-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcolloc_parser.py
685 lines (615 loc) · 28 KB
/
colloc_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
import re, collections
import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.autograd as autograd
import torch.optim as optim
import torch.utils.data
import numpy as np
import math
import argparse
from jexus import Clock, Loader, History
from ELMoForManyLangs import elmo
from random import shuffle
from draw_plot import *
from data_utils import load_data
import math
import sys
class Embedder():
def __init__(self):
self.embedder = elmo.Embedder(batch_size=512)
def __call__(self, sents):
seq_lens = np.array([len(x) for x in sents], dtype=np.int64)
sents = [[self.sub_unk(x) for x in sent] for sent in sents]
max_len = seq_lens.max()
emb_list = self.embedder.sents2elmo(sents)
for i in range(len(emb_list)):
emb_list[i] = np.concatenate([emb_list[i], np.zeros((max_len - seq_lens[i], emb_list[i].shape[1]))])
return np.array(emb_list, dtype=np.float32), seq_lens
def sub_unk(self, e):
e = e.replace(',',',')
e = e.replace(':',':')
e = e.replace(';',';')
e = e.replace('?','?')
e = e.replace('!', '!')
return e
def calc_overlap(a, b): #a:True Class, b:Pred Class
# if a.shape == torch.Size([]):
# a = [a.item()]
# if b.shape == torch.Size([]):
# b = [b.item()]
try:
a = list(a)
b = list(b)
except:
print("a: ",a)
print("b: ",b)
a_multiset = collections.Counter(a)
b_multiset = collections.Counter(b)
overlap = list((a_multiset & b_multiset).elements())
a_remainder = list((a_multiset - b_multiset).elements())
b_remainder = list((b_multiset - a_multiset).elements())
o, a, b = len(overlap), len(a_remainder), len(b_remainder)
if a == 0 and b == 0:
return 1, 1
elif a == 0 and b != 0:
return 1, 1 / (1 + b)
elif a != 0 and b == 0:
return 1 / (1 + a), 1
precision = o / (o + b)
recall = o / (o + a)
return precision, recall
def par(sent):
if '"' in sent:
return ""
spt = sent.split(',')
label = spt[1]
sent = spt[0]
sent = sent.split(' ')
gex = [re.compile(r'\[1\]\{(\S*)\}'), re.compile(r'\[2\]\{(\S*)\}')]
pos = [0, 0]
for i, word in enumerate(sent):
for idx in [0, 1]:
found = gex[idx].findall(word)
if len(found) != 0:
pos[idx] = i
sent[i] = found[0]
# return [pos], sent, int(int(label)==1)
ret = ([pos], sent, 1) if (int(label)==1) else([], sent, 0)
return ret
def get_label_data(filename="NfN.csv", with_label=False):
f = open(filename).read().split('\n')[1:-1]
li = []
for i in f:
parsed = par(i)
if parsed != '':
li.append(parsed[1] if not with_label else parsed)
return li
def get_multi_data(filename="double_pairs_ys.csv", with_label=True):
f = open(filename)
