forked from cbvreis/desaparecidos-twitter-ufjf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph.py
executable file
·137 lines (109 loc) · 5.25 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import pandas as pd
import numpy as np
from tqdm import tqdm
import math
class Graph:
def __init__(self, input_file_profile):
# Loads CSV file with information about relationships
dataset = pd.read_csv(input_file_profile, header=0, encoding='latin1')
dataset.dropna(thresh=2)
# Checks for unique Twitter handlers and selects the unique
self.handlers = np.concatenate((dataset['Perfil'].unique(), dataset['Seguidor'].unique()))
self.handlers = sorted(np.unique(self.handlers))
print('Creating index...')
self.inversed = {}
for index, handler in tqdm(enumerate(self.handlers)):
self.inversed[handler] = index
self.relationships = {}
self.adjacencies = {}
self.influencers = {}
self.position = {}
for index, handler in enumerate(self.handlers):
self.relationships[index] = {}
self.adjacencies[index] = []
self.position[index] = []
print('Loading relationships and distance...')
for index, row in tqdm(dataset.iterrows()):
if math.isnan(row['lat']) or math.isnan(row['lon']):
continue
self.relationships[self.inversed[row['Perfil']]][self.inversed[row['Seguidor']]] = row['Peso']
self.adjacencies[self.inversed[row['Perfil']]].append(self.inversed[row['Seguidor']])
self.position[self.inversed[row['Perfil']]] = {'Perfil': row['Perfil'], 'lat': row['lat'],
'lon': row['lon']}
print('Done!')
print(len(self.inversed))
def get_weight(self, id_a, id_b):
try:
weight = self.relationships[id_b][id_a]
except:
weight = 0
return weight
def get_adjacency(self, id):
return self.adjacencies[id]
def get_inversed_adjacency(self, id):
return self.influencers[id]
def get_influencies(self, id, information_cut):
influences = {id: 1.0}
influences_return = {id: 1.0}
queue = [id]
while len(queue) > 0:
front = queue.pop(0)
for node in self.get_adjacency(front):
if node not in queue:
try:
influences[node]
pass
except:
influences[node] = influences[front] * self.get_weight(node, front)
if influences[node] >= information_cut:
influences_return[node] = influences[node]
queue.append(node)
return influences_return
def get_inversed_influencies(self, id, information_cut):
influences = {id: 1.0}
influences_return = {id: 1.0}
queue = [id]
while len(queue) > 0:
front = queue.pop(0)
for node in self.get_inversed_adjacency(front):
if node not in queue:
try:
influences[node]
pass
except:
influences[node] = influences[front] * self.get_weight(node, front)
if influences[node] >= information_cut:
influences_return[node] = influences[node]
queue.append(node)
return influences_return
def get_distance_profile_missing(self, index_k, miss_latitude, miss_longitude, raio):
perfil_latitude = self.position[index_k]['lat']
perfil_longitude = self.position[index_k]['lon']
if math.isnan(perfil_latitude) == True and math.isnan(perfil_longitude) == True and math.isnan(
miss_longitude) == True and math.isnan(miss_latitude) == True:
return 0
perfil_latitude = math.radians(float(perfil_latitude))
perfil_longitude = math.radians(float(perfil_longitude))
miss_latitude = math.radians(float(miss_latitude))
miss_longitude = math.radians(float(miss_longitude))
if perfil_latitude == miss_latitude and perfil_longitude == miss_longitude:
return 1
distance = (6371 * math.asin(math.cos(perfil_latitude) * math.cos(miss_latitude) * math.cos(
miss_longitude - perfil_longitude) + math.sin(perfil_latitude) * math.sin(miss_latitude)))
print(distance)
return 1 / distance
def get_distance_eucladiana(self, index_k, miss_latitude, miss_longitude, raio):
perfil_latitude = self.position[index_k]['lat']
perfil_longitude = self.position[index_k]['lon']
if math.isnan(perfil_latitude) == True and math.isnan(perfil_longitude) == True and math.isnan(
miss_longitude) == True and math.isnan(miss_latitude) == True:
return 0
perfil_latitude = math.radians(float(perfil_latitude))
perfil_longitude = math.radians(float(perfil_longitude))
miss_latitude = math.radians(float(miss_latitude))
miss_longitude = math.radians(float(miss_longitude))
if perfil_latitude == miss_latitude and perfil_longitude == miss_longitude:
return 1
distance = math.sqrt((perfil_latitude - miss_latitude) ** 2 + (perfil_longitude - miss_longitude))
print(distance)
return distance