You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Collecting environment information...
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 4.0.0
Libc version: glibc-2.35
Nvidia driver version: 550.144.03
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 80
On-line CPU(s) list: 0-79
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Gold 6271C CPU @ 2.60GHz
CPU family: 6
Model: 85
Thread(s) per core: 2
Core(s) per socket: 20
Socket(s): 2
Stepping: 7
BogoMIPS: 5200.07
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology nonstop_tsc cpuid pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat umip pku ospke avx512_vnni md_clear arch_capabilities
L1d cache: 1.3 MiB (40 instances)
L1i cache: 1.3 MiB (40 instances)
L2 cache: 40 MiB (40 instances)
L3 cache: 66 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-39
NUMA node1 CPU(s): 40-79
Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Vulnerable
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Vulnerable; IBPB: disabled; STIBP: disabled; PBRSB-eIBRS: Vulnerable; BHI: Vulnerable
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Versions of relevant libraries:
[pip3] flashinfer-python==0.2.1.post2+cu124torch2.6
[pip3] numpy==2.2.5
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.4.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.51.3
[pip3] triton==3.2.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.5.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PHB PHB PHB SYS SYS SYS SYS 0-39 0 N/A
GPU1 PHB X PHB PHB SYS SYS SYS SYS 0-39 0 N/A
GPU2 PHB PHB X PHB SYS SYS SYS SYS 0-39 0 N/A
GPU3 PHB PHB PHB X SYS SYS SYS SYS 0-39 0 N/A
GPU4 SYS SYS SYS SYS X PHB PHB PHB 40-79 1 N/A
GPU5 SYS SYS SYS SYS PHB X PHB PHB 40-79 1 N/A
GPU6 SYS SYS SYS SYS PHB PHB X PHB 40-79 1 N/A
GPU7 SYS SYS SYS SYS PHB PHB PHB X 40-79 1 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
python3 benchmarks/benchmark_serving.py --backend vllm --num-prompt 2000 --max-concurrency 64 --dataset-name sharegpt --dataset-path /vllm-workspace/ShareGPT_V3_unfiltered_cleaned_split.json --model /model-dir/deepseek-ai/DeepSeek-R1-Distill-Llama-70B-Qianfan-1w-V1 --endpoint /v1/completions
Namespace(backend='vllm', base_url=None, host='127.0.0.1', port=8000, endpoint='/v1/completions', dataset_name='sharegpt', dataset_path='/vllm-workspace/ShareGPT_V3_unfiltered_cleaned_split.json', max_concurrency=64, model='/model-dir/deepseek-ai/DeepSeek-R1-Distill-Llama-70B-Qianfan-1w-V1', tokenizer=None, use_beam_search=False, num_prompts=2000, logprobs=None, request_rate=inf, burstiness=1.0, seed=0, trust_remote_code=False, disable_tqdm=False, profile=False, save_result=False, save_detailed=False, append_result=False, metadata=None, result_dir=None, result_filename=None, ignore_eos=False, percentile_metrics='ttft,tpot,itl', metric_percentiles='99', goodput=None, sonnet_input_len=550, sonnet_output_len=150, sonnet_prefix_len=200, sharegpt_output_len=None, random_input_len=1024, random_output_len=128, random_range_ratio=0.0, random_prefix_len=0, hf_subset=None, hf_split=None, hf_output_len=None, top_p=None, top_k=None, min_p=None, temperature=None, tokenizer_mode='auto', served_model_name=None, lora_modules=None)
Starting initial single prompt test run...