f = f.read().split('\n')[:-1]
f = [x.replace('{', '') for x in f]
f = [x.replace('}', '') for x in f]
f = [x.split(' ') for x in f]
gex = re.compile(r"([^nf]+)((?:\w\d)*)")
pic = re.compile(r"([nf][0-9])")
collection = []
for sent in f:
arc = {}
ret = []
for i, word in enumerate(sent):
if word == '':
sent.pop(i)
continue
try:
gexf = gex.findall(word)[0]
except:
if word in prefix:
gexf = (word, '')
else:
print(sent)
break
if gexf[1] == '':
continue
else:
sent[i] = gexf[0]
points = pic.findall(gexf[1])
for point in points:
arc.setdefault(point[1], {})[point[0]] = i
for num in arc.keys():
if not len(arc[num].keys()) < 2:
ret.append([arc[num]['f'], arc[num]['n']])
collection.append([ret, sent, 1] if ret!=[] else [ret, sent, 0])
return collection[:2000] if with_label else [x[1] for x in collection[:2000]]
def split_valid(X, v_size=0.05, rand=True):
if rand == True:
randomize = np.arange(len(X[0]))
np.random.shuffle(randomize)
X = [np.array(x)[randomize] for x in X]
t_size = math.floor(len(X[0]) * (1 - v_size))
X_v = []
for i in range(len(X)):
X_v.append(X[i][t_size:])
X[i] = X[i][:t_size]
return X, X_v
def split_valid_list(X, v_size=0.05, rand=True):
if rand == True:
shuffle(X)
t_size = math.floor(len(X) * (1 - v_size))
X_v = X[t_size:]
X = X[:t_size]
return X, X_v
def tag_mat(mat):
target = np.zeros_like(mat)
if mat.shape[0] == 1:
return target
for i in range(mat.shape[0]):
rank = np.argsort(-mat[i])
top = rank[0] if rank[0] != i else rank[1]
for x in range(mat.shape[1]):
boo = int(x == top)
if boo:
target[i][x] = 1
return target
def tag_array(mat):
target = np.zeros_like(mat)
if mat.shape[0] == 1:
return target
top = np.argsort(-mat[:,0])[0]
target[top][0] = 1
return target
def f1_score(p, r):
return 2*p*r/(p+r) if p+r != 0 else 0
def sort_by(li, piv=2,unsort=False):
li[piv], ind = torch.sort(li[piv], dim=0, descending=(not unsort))
for i in range(len(li)):
if i == piv:
continue
else:
li[i] = li[i][ind]
return li, ind
def sort_list(li, piv=2,unsort_ind=None):
# li[piv], ind = torch.sort(li[piv], dim=0, descending=(not unsort))
ind = []
if unsort_ind == None:
ind = sorted(range(len(li[piv])), key=(lambda k: li[piv][k]))
else:
ind = unsort_ind
for i in range(len(li)):
li[i] = [li[i][j] for j in ind]
return li, ind
class Parser(nn.Module):
def __init__(self, input_size=1024, hidden_size=300, h_size=500, n_layers=3, dropout=0.33, batch_size=32, cpu_only=False):
super(Parser, self).__init__()
self.gpu = torch.cuda.is_available()
self.n_layers = n_layers
self.hidden_size = hidden_size
self.batch_size = batch_size
print("loading ELMo model ...", file=sys.stderr)
self.elmo = Embedder()
print("ELMo model loaded!", file=sys.stderr)
