-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
133 lines (128 loc) · 7.69 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Importing necessary libraries and modules
from activation_func import ActivationFunctions
from question2 import NeuralNetwork
from test_func import TestingModel
from layers import layer
from keras.datasets import fashion_mnist
from keras.datasets import mnist
import numpy as np
import matplotlib.pyplot as plt
import copy
from tqdm import tqdm
import wandb
import argparse
# Logging into Weights & Biases
wandb.login()
#760091de6b192857b226ee4bdecf4e7f93175087
def confusion_matrix_create(pred,true_p): # Function to create confusion matrix
#print('hi')
label_class=['T-shirt/top','Trouser','Pullover','Dress','Coat','Sandal','Shirt','Sneaker','Bag','Ankle boot']
wandb.log({ "Confusion Matrix" : wandb.sklearn.plot_confusion_matrix(true_p,pred,label_class)})
# Main function
def main(config=None):
if 2==2:
#with wandb.init(config=config, ):
#config=wandb.config
run_name = 'bs-'+str(args.batch_size)+'-lr-'+ str(args.learning_rate)+'-ep-'+str(args.epochs)+ '-op-'+str(args.optimizer)+ '-nhl-'+str(args.num_layers)+'-shl-'+str(args.hidden_size)+ '-act-'+str(args.activation)+'-wd-'+str(args.weight_decay)+'-wi-'+str(args.weight_init)+'-ls-'+str(args.loss)
print(run_name)
# Extracting arguments from command line
numberOfLayer=args.num_layers
numberOfNeuronPerLayer=args.hidden_size
numberOfNeuronOutputLayer=10
activationFunction=args.activation
initializer_type=args.weight_init
eta=args.learning_rate
regularize_coeef=args.weight_decay
batch_size=args.batch_size
optimizer=args.optimizer
epoch=args.epochs
loss=args.loss
dataset=args.dataset
confusion_bit=args.confution_matrix
# Initializing Weights & Biases run
wandb.init(project =args.project_name,entity=args.wandb_entity,name=run_name)
# Loading dataset
if dataset =='fashion_mnist':
print('fashion_mnist_data')
(train_image, train_class),(test_image, test_class) = fashion_mnist.load_data()
train_image1=train_image.reshape(train_image.shape[0],-1)
train_image_val=train_image1[int(0.9*train_image1.shape[0]):]
train_class_val=train_class[int(0.9*train_image1.shape[0]):]
train_image=train_image1[:int(0.9*train_image1.shape[0])]
train_class=train_class[:int(0.9*train_image1.shape[0])]
train_image=train_image/256
train_image_val=train_image_val/256
test_image1=test_image.reshape(test_image.shape[0],-1)
test_image1=test_image1/256
else:
print('mnist_data')
(train_image, train_class),(test_image, test_class) = mnist.load_data()
train_image1=train_image.reshape(train_image.shape[0],-1)
train_image_val=train_image1[int(0.9*train_image1.shape[0]):]
train_class_val=train_class[int(0.9*train_image1.shape[0]):]
train_image=train_image1[:int(0.9*train_image1.shape[0])]
train_class=train_class[:int(0.9*train_image1.shape[0])]
train_image=train_image/256
train_image_val=train_image_val/256
test_image1=test_image.reshape(test_image.shape[0],-1)
test_image1=test_image1/256
numberOfNeuronPrevLayer=train_image.shape[1]
layer_objects=[]
layer_objects_grad=[]
# Creating layer objects and store in the array
for i in range(numberOfLayer):
if i ==numberOfLayer-1 :
layer_object=layer(numberOfNeuronOutputLayer,numberOfNeuronPrevLayer,initializer_type,activationFunction)
layer_objects.append(layer_object)
layer_objects_grad.append(copy.deepcopy(layer_object))
else:
layer_object=layer(numberOfNeuronPerLayer,numberOfNeuronPrevLayer,initializer_type,activationFunction)
layer_objects.append(layer_object)
layer_objects_grad.append(copy.deepcopy(layer_object))
numberOfNeuronPrevLayer=numberOfNeuronPerLayer
# Initializing Neural Network object
trainer=NeuralNetwork(train_image_val,train_class_val,loss)
# Training using different optimizers depending on input
if optimizer=='stochastic':
