-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_func.py
62 lines (59 loc) · 2.91 KB
/
test_func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Import necessary modules
from activation_func import ActivationFunctions
from layers import layer # Importing layer class module
import numpy as np
import matplotlib.pyplot as plt
import copy
# Define a class for testing the model
class TestingModel:
# Method for forward propagation through the layers
def forwardPropagation1(self,layer_objects,input1):
x=ActivationFunctions()
# Iterate through each layer in the network
for i in range(len(layer_objects)-1):
if i==0:
# Compute the activation and apply the activation function
layer_objects[i].a=layer_objects[i].b+np.dot(layer_objects[i].w,input1)
if layer_objects[i].activationFunction=='sigmoid':
layer_objects[i].h=x.sigmoid(layer_objects[i].a)
if layer_objects[i].activationFunction=='tanh':
layer_objects[i].h=x.tanh(layer_objects[i].a)
if layer_objects[i].activationFunction=='relu':
layer_objects[i].h=x.relu(layer_objects[i].a)
else:
# For subsequent layers
layer_objects[i].a=layer_objects[i].b+np.matmul(layer_objects[i].w,layer_objects[i-1].h)
if layer_objects[i].activationFunction=='sigmoid':
layer_objects[i].h=x.sigmoid(layer_objects[i].a)
if layer_objects[i].activationFunction=='tanh':
layer_objects[i].h=x.tanh(layer_objects[i].a)
if layer_objects[i].activationFunction=='relu':
layer_objects[i].h=x.relu(layer_objects[i].a)
# Compute activation for the last layer using softmax
layer_objects[len(layer_objects)-1].a=layer_objects[len(layer_objects)-1].b+np.dot(layer_objects[len(layer_objects)-1].w,layer_objects[len(layer_objects)-2].h)
layer_objects[len(layer_objects)-1].h=x.softmax(layer_objects[len(layer_objects)-1].a)
return layer_objects
def zeroOneModel(self,Y_pred,Y_test): # Method to calculate accuracy of the model
return np.mean(Y_pred==Y_test)
def CalculateTest(self,layer_object,test_image): # Method to calculate predictions for test data
output=[]
for tt in test_image:
ls=self.forwardPropagation1(layer_object,tt)
output.append(np.argmax(ls[len(ls)-1].h))
return output
def crossEntropyLoss(self,layer_objects,test_image,test_class): # Method to calculate cross-entropy loss
ans=0
for x,y in zip(test_image,test_class):
ls=self.forwardPropagation1(layer_objects,x)
#print(np.log(ls[len(ls)-1].h))
ans=ans+(-1)*np.log(ls[len(ls)-1].h[y]+1e-8)
return ans/test_class.shape[0]
def squareError(self,layer_objects,test_image,test_class): # Method to calculate mean square error
ans=0
for x,y in zip(test_image,test_class):
ls=self.forwardPropagation1(layer_objects,x)
#print(np.log(ls[len(ls)-1].h))
one_hot=np.zeros(layer_objects[len(layer_objects)-1].numberOfNeuronPerLayer)
one_hot[y]=1
ans=ans+np.sum(np.square(ls[len(ls)-1].h-one_hot))
return ans/test_class.shape[0]