# print("loading word2vec model ...")
# self.word2vec = models.Word2Vec.load('../Dependency_Analyser/skip-gram/word2vec.model')
# print("word2vec model loaded!")
# syn0 = np.concatenate((np.zeros((1, self.word2vec.wv.syn0.shape[1])),self.word2vec.wv.syn0), axis=0)
# self.embedding = nn.Embedding(syn0.shape[0], syn0.shape[1])
# self.embedding.weight.data.copy_(torch.from_numpy(syn0))
# self.embedding.weight.requires_grad = False
self.gru = nn.LSTM(input_size, hidden_size, n_layers,
dropout=(0 if n_layers == 1 else dropout), bidirectional=True, batch_first=True)
self.mlp_root = nn.Linear(hidden_size * 2, h_size)
self.root_prob = nn.Linear(h_size,1)
self.mlp_nf = nn.Linear(hidden_size*2,h_size)
self.mlp_na = nn.Linear(hidden_size*2,h_size)
self.criterion = nn.CrossEntropyLoss()
self.optimizer = torch.optim.Adam(self.parameters())
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.bce = nn.BCELoss()
# output: torch.Size([sentence len, batch size, 600])
def multi_target_loss(self, preds, labels):
bs = preds.shape[0]
t = labels.view(bs, -1)
y = preds.view(bs, -1)
return nn.BCELoss()(y, t)
# return - torch.mean(torch.sum(t * torch.log(y) + (1 - t) * torch.log(1 - y), dim=1))
def multi_target_loss_root(self, preds, labels):
bs = preds.shape[0]
t = labels.view(bs, -1)
y = preds.view(bs, -1)
return nn.BCELoss()(y, t)
def forward(self, input_seq, input_lengths, hidden=None):
# embedded = self.embedding(input_seq)
embedded = input_seq
packed = torch.nn.utils.rnn.pack_padded_sequence(embedded, input_lengths, batch_first=True)
outputs, hidden = self.gru(packed, hidden) # output: (seq_len, batch, hidden*n_dir)
outputs, _ = torch.nn.utils.rnn.pad_packed_sequence(outputs, batch_first=True)
root_prob = nn.Sigmoid()(self.root_prob(nn.LeakyReLU(0.1)(self.mlp_root(outputs))))
nf_vec = nn.Sigmoid()(nn.LeakyReLU(0.1)(self.mlp_nf(outputs)))
na_vec = nn.Sigmoid()(nn.LeakyReLU(0.1)(self.mlp_na(outputs)))
na_vec = na_vec.transpose(1,2)
graph = nn.Softmax(dim=2)(torch.matmul(nf_vec, na_vec))
# output: torch.Size([sentence len, batch size, 600])
return root_prob, graph
def get_dataloader(self, filename, shuffle=True, prefix=['a', 'b']):
X = load_data(filename=filename, prefix=prefix)
X_train, X_valid = split_valid_list(X, rand=shuffle)
# .sort(key=lambda x: len(x[0].split(" ")), reverse=True)
train_loader = Loader(X_train, batch_size=self.batch_size)
test_loader = Loader(X_valid, batch_size=self.batch_size)
return train_loader, test_loader
def expand_data(self, label_data):
# arcs = np.array([x[0] for x in label_data])
arcs_array = []
for group in label_data:
if group[0] == []:
z = np.zeros((10, 2), dtype=int)
arcs_array.append(z)
else:
array = np.array(group[0])
z = np.zeros((10, 2), dtype=int)
z[:len(array)] = array
arcs_array.append(z)
arcs = np.array(arcs_array)
labels = np.array([x[2] for x in label_data])
seqs = [x[1] for x in label_data]
embedded, seq_lens = self.elmo(seqs)
return [torch.from_numpy(arcs), torch.from_numpy(embedded), torch.from_numpy(seq_lens), torch.from_numpy(labels)]
def expand_unlabelled(self, sents):
embedded, seq_lens = self.elmo(sents)
return [torch.from_numpy(embedded), torch.from_numpy(seq_lens)]
def multi_acc(self, arcs, root, graph, label, threshold=0.5):
na_r = 0
na_p = 0
na_total = 0
nf_r = 0
nf_p = 0
