl')
url = 'http://edgar.jrc.ec.europa.eu/news_docs/CO2_1970-2014_dataset_of_CO2_report_2015.xls'
xls = '../data/co2_europa.xls'
print(getwd())
if (!file.exists(xls)){
download.file(url, xls)
}
co2 = read_excel(xls, skip=12)
co2
```
_**Question**. Why use `skip=12` argument in `read_excel()`?_
Everything before line 13 is separate from the actual data table, so skip=12 jumps over the first 12 rows.
## dplyr
A package that helps transform tabular data
```{r dplyr, eval=F}
# install.packages("dplyr")
library(dplyr)
?select
?filter
?arrange
?mutate
?group_by
?summarise
```
See sections in the [data-wrangling-cheatsheet.pdf](./refs/cheatsheets/data-wrangling-cheatsheet.pdf):
- Subset Variables (Columns), eg `select()`
- Subset Observations (Rows), eg `filter()`
- Reshaping Data - Change the layout of a data set, eg `arrange()`
- Make New Variables, eg `mutate()`
- Group Data, eg `group_by()` and `summarise()`
### `select`
```{r select, eval=F}
storms
select(storms, storm, pressure)
storms %>% select(storm, pressure)
```
### `filter`
```{r filter, eval=F}
storms
filter(storms, wind >= 50)
storms %>% filter(wind >= 50)
storms %>%
filter(wind >= 50) %>%
select(storm, pressure)
```
### `mutate`
```{r mutate, eval=F}
storms %>%
mutate(ratio = pressure / wind) %>%
select(storm, ratio)
```
### `group_by`
```{r group_by, eval=F}
pollution
pollution %>% group_by(city)
```
### `summarise`
```{r summarise, eval=F}
# by city
pollution %>%
group_by(city) %>%
summarise(
mean = mean(amount),
sum = sum(amount),
n = n())
# by size
pollution %>%
group_by(size) %>%
summarise(
mean = mean(amount),
sum = sum(amount),
n = n())
```
note that `summarize` synonymously works
### `ungroup`
```{r ungroup, eval=F}
pollution %>%
group_by(size)
pollution %>%
group_by(size) %>%
ungroup()
```
### multiple groups
```{r multiple groups, eval=F}
tb %>%
group_by(country, year) %>%
summarise(cases = sum(cases))
summarise(cases = sum(cases))
```
**Recap: dplyr**:
- Extract columns with `select()` and rows with `filter()`
- Sort rows by column with `arrange()`
- Make new columns with `mutate()`
- Group rows by column with `group_by()` and `summarise()`
See sections in the [data-wrangling-cheatsheet.pdf](./refs/cheatsheets/data-wrangling-cheatsheet.pdf):
- Subset Variables (Columns), eg `select()`
- Subset Observations (Rows), eg `filter()`
- Reshaping Data - Change the layout of a data set, eg `arrange()`
- Make New Variables, eg `mutate()`
- Group Data, eg `group_by()` and `summarise()`
### summarize CO<sub>2</sub> emissions
## Assignment 4
Task 1
_**Task**. Report the top 5 emitting countries (not World or EU28) for 2014 using your long format table. (You may need to convert your year column from factor to numeric, eg `mutate(year = as.numeric(as.character(year)))`. As with most analyses, there are multiple ways to do this. I used the following functions: `filter`, `arrange`, `desc`, `head`)_.
```{r Assignment 4 Task 1}
names(co2) = c('country', 1970:2014) # get rid of extra decimal places in column names
library(dplyr)
library(tidyr)
co2
co2 %>%
gather("year","n", 2:46) %>%
filter(year %in% 2014) %>%
subset(country != c("World","EU28")) %>%
arrange(desc(n)) %>%
head(n=5)
```
Task 2
_**Task**. Summarize the total emissions by country (not World or EU28) across years from your long format table and return the top 5 emitting countries. (As with most analyses, there are multiple ways to do this. I used the following functions: `filter`, `arrange`, `desc`, `head`)_.
```{r Assignment 4 Task 2}
co2 %>%
gather("year","n", 2:46)%>%
group_by(country) %>%
subset(country != c("World","EU28")) %>%
summarise(
sum=sum(n)) %>%
arrange(desc(sum)) %>%
head
```
# by city
pollution %>%
group_by(city) %>%
summarise(
mean = mean(amount),
sum = sum(amount),
n = n())
# by size
pollution %>%
group_by(size) %>%
summarise(
mean = mean(amount),
sum = sum(amount),
n = n())
## joining data
### `bind_cols`
```{r bind_cols, eval=F}
y = data.frame(
x1 = c('A','B','C'),
x2 = c( 1 , 2 , 3),
stringsAsFactors=F)
z = data.frame(
x1 = c('B','C','D'),
x2 = c( 2 , 3 , 4),
stringsAsFactors=F)
y
z
bind_cols(y, z)
```
### `bind_rows`
```{r bind_rows, eval=F}
y
z
bind_rows(y, z)
```
### `union`
```{r union, eval=F}
y
z
union(y, z)
```
### `intersect`
```{r intersect, eval=F}
y
z
intersect(y, z)
```
### `setdiff`
```{r setdiff, eval=F}
y
z
setdiff(y, z)
```
### `left_join`
```{r left_join, eval=F}
songs = data.frame(
song = c('Across the Universe','Come Together', 'Hello, Goodbye', 'Peggy Sue'),
name = c('John','John','Paul','Buddy'),
stringsAsFactors=F)
artists = data.frame(
name = c('George','John','Paul','Ringo'),
plays = c('sitar','guitar','bass','drums'),
stringsAsFactors=F)
left_join(songs, artists, by='name')
```
### `inner_join`
```{r inner_join, eval=F}
inner_join(songs, artists, by = "name")
```
### `semi_join`
```{r semi_join, eval=F}
semi_join(songs, artists, by = "name")
```
### `anti_join`
```{r anti_join, eval=F}
anti_join(songs, artists, by = "name")
```
### summarize per capita CO<sub>2</sub> emissions
You'll join the [gapminder](https://github.com/jennybc/gapminder) datasets to get world population per country.
_**Task**. Report the top 5 emitting countries (not World or EU28) per capita using your long format table. (You may need to convert your year column from factor to numeric, eg `mutate(year = as.numeric(as.character(year)))`. As with most analyses, there are multiple ways to do this. I used the following functions: `filter`, `arrange`, `desc`, `head`)_.
_**Task**. Summarize the total emissions by country (not World or EU28) per capita across years from your long format table and return the top 5 emitting countries. (As with most analyses, there are multiple ways to do this. I used the following functions: `filter`, `arrange`, `desc`, `head`)_.
```{r gapminder, eval=F}
library(gapminder) # install.packages('gapminder')
```
## Assignment 4