-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn2.py
84 lines (70 loc) · 2.97 KB
/
cnn2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import sys
import random
import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.model_selection import StratifiedKFold
from tensorflow.keras.optimizers import Adam
from sklearn.metrics import accuracy_score
from compare import compare
from utils import data_aug, plot_history
from models import build_cnn2_model
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
physical_devices = tf.config.list_physical_devices("GPU")
tf.config.experimental.set_memory_growth(physical_devices[0], True)
train = pd.read_csv('input/train.csv')
test = pd.read_csv('input/test.csv')
sample_submission = pd.read_csv('input/sample_submission.csv')
X = train.drop(columns=['label'], axis=1)
y = train['label']
kf = StratifiedKFold(n_splits=20, shuffle=True, random_state=42)
train_idx, test_idx = list(kf.split(X, y))[0]
X_train, X_test, y_train, y_test = X.loc[train_idx], X.loc[test_idx], y.loc[train_idx], y.loc[test_idx]
X_train = X_train.astype("float32") / 255.0
X_test = X_test.astype("float32") / 255.0
test = test.astype('float32') / 255.0
X_train.reset_index(drop=True, inplace=True)
X_test.reset_index(drop=True, inplace=True)
y_train.reset_index(drop=True, inplace=True)
y_test.reset_index(drop=True, inplace=True)
X_test = X_test.values.reshape(-1, 28, 28)
test = test.values.reshape(-1, 28, 28)
kf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
models = []
ans = pd.read_csv('./input/sample_submission.csv')
fans = None
for fold, (train_idx, val_idx) in enumerate(kf.split(X_train, y_train)):
print(fold)
train_x, train_y = X_train.loc[train_idx].values, y_train.loc[train_idx].values
val_x, val_y = X_train.loc[val_idx].values, y_train.loc[val_idx].values
train_x = train_x.reshape(-1, 28, 28)
val_x = val_x.reshape(-1, 28, 28)
print(train_x.shape, train_y.shape)
train_x, train_y = data_aug(train_x, train_y, 15)
print(train_x.shape, train_y.shape)
model = build_cnn2_model()
callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=10)
model.compile(optimizer=Adam(learning_rate=3e-4),
loss='sparse_categorical_crossentropy', metrics=['accuracy'])
history = model.fit(train_x, train_y, validation_data=(val_x, val_y), epochs=250, batch_size=128, verbose=1,
callbacks=[callback])
model.evaluate(train_x, train_y)
model.evaluate(val_x, val_y)
model.evaluate(X_test, y_test)
pred_val = np.argmax(model.predict(val_x), axis=-1)
pred_test = np.argmax(model.predict(X_test), axis=-1)
test_score = accuracy_score(y_test.values, pred_test, )
models.append((fold, model, accuracy_score(val_y, pred_val, ), test_score))
pred_test = np.argmax(model.predict(test), axis=-1)
if fans is None:
ans['Label'] = pred_test
fans = test_score
else:
if test_score > fans:
ans['Label'] = pred_test
fans = test_score
# plot_history(history)
print(models)
ans.to_csv('./output/sub_cnn.csv', index=False)
compare('sub_cnn')