nf_total = 0
for a, ro, g in zip(arcs, root, graph):
root_ans = []
nf_na_di = {}
for row in a:
if row[0] == row[1]:
break
else:
root_ans.append(row[0].item())
nf_na_di.setdefault(row[0].item(), [])
nf_na_di[row[0].item()].append(row[1].item())
pred_nf = (ro > threshold).nonzero().squeeze()
pred_nf = [pred_nf.item()] if pred_nf.dim()==0 else pred_nf
p, r = calc_overlap(root_ans, pred_nf)
nf_total += 1
nf_p += p
nf_r += r
for nf in nf_na_di:
na = nf_na_di[nf]
pred_na = (g[nf] > threshold).nonzero().squeeze()
pred_na = [pred_na.item()] if pred_na.dim()==0 else pred_na
p, r = calc_overlap(na, pred_na)
na_total += 1
na_p += p
na_r += r
# return: nf_precision, nf_recall, na_precision, na_recall
return {"a":nf_p/nf_total, "b":nf_r/nf_total, "c":na_p/na_total, "d":na_r/na_total}
# return {"nf_p":nf_p/nf_total, "nf_r":nf_r/nf_total, "na_p":na_p/na_total, "na_r":na_r/na_total}
# return nf_p/nf_total, nf_r/nf_total, na_p/na_total, na_r/na_total
def test(self, arcs, seqs, seq_len, label):
# self.eval()
total = 0
root_corr = 0
root, graph = self.forward(seqs, seq_len)
nf = torch.argmax(root, dim=1).squeeze()
na = torch.argmax(graph[range(len(arcs)), arcs[:, 0]], dim=1)
total = (label==1).sum().item()
nf_corr = (nf[(label==1).nonzero().squeeze(1)] == arcs[:, 0][(label==1).nonzero().squeeze(1)]).sum().item()
na_corr = (na[(label==1).nonzero().squeeze(1)] == arcs[:, 1][(label==1).nonzero().squeeze(1)]).sum().item()
return total, nf_corr, na_corr
def acc(self, arcs, root, graph, label):
total = 0
root_corr = 0
nf = torch.argmax(root, dim=1).squeeze()
na = torch.argmax(graph[range(len(arcs)), arcs[:, 0]], dim=1)
total = (label == 1).sum().item()
wanted_idxs = (label==1).nonzero().squeeze(1)
nf_corr = (nf[wanted_idxs] == arcs[:, 0][wanted_idxs]).sum().item()
na_corr = (na[wanted_idxs] == arcs[:, 1][wanted_idxs]).sum().item()
return total, nf_corr, na_corr
def load_model(self, filename='model.ckpt'):
self.load_state_dict(torch.load(filename))
print("%s load!"%filename)
# root[(label==1).nonzero().squeeze(1)], arcs[:, 0][(label==1).nonzero().squeeze(1)].unsqueeze(1)
def evaluate(self, raw_sents, threshold=0.4, print_out=True, dev=False, prefix=["f", "n"], file=None, show_score=True):
self.to(self.device)
self.eval()
max_len = 0
for i in raw_sents:
if len(i) > max_len:
max_len = len(i)
# backup_sents = raw_sents[:]
embedded, seq_lens = self.elmo(raw_sents)
X, X_len = torch.from_numpy(embedded), torch.from_numpy(seq_lens)
eval_loader = torch.utils.data.DataLoader(dataset=torch.utils.data.TensorDataset(X, X_len),
batch_size=512,
shuffle=False)
nf_list = []
na_list = []
na_prob = []
nf_prob = []
if type(threshold) is list:
assert len(threshold) == 2
else:
assert type(threshold) is float
threshold = [threshold, threshold]
with torch.no_grad():
for i, li in enumerate(eval_loader):
[seqs, seq_len], ind = sort_by(li, piv=1)
[seqs, seq_len] = [seqs.to(self.device), seq_len.to(self.device)]
this_bs = seqs.shape[0]
# Forward pass
root, graph = self.forward(seqs, seq_len)
[seqs, seq_len, root, graph, ind], ind2 = sort_by([seqs, seq_len, root, graph, ind], 4, True)
if dev:
return root, graph
nf = (root>threshold[0]).squeeze()
na = torch.argmax(graph, dim=-1)
nf_list.append(np.array(nf.cpu()))
na_list.append(np.array(na.cpu()))
root = np.array(root.cpu(), dtype = float)
graph = np.array(graph.cpu(), dtype = float)
nf_prob.append(root)
na_prob.append(graph)
if len(nf_list)>1:
nf_list = np.concatenate(nf_list,axis=0)
na_list = np.concatenate(na_list, axis=0)
nf_prob = np.concatenate(nf_prob, axis=0)
na_prob = np.concatenate(na_prob, axis=0)
else:
nf_list = nf_list[0]
na_list = na_list[0]
nf_prob = nf_prob[0]
na_prob = na_prob[0]
if print_out:
idx = 0
# seg = CKIP.PyWordSeg()
gex = re.compile(r"[\u4E00-\u9FFF]+")
for idx, (nf, na, sent) in enumerate(zip(nf_list, na_list, raw_sents)):
nf_id = 1
for i, (word, f, a) in enumerate(zip(sent, nf, na)):
if f > 0:
# assert len(pos_tag) == len(sent)
assert sent == raw_sents[idx]
if i == a:
continue
try:
if len(gex.findall(sent[i])) == 0 or len(gex.findall(sent[a])) == 0:
continue
if na_prob[idx][i][a] < threshold[1]:
continue
if not show_score:
raw_sents[idx][i] = "%s%s%d" % (word, prefix[0], nf_id)
raw_sents[idx][a] = "%s%s%d" % (raw_sents[idx][a], prefix[1], nf_id)
else:
raw_sents[idx][i] = "%s%s%d(%.2f)" % (word, prefix[0], nf_id, nf_prob[idx][i])
raw_sents[idx][a] = "%s%s%d(%.2f)" % (raw_sents[idx][a], prefix[1], nf_id, na_prob[idx][i][a])
nf_id += 1
except Exception as ex:
pass
if file!=None:
print(' '.join(raw_sents[idx]), file=file)
else:
print(' '.join(raw_sents[idx]))
else:
return nf_list, na_list
def visualize(self, raw_sents, out_dir, ct=None):
self.to(self.device)
self.eval()
X, X_len = self.elmo(raw_sents)
X = torch.from_numpy(X)
X_len = torch.from_numpy(X_len)
if self.gpu:
X.cuda()
X_len.cuda()
eval_loader = torch.utils.data.DataLoader(dataset=torch.utils.data.TensorDataset(X, X_len),
batch_size=512,
shuffle=False)
nf_list = []
na_list = []
root_list = []
graph_list = []
with torch.no_grad():
self.eval()
for i, li in enumerate(eval_loader):
[seqs, seq_len] = li
[seqs, seq_len], ind = sort_by([seqs, seq_len], piv=1)
[seqs, seq_len] = [seqs.to(self.device), seq_len.to(self.device)]
this_bs = seqs.shape[0]
# Forward pass
root, graph = self.forward(seqs, seq_len)
[seqs, seq_len, root, graph, ind], ind2 = sort_by([seqs, seq_len, root, graph, ind], 4, True)
# if dev:
# return root, graph
for i, j, k in zip(root, graph, raw_sents):
s = len(k)
temp_root = np.array(i.cpu(), dtype = float)[:s]
temp_graph = np.array(j.cpu(), dtype = float)[:s, :s]
nf_list.append(tag_array(temp_root))
na_list.append(tag_mat(temp_graph))
root_list.append(temp_root)
graph_list.append(temp_graph)
for sent, root, graph, root_tag, graph_tag in zip(raw_sents, root_list, graph_list, nf_list, na_list):
if ct is not None:
ct.flush()
plot_confusion_matrix(
graph, sent, graph_tag, root, root_tag, title='BiLSTM Collocation Parser', sv=True, save_dir=out_dir)
def arcs_expand(self, arcs, graph_size, label):
ans = torch.zeros((arcs.shape[0],graph_size,graph_size))
for i, arc_array in enumerate(arcs):
for pair in arc_array:
if pair[0] == pair[1]:
break
else:
ans[i, pair[0], pair[1]] = int(label[i] == 1)
return ans.to(self.device)
def train_model(self, train_file, save_model_name, num_epochs=10, prefix=['a', 'b']):
self.to(self.device)
train_loader, test_loader = self.get_dataloader(train_file, shuffle=True, prefix=prefix)
# Train the model
total_step = len(train_loader)
His = History(title="TrainingCurve", xlabel="step", ylabel="f1-score", item_name=["train_Nf", "train_Na", "test_Nf", "test_Na"])
step_idx = 0
for epoch in range(num_epochs):
self.train()
ct = Clock(len(train_loader),title="Epoch %d/%d"%(epoch+1, num_epochs))
ac_loss = 0
num = 0
f1ab = 0
f1cd = 0
for i, li in enumerate(train_loader):
li = self.expand_data(li)
[arcs, seqs, seq_len, label], ind = sort_by(li, piv=2)
[arcs, seqs, seq_len, label] = [arcs.to(self.device), seqs.to(self.device), seq_len.to(self.device), label.to(self.device)]
# this_bs = arcs.shape[0]
# Forward pass
root, graph = self.forward(seqs, seq_len)
ans = self.arcs_expand(arcs, graph.shape[-1], label)
root_ans = (ans.sum(-1) > 0).float()
root = root.squeeze()
# ans = torch.zeros_like(graph)
# for i in range(len(arcs)):
# ans[i,arcs[i][0],arcs[i][1]] = int(label[i]==1)
# loss_1 = self.criterion(root[(label==1).nonzero().squeeze(1)], arcs[:, 0][(label==1).nonzero().squeeze(1)].unsqueeze(1))
if not ((root_ans >= 0).all() & (root_ans <= 1).all()).item():
print(root_ans)
if not ((root >= 0).all() & (root <= 1).all()).item():
print(root)
loss_1 = self.bce(root, root_ans)
loss_2 = 0.3 * self.multi_target_loss(graph, ans)
# return loss_1, loss_2
# print(lossnum)
loss = loss_1 + loss_2
ac_loss += loss.item()
num += 1
# if dev:
# return root, graph, [arcs, seqs, seq_len, label], ans
# total, nf_corr, na_corr = self.acc(arcs, root, graph, label)
info_dict = self.multi_acc(arcs, root, graph, label)
f1ab += f1_score(info_dict['a'], info_dict['b'])
f1cd += f1_score(info_dict['c'], info_dict['d'])
# info_dict = {'loss':ac_loss/num, 'accNf':train_nf_corr/train_total, 'accNa':train_na_corr/train_total}
ct.flush(info=info_dict)
step_idx += 1
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
His.append_history(0, (step_idx, f1ab/num))
His.append_history(1, (step_idx, f1cd/num))
with torch.no_grad():
self.eval()
# nf_correct = 0
# na_correct = 0
# test_total = 0
for i, li in enumerate(test_loader):
li = self.expand_data(li)
[arcs, seqs, seq_len, label], ind = sort_by(li, piv=2)
[arcs, seqs, seq_len, label] = [arcs.to(self.device), seqs.to(self.device), seq_len.to(self.device), label.to(self.device)]
root, graph = self.forward(seqs, seq_len)
root = root.squeeze()
info_dict = self.multi_acc(arcs, root, graph, label)
ct.flush(info=info_dict)
# t, f, a = self.test(arcs, seqs, seq_len, label)
# test_total += t
# nf_correct += f
# na_correct += a
# info_dict = {'val_accNf':nf_correct/test_total, 'val_accNa':na_correct/test_total}
# ct.flush(info={'loss':ac_loss/num, 'val_accNf':nf_correct/test_total, 'val_accNa':na_correct/test_total})
His.append_history(2, (step_idx, f1_score(info_dict['a'], info_dict['b'])))
His.append_history(3, (step_idx, f1_score(info_dict['c'], info_dict['d'])))
# Save the model checkpoint
torch.save(self.state_dict(), save_model_name)
His.plot()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("mode", help="execute mode")
# For testing
parser.add_argument("-in_file", default=None, required=False, help="input file name to parse.")
parser.add_argument("-out_file", default=None, required=False, help="output file name to write.")
parser.add_argument("-model_name", default=None, required=False, help="model file name to use.")
parser.add_argument("-timing", type=str, default="True", help="show timing bar to monitor the executing time.")