Traceback (most recent call last):
File "/vllm-workspace/benchmarks/benchmark_serving.py", line 1103, in
main(args)
File "/vllm-workspace/benchmarks/benchmark_serving.py", line 690, in main
benchmark_result = asyncio.run(
^^^^^^^^^^^^
File "/usr/lib/python3.12/asyncio/runners.py", line 195, in run
return runner.run(main)
^^^^^^^^^^^^^^^^
File "/usr/lib/python3.12/asyncio/runners.py", line 118, in run
return self._loop.run_until_complete(task)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/lib/python3.12/asyncio/base_events.py", line 691, in run_until_complete
return future.result()
^^^^^^^^^^^^^^^
File "/vllm-workspace/benchmarks/benchmark_serving.py", line 293, in benchmark
raise ValueError(
ValueError: Initial test run failed - Please make sure benchmark arguments are correctly specified. Error: Not Found
but my model is running on vllm server:
curl http://127.0.0.1:8000/v1/completions
-H "Content-Type: application/json"
-d '{
"model": "DeepSeek-R1-Distill-Llama-70B-Qianfan-1w-V1",
"prompt": "You are a helpful assistant.",
"max_tokens": 128,
"temperature": 0.7
}'
{"id":"cmpl-5492d9641a934cbb9ee5cc80a3b6d1fe","object":"text_completion","created":1748919926,"model":"DeepSeek-R1-Distill-Llama-70B-Qianfan-1w-V1","choices":[{"index":0,"text":" Provide a concise, step-by-step explanation for solving the following problem: How to calculate the area of a trapezoid when given the two bases and the height. Include the formula and an example with numbers.\n\n\nOkay, so I need to figure out how to calculate the area of a trapezoid when I know the two bases and the height. Let me start by recalling what a trapezoid is. A trapezoid is a quadrilateral with at least one pair of parallel sides. Those parallel sides are called the bases, right? The other two sides that aren't parallel are the legs.","logprobs":null,"finish_reason":"length","stop_reason":null,"prompt_logprobs":null}],"usage":{"prompt_tokens":6,"total_tokens":134,"completion_tokens":128,"prompt_tokens_details":null}}
Before submitting a new issue...
Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
The text was updated successfully, but these errors were encountered:
Your current environment
Collecting environment information...
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 4.0.0
Libc version: glibc-2.35
Python version: 3.12.10 (main, Apr 9 2025, 08:55:05) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA GeForce RTX 3090
GPU 1: NVIDIA GeForce RTX 3090
GPU 2: NVIDIA GeForce RTX 3090
GPU 3: NVIDIA GeForce RTX 3090
GPU 4: NVIDIA GeForce RTX 3090
GPU 5: NVIDIA GeForce RTX 3090
GPU 6: NVIDIA GeForce RTX 3090
GPU 7: NVIDIA GeForce RTX 3090
Nvidia driver version: 550.144.03
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 80
On-line CPU(s) list: 0-79
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Gold 6271C CPU @ 2.60GHz
CPU family: 6
Model: 85
Thread(s) per core: 2
Core(s) per socket: 20
Socket(s): 2
Stepping: 7
BogoMIPS: 5200.07
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology nonstop_tsc cpuid pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat umip pku ospke avx512_vnni md_clear arch_capabilities
L1d cache: 1.3 MiB (40 instances)
L1i cache: 1.3 MiB (40 instances)
L2 cache: 40 MiB (40 instances)
L3 cache: 66 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-39
NUMA node1 CPU(s): 40-79
Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Vulnerable
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Vulnerable; IBPB: disabled; STIBP: disabled; PBRSB-eIBRS: Vulnerable; BHI: Vulnerable
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Versions of relevant libraries:
[pip3] flashinfer-python==0.2.1.post2+cu124torch2.6
[pip3] numpy==2.2.5
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.4.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.51.3
[pip3] triton==3.2.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.5.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PHB PHB PHB SYS SYS SYS SYS 0-39 0 N/A
GPU1 PHB X PHB PHB SYS SYS SYS SYS 0-39 0 N/A
GPU2 PHB PHB X PHB SYS SYS SYS SYS 0-39 0 N/A
GPU3 PHB PHB PHB X SYS SYS SYS SYS 0-39 0 N/A
GPU4 SYS SYS SYS SYS X PHB PHB PHB 40-79 1 N/A
GPU5 SYS SYS SYS SYS PHB X PHB PHB 40-79 1 N/A
GPU6 SYS SYS SYS SYS PHB PHB X PHB 40-79 1 N/A
GPU7 SYS SYS SYS SYS PHB PHB PHB X 40-79 1 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NVIDIA_VISIBLE_DEVICES=all