layer_objects=trainer.schotastic_gradient_descent(layer_objects,epoch,train_image,train_class,layer_objects_grad,batch_size,eta,regularize_coeef)
if optimizer=='momentum':
layer_objects=trainer.momentum_Gradient_descent(layer_objects,epoch,train_image,train_class,layer_objects_grad,batch_size,eta,regularize_coeef)
if optimizer=='nesterov_accelerated':
layer_objects=trainer.Nestrov_gradient_descent(layer_objects,epoch,train_image,train_class,layer_objects_grad,batch_size,eta,regularize_coeef)
if optimizer=='RmsProp':
layer_objects=trainer.RmsProp(layer_objects,epoch,train_image,train_class,layer_objects_grad,batch_size,eta,regularize_coeef)
if optimizer=='adam':
layer_objects=trainer.Adam_gradient_descent(layer_objects,epoch,train_image,train_class,layer_objects_grad,batch_size,eta,regularize_coeef)
if optimizer=='nadam':
layer_objects=trainer.nadam_gradient_descent(layer_objects,epoch,train_image,train_class,layer_objects_grad,batch_size,eta,regularize_coeef)
test=TestingModel()
output=test.CalculateTest(layer_objects,test_image1) ## testing models with test data calculating loss and accuracy
accuracy=test.zeroOneModel(output,test_class)
test_loss=test.crossEntropyLoss(layer_objects,test_image1,test_class)
print("Test Accuracy is :",accuracy)
print("Test Loss is " ,test_loss)
if confusion_bit ==1 :
confusion_matrix_create(output,list(test_class)) #create confusion matrix on wandb
wandb.finish()
if __name__ == "__main__":
# Initialize the argument parser
parser = argparse.ArgumentParser()
# add arguments to the parsers
parser.add_argument('-wp','--project_name',type=str,default='Deep Learning Course DA6401',help='Project name used to track experiments in Weights & Biases dashboard')
parser.add_argument('-we','--wandb_entity',type=str,default='cs23m071-indian-institute-of-technology-madras',help='Project name used to track experiments in Weights & Biases dashboard')
parser.add_argument('-d','--dataset',type=str,default='fashion_mnist',choices=['mnist', 'fashion_mnist'],help='choose any of the Datasets to use')
parser.add_argument('-e','--epochs',type=int,default=15,help='Number of epochs to train neural network')
parser.add_argument('-b','--batch_size',type=int,default=16,help='Batch size used to train neural network')
parser.add_argument('-l','--loss',type=str,default='cross_entropy',choices=['cross_entropy', 'mean_squared_error'],help='loss function based on which we evaluate the model')
parser.add_argument('-o','--optimizer',type=str,default='adam',choices=['stochastic', 'momentum','nesterov_accelerated','RmsProp','adam','nadam'],help='optimzer algorithm to evaluate the model')
parser.add_argument('-a','--activation',type=str,default='relu',choices=['relu','sigmoid','tanh'],help='activation function used in the model')
#parser.add_argument('-a','--activation',type=str,default='relu',choices=['relu','sigmoid','tanh'],help='activation function used in the model')
parser.add_argument('-w_d','--weight_decay',type=float,default=0,help='Weight decay used by optimizers.')
parser.add_argument('-w_i','--weight_init',type=str,default='xavier',choices=['random', 'xavier'],help='Weight initializer used by models.')
parser.add_argument('-nhl','--num_layers',type=int,default=3,help='Number of hidden layers used in feedforward neural network')
parser.add_argument('-sz','--hidden_size',type=int,default=128,help='Number of hidden layers used in feedforward neural network')
parser.add_argument('-lr','--learning_rate',type=float,default=0.001,help='Learning rate used to optimize model parameters')
parser.add_argument('-cm','--confution_matrix',type=int,default=0,choices=[0,1],help='create confution matrix')
# Parse the command-line arguments
args = parser.parse_args()
main(args)