forked from qiukun/gotorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist.go
176 lines (154 loc) · 4.79 KB
/
mnist.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
package main
import (
"encoding/gob"
"flag"
"fmt"
"log"
"os"
"path/filepath"
"strings"
"time"
torch "github.com/wangkuiyi/gotorch"
F "github.com/wangkuiyi/gotorch/nn/functional"
"github.com/wangkuiyi/gotorch/nn/initializer"
"github.com/wangkuiyi/gotorch/vision/imageloader"
"github.com/wangkuiyi/gotorch/vision/models"
"github.com/wangkuiyi/gotorch/vision/transforms"
"gocv.io/x/gocv"
)
var device torch.Device
func main() {
if torch.IsCUDAAvailable() {
log.Println("CUDA is valid")
device = torch.NewDevice("cuda")
} else {
log.Println("No CUDA found; CPU only")
device = torch.NewDevice("cpu")
}
initializer.ManualSeed(1)
trainCmd := flag.NewFlagSet("train", flag.ExitOnError)
trainTar := trainCmd.String("data", "/tmp/mnist_png_training_shuffled.tar.gz", "data tarball")
testTar := trainCmd.String("test", "/tmp/mnist_png_testing_shuffled.tar.gz", "data tarball")
save := trainCmd.String("save", "/tmp/mnist_model.gob", "the model file")
epoch := trainCmd.Int("epoch", 5, "the number of epochs")
predictCmd := flag.NewFlagSet("predict", flag.ExitOnError)
load := predictCmd.String("load", "/tmp/mnist_model.gob", "the model file")
if len(os.Args) < 2 {
fmt.Fprintf(os.Stderr, "Usage: %s needs subcomamnd train or predict\n", os.Args[0])
os.Exit(1)
}
switch os.Args[1] {
case "train":
trainCmd.Parse(os.Args[2:])
train(*trainTar, *testTar, *epoch, *save)
case "predict":
predictCmd.Parse(os.Args[2:])
predict(*load, predictCmd.Args())
}
}
func train(trainFn, testFn string, epochs int, save string) {
vocab, e := imageloader.BuildLabelVocabularyFromTgz(trainFn)
if e != nil {
panic(e)
}
net := models.MLP()
net.To(device)
opt := torch.SGD(0.01, 0.5, 0, 0, false)
opt.AddParameters(net.Parameters())
defer torch.FinishGC()
for epoch := 0; epoch < epochs; epoch++ {
var trainLoss float32
startTime := time.Now()
trainLoader := MNISTLoader(trainFn, vocab)
testLoader := MNISTLoader(testFn, vocab)
totalSamples := 0
for trainLoader.Scan() {
data, label := trainLoader.Minibatch()
totalSamples += int(data.Shape()[0])
opt.ZeroGrad()
pred := net.Forward(data.To(device, data.Dtype()))
loss := F.NllLoss(pred, label.To(device, label.Dtype()), torch.Tensor{}, -100, "mean")
loss.Backward()
opt.Step()
trainLoss = loss.Item().(float32)
}
throughput := float64(totalSamples) / time.Since(startTime).Seconds()
log.Printf("Train Epoch: %d, Loss: %.4f, throughput: %f samples/sec", epoch, trainLoss, throughput)
test(net, testLoader)
}
saveModel(net, save)
}
// MNISTLoader returns a ImageLoader with MNIST training or testing tgz file
func MNISTLoader(fn string, vocab map[string]int) *imageloader.ImageLoader {
trans := transforms.Compose(transforms.ToTensor(), transforms.Normalize([]float32{0.1307}, []float32{0.3081}))
loader, e := imageloader.New(fn, vocab, trans, 64, 64, time.Now().UnixNano(), torch.IsCUDAAvailable(), "gray")
if e != nil {
panic(e)
}
return loader
}
func test(model *models.MLPModule, loader *imageloader.ImageLoader) {
testLoss := float32(0)
correct := int64(0)
samples := 0
for loader.Scan() {
data, label := loader.Minibatch()
data = data.To(device, data.Dtype())
label = label.To(device, label.Dtype())
output := model.Forward(data)
loss := F.NllLoss(output, label, torch.Tensor{}, -100, "mean")
pred := output.Argmax(1)
testLoss += loss.Item().(float32)
correct += pred.Eq(label.View(pred.Shape()...)).Sum(map[string]interface{}{"dim": 0, "keepDim": false}).Item().(int64)
samples += int(label.Shape()[0])
}
log.Printf("Test average loss: %.4f, Accuracy: %.2f%%\n",
testLoss/float32(samples), 100.0*float32(correct)/float32(samples))
}
func saveModel(model *models.MLPModule, modelFn string) {
log.Println("Saving model to", modelFn)
f, e := os.Create(modelFn)
if e != nil {
log.Fatalf("Cannot create file to save model: %v", e)
}
defer f.Close()
d := torch.NewDevice("cpu")
model.To(d)
if e := gob.NewEncoder(f).Encode(model.StateDict()); e != nil {
log.Fatal(e)
}
}
func predict(modelFn string, inputs []string) {
net := loadModel(modelFn)
for _, in := range inputs {
for _, pa := range strings.Split(in, ":") {
fns, e := filepath.Glob(pa)
if e != nil {
log.Fatal(e)
}
for _, fn := range fns {
predictFile(fn, net)
}
}
}
}
func loadModel(modelFn string) *models.MLPModule {
f, e := os.Open(modelFn)
if e != nil {
log.Fatal(e)
}
defer f.Close()
states := make(map[string]torch.Tensor)
if e := gob.NewDecoder(f).Decode(&states); e != nil {
log.Fatal(e)
}
net := models.MLP()
net.SetStateDict(states)
return net
}
func predictFile(fn string, m *models.MLPModule) {
img := gocv.IMRead(fn, gocv.IMReadGrayScale)
t := transforms.ToTensor().Run(img)
n := transforms.Normalize([]float32{0.1307}, []float32{0.3081}).Run(t)
fmt.Println(m.Forward(n).Argmax().Item())
}