parser.add_argument("-prefix", type=str, default="A_N", help="phrase types wanted of the model, seperated by `_`. e.g. `Nf_N`")
parser.add_argument("-show_score", type=str, default="True", help="show predicted score of each selected word in sentence.")
parser.add_argument("-threshold", type=float, default=0.4, help="threshold to filt out low pairs with confidence")
parser.add_argument("-threshold_2", type=float, default=None, required=False, help="threshold for the second word in a pair.")
parser.add_argument("-batch_size", type=int, default=128, required=False, help="testing batch_size")
parser.add_argument("-max_len", type=int, default=100, required=False, help="maximum sequence length.")
# For visualize
parser.add_argument("-out_folder", default=None, required=False, help="output folder to write imgs.")
# For training
parser.add_argument("-train_file", default=None, required=False, help="training+testing set file name.")
parser.add_argument("-epochs", type=int, default=10, required=False, help="training number of epochs.")
parser.add_argument("-save_model_name", type=str, default=None, required=False, help="save model file name.")
parser.add_argument("-pretrain_name", type=str, default=None, required=False, help="load pretrain model file name.")
args = parser.parse_args()
p = Parser(batch_size=args.batch_size)
thres = [args.threshold, args.threshold_2] if args.threshold_2 is not None else args.threshold
if args.mode == 'print' or args.out_file is None:
out_file = sys.stdout
else:
out_file = open(args.out_file, 'w')
if args.mode in ['print', 'write']:
prefix = args.prefix.split("_")
assert len(prefix) == 2
p.load_model(args.model_name)
sents = []
poss = []
f = open(args.in_file)
total_num = int(os.popen("wc -l %s" % args.in_file).read().split(' ')[0])
ct = Clock(total_num, title="===> Parsing File %s with %d lines"%(args.in_file, total_num))
for i in f:
if args.timing == "True" and args.mode != 'print':
ct.flush()
sent_list = i.strip().split(' ')
if len(sent_list) < 2:
print("TOO SHORT ==>", ' '.join(sent_list), file=out_file)
continue
elif len(sent_list)>args.max_len:
print("TOO LONG ==>", ' '.join(sent_list), file=out_file)
continue
sents.append(sent_list)
if len(sents) >= p.batch_size:
p.evaluate(sents, prefix=prefix, threshold=thres, file=out_file, print_out=(out_file is not None), show_score=(args.show_score=="True"))
sents = []
if len(sents)>0:
p.evaluate(sents, prefix=prefix, threshold=thres, file=out_file, print_out=(out_file is not None), show_score=(args.show_score=="True"))
if args.mode in ['draw', 'plot']:
prefix = args.prefix.split("_")
assert len(prefix) == 2
p.load_model(args.model_name)
sents = []
poss = []
f = open(args.in_file)
total_num = int(os.popen("wc -l %s" % args.in_file).read().split(' ')[0])
ct = Clock(total_num, title="===> Parsing File %s with %d lines"%(args.in_file, total_num))
my_ct = None
if args.timing == "True" and args.mode != 'print':
my_ct = ct
for i in f:
sent_list = i.strip().split(' ')
if len(sent_list) < 2:
print("TOO SHORT ==>", ' '.join(sent_list), file=out_file)
if my_ct is not None:
ct.flush()
continue
elif len(sent_list)>args.max_len:
print("TOO LONG ==>", ' '.join(sent_list), file=out_file)
if my_ct is not None:
ct.flush()
continue
sents.append(sent_list)
if len(sents) >= p.batch_size:
p.visualize(sents, out_dir=args.out_folder, ct=my_ct)
sents = []
if len(sents)>0:
p.visualize(sents, out_dir=args.out_folder, ct=my_ct)
if args.mode == "train":
if args.pretrain_name is not None:
p.load_model(args.pretrain_name)
p.train_model(train_file=args.train_file, save_model_name=args.save_model_name, num_epochs=args.epochs, prefix=args.prefix.split("_"))