Skip to content

[Bug]: Device selection broken in v0.9 #19069

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
1 task done
derfred opened this issue Jun 3, 2025 · 2 comments
Closed
1 task done

[Bug]: Device selection broken in v0.9 #19069

derfred opened this issue Jun 3, 2025 · 2 comments
Labels
bug Something isn't working

Comments

@derfred
Copy link

derfred commented Jun 3, 2025

Your current environment

The output of python collect_env.py
(venv) root@instance-....:~# python collect_env.py
INFO 06-03 08:36:06 [__init__.py:243] Automatically detected platform cuda.
Collecting environment information...
==============================
        System Info
==============================
OS                           : Ubuntu 24.04.2 LTS (x86_64)
GCC version                  : (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
Clang version                : Could not collect
CMake version                : Could not collect
Libc version                 : glibc-2.39

==============================
       PyTorch Info
==============================
PyTorch version              : 2.7.0+cu126
Is debug build               : False
CUDA used to build PyTorch   : 12.6
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.12.3 (main, Feb  4 2025, 14:48:35) [GCC 13.3.0] (64-bit runtime)
Python platform              : Linux-6.8.0-59-generic-x86_64-with-glibc2.39

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : 12.6.85
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration : 
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB

Nvidia driver version        : 570.133.20
cuDNN version                : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.9.0
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        48 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               44
On-line CPU(s) list:                  0-43
Vendor ID:                            AuthenticAMD
BIOS Vendor ID:                       QEMU
Model name:                           AMD EPYC 7642 48-Core Processor
BIOS Model name:                      pc-q35-6.2  CPU @ 2.0GHz
BIOS CPU family:                      1
CPU family:                           23
Model:                                49
Thread(s) per core:                   1
Core(s) per socket:                   1
Socket(s):                            44
Stepping:                             0
BogoMIPS:                             4599.99
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm rep_good nopl cpuid extd_apicid tsc_known_freq pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw perfctr_core ssbd ibrs ibpb stibp vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr wbnoinvd arat npt lbrv nrip_save tsc_scale vmcb_clean pausefilter pfthreshold v_vmsave_vmload vgif umip rdpid arch_capabilities
Virtualization:                       AMD-V
Hypervisor vendor:                    KVM
Virtualization type:                  full
L1d cache:                            2.8 MiB (44 instances)
L1i cache:                            2.8 MiB (44 instances)
L2 cache:                             22 MiB (44 instances)
L3 cache:                             704 MiB (44 instances)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0-43
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Mitigation; untrained return thunk; SMT disabled
Vulnerability Spec rstack overflow:   Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

==============================
Versions of relevant libraries
==============================
[pip3] flashinfer-python==0.2.5+cu126torch2.6
[pip3] mypy_extensions==1.1.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] pyzmq==26.4.0
[pip3] torch==2.7.0
[pip3] torchaudio==2.7.0
[pip3] torchvision==0.22.0
[pip3] transformers==4.52.4
[pip3] triton==3.3.0
[conda] Could not collect

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
Neuron SDK Version           : N/A
vLLM Version                 : 0.9.0.1
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
  	GPU0	GPU1	CPU Affinity	NUMA Affinity	GPU NUMA ID
GPU0	 X 	NV2	0-43	0		N/A
GPU1	NV2	 X 	0-43	0		N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

==============================
     Environment Variables
==============================
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

Create a new instance of LLM with device specified in a multi-gpu machine

from vllm import LLM
llm = LLM(device="cuda:1", quantization='bitsandbytes', load_format='bitsandbytes', model='unsloth/Mistral-Small-3.1-24B-Instruct-2503-bnb-4bit')

in v0.9.0.1 the model is then placed on cuda instead of cuda:1 as can also be seen in the log output (look for device_config):

...
INFO 06-03 08:36:34 [core.py:65] Initializing a V1 LLM engine (v0.9.0.1) with config: model='unsloth/Mistral-Small-3.1-24B-Instruct-2503-bnb-4bit', speculative_config=None, tokenizer='unsloth/Mistral-Small-3.1-24B-Instruct-2503-bnb-4bit', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config={}, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=14500, download_dir=None, load_format=LoadFormat.BITSANDBYTES, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=bitsandbytes, enforce_eager=False, kv_cache_dtype=auto,  device_config=cuda, decoding_config=DecodingConfig(backend='auto', disable_fallback=False, disable_any_whitespace=False, disable_additional_properties=False, reasoning_backend=''), observability_config=ObservabilityConfig(show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None), seed=0, served_model_name=unsloth/Mistral-Small-3.1-24B-Instruct-2503-bnb-4bit, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=True, pooler_config=None, compilation_config={"level": 3, "custom_ops": ["none"], "splitting_ops": ["vllm.unified_attention", "vllm.unified_attention_with_output"], "compile_sizes": [], "inductor_compile_config": {"enable_auto_functionalized_v2": false}, "use_cudagraph": true, "cudagraph_num_of_warmups": 1, "cudagraph_capture_sizes": [512, 504, 496, 488, 480, 472, 464, 456, 448, 440, 432, 424, 416, 408, 400, 392, 384, 376, 368, 360, 352, 344, 336, 328, 320, 312, 304, 296, 288, 280, 272, 264, 256, 248, 240, 232, 224, 216, 208, 200, 192, 184, 176, 168, 160, 152, 144, 136, 128, 120, 112, 104, 96, 88, 80, 72, 64, 56, 48, 40, 32, 24, 16, 8, 4, 2, 1], "max_capture_size": 512}
...

compare to v.8.5.post1

...
INFO 06-03 08:26:42 [core.py:58] Initializing a V1 LLM engine (v0.8.5.post1) with config: model='unsloth/Mistral-Small-3.1-24B-Instruct-2503-bnb-4bit', speculative_config=None, tokenizer='unsloth/Mistral-Small-3.1-24B-Instruct-2503-bnb-4bit', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=14500, download_dir=None, load_format=LoadFormat.BITSANDBYTES, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=bitsandbytes, enforce_eager=False, kv_cache_dtype=auto,  device_config=cuda:1, decoding_config=DecodingConfig(guided_decoding_backend='auto', reasoning_backend=None), observability_config=ObservabilityConfig(show_hidden_metrics=False, otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=None, served_model_name=unsloth/Mistral-Small-3.1-24B-Instruct-2503-bnb-4bit, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=True, disable_mm_preprocessor_cache=False, mm_processor_kwargs=None, pooler_config=None, compilation_config={"level":3,"custom_ops":["none"],"splitting_ops":["vllm.unified_attention","vllm.unified_attention_with_output"],"use_inductor":true,"compile_sizes":[],"use_cudagraph":true,"cudagraph_num_of_warmups":1,"cudagraph_capture_sizes":[512,504,496,488,480,472,464,456,448,440,432,424,416,408,400,392,384,376,368,360,352,344,336,328,320,312,304,296,288,280,272,264,256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"max_capture_size":512}
...

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
@derfred derfred added the bug Something isn't working label Jun 3, 2025
@DarkLight1337
Copy link
Member

The --device argument is not intended to be used for selecting the specific device in vLLM. In fact, we have deprecated this argument in #18399.

To set the specific device, we recommend instead using environment variables such as CUDA_VISIBLE_DEVICES.

@derfred
Copy link
Author

derfred commented Jun 4, 2025

@DarkLight1337 Thanks for the info. That worked for me!

@derfred derfred closed this as not planned Won't fix, can't repro, duplicate, stale Jun 4, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

2 participants