NVIDIA_REQUIRE_CUDA=cuda>=12.4 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526 brand=tesla,driver>=535,driver<536 brand=unknown,driver>=535,driver<536 brand=nvidia,driver>=535,driver<536 brand=nvidiartx,driver>=535,driver<536 brand=geforce,driver>=535,driver<536 brand=geforcertx,driver>=535,driver<536 brand=quadro,driver>=535,driver<536 brand=quadrortx,driver>=535,driver<536 brand=titan,driver>=535,driver<536 brand=titanrtx,driver>=535,driver<536
NCCL_VERSION=2.20.5-1
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NVIDIA_PRODUCT_NAME=CUDA
VLLM_USAGE_SOURCE=production-docker-image
CUDA_VERSION=12.4.0
VLLM_ENGINE_ITERATION_TIMEOUT_S=120
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
VLLM_LOGGING_CONFIG_PATH=/root/vllm_logging_config.json
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
How would you like to use vllm
python3 benchmarks/benchmark_serving.py --backend vllm --num-prompt 2000 --max-concurrency 64 --dataset-name sharegpt --dataset-path /vllm-workspace/ShareGPT_V3_unfiltered_cleaned_split.json --model /model-dir/deepseek-ai/DeepSeek-R1-Distill-Llama-70B-Qianfan-1w-V1 --endpoint /v1/completions
Namespace(backend='vllm', base_url=None, host='127.0.0.1', port=8000, endpoint='/v1/completions', dataset_name='sharegpt', dataset_path='/vllm-workspace/ShareGPT_V3_unfiltered_cleaned_split.json', max_concurrency=64, model='/model-dir/deepseek-ai/DeepSeek-R1-Distill-Llama-70B-Qianfan-1w-V1', tokenizer=None, use_beam_search=False, num_prompts=2000, logprobs=None, request_rate=inf, burstiness=1.0, seed=0, trust_remote_code=False, disable_tqdm=False, profile=False, save_result=False, save_detailed=False, append_result=False, metadata=None, result_dir=None, result_filename=None, ignore_eos=False, percentile_metrics='ttft,tpot,itl', metric_percentiles='99', goodput=None, sonnet_input_len=550, sonnet_output_len=150, sonnet_prefix_len=200, sharegpt_output_len=None, random_input_len=1024, random_output_len=128, random_range_ratio=0.0, random_prefix_len=0, hf_subset=None, hf_split=None, hf_output_len=None, top_p=None, top_k=None, min_p=None, temperature=None, tokenizer_mode='auto', served_model_name=None, lora_modules=None)
Starting initial single prompt test run...
Traceback (most recent call last):
File "/vllm-workspace/benchmarks/benchmark_serving.py", line 1103, in
main(args)
File "/vllm-workspace/benchmarks/benchmark_serving.py", line 690, in main
benchmark_result = asyncio.run(
^^^^^^^^^^^^
File "/usr/lib/python3.12/asyncio/runners.py", line 195, in run
return runner.run(main)
^^^^^^^^^^^^^^^^
File "/usr/lib/python3.12/asyncio/runners.py", line 118, in run
return self._loop.run_until_complete(task)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/lib/python3.12/asyncio/base_events.py", line 691, in run_until_complete
return future.result()
^^^^^^^^^^^^^^^
File "/vllm-workspace/benchmarks/benchmark_serving.py", line 293, in benchmark
raise ValueError(
ValueError: Initial test run failed - Please make sure benchmark arguments are correctly specified. Error: Not Found
but my model is running on vllm server:
curl http://127.0.0.1:8000/v1/completions
-H "Content-Type: application/json"
-d '{
"model": "DeepSeek-R1-Distill-Llama-70B-Qianfan-1w-V1",
"prompt": "You are a helpful assistant.",
"max_tokens": 128,
"temperature": 0.7
}'
{"id":"cmpl-5492d9641a934cbb9ee5cc80a3b6d1fe","object":"text_completion","created":1748919926,"model":"DeepSeek-R1-Distill-Llama-70B-Qianfan-1w-V1","choices":[{"index":0,"text":" Provide a concise, step-by-step explanation for solving the following problem: How to calculate the area of a trapezoid when given the two bases and the height. Include the formula and an example with numbers.\n\n\nOkay, so I need to figure out how to calculate the area of a trapezoid when I know the two bases and the height. Let me start by recalling what a trapezoid is. A trapezoid is a quadrilateral with at least one pair of parallel sides. Those parallel sides are called the bases, right? The other two sides that aren't parallel are the legs.","logprobs":null,"finish_reason":"length","stop_reason":null,"prompt_logprobs":null}],"usage":{"prompt_tokens":6,"total_tokens":134,"completion_tokens":128,"prompt_tokens_details":null}}
Before submitting a new issue...
The text was updated successfully, but these errors were encountered: