-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
75 lines (67 loc) · 2.96 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import yaml
from data.wikipedia_dataloaders import create_wikipedia_loaders
from data.youtube_dataloaders import create_yt_and_loaders
from models.deepseek_v3 import DeepSeekV3
from seeding import set_seed
from trainable_params import print_trainable_parameters
from transformers import T5Tokenizer
from training import trainer
def load_config(config_file):
with open(config_file, 'r') as f:
config = yaml.safe_load(f)
return config
def wikipedia_main():
config = load_config('config/base.yaml')
set_seed(config["seed"])
train_config = load_config('config/train_wiki.yaml')
model_config = load_config('config/model_wiki.yaml')
tokenizer = T5Tokenizer.from_pretrained('google/mt5-base')
model_config["vocab_size"] = len(tokenizer)
model = DeepSeekV3(model_config)
print("Preparing data, please wait...")
train_loader, val_loader, test_loader = create_wikipedia_loaders(
tokenizer,
batch_size=train_config['batch_size'],
min_length = model_config["min_seq_len"],
max_length=model_config['max_seq_len'],
stride=model_config['stride'],
use_augmentations = train_config["use_augmentations"],
device='cpu'
)
config["pad_token_id"] = tokenizer.pad_token_id
print(f"Number of batches in train_loader: {len(train_loader)}")
print(f"Number of batches in val_loader: {len(val_loader)}")
print(f"Number of batches in test_loader: {len(test_loader)}")
print_trainable_parameters(model, unit="M")
model.to(config['device'])
trainer.train(model, train_loader, test_loader,val_loader, {**config, **train_config})
def youtube_comments_main():
config = load_config('config/base.yaml')
set_seed(config["seed"])
train_config = load_config('config/train_yt.yaml')
model_config = load_config('config/model_yt.yaml')
tokenizer = T5Tokenizer.from_pretrained('google/mt5-base')
model_config["vocab_size"] = len(tokenizer)
model = DeepSeekV3(model_config)
print("Preparing data, please wait...")
csv_path = "C:/Users/Precision/Onus/Data/YoutubeCommentsDataSet.csv"
train_loader, val_loader, test_loader = create_yt_and_loaders(
csv_path,
tokenizer,
batch_size=train_config['batch_size'],
min_length = model_config["min_seq_len"],
max_length=model_config['max_seq_len'],
stride=model_config['stride'],
use_augmentations = train_config["use_augmentations"],
device='cpu'
)
config["pad_token_id"] = tokenizer.pad_token_id
print(f"Number of batches in train_loader: {len(train_loader)}")
print(f"Number of batches in val_loader: {len(val_loader)}")
print(f"Number of batches in test_loader: {len(test_loader)}")
print_trainable_parameters(model, unit="M")
model.to(config['device'])
trainer.train(model, train_loader,test_loader, val_loader, {**config, **train_config})
if __name__ == "__main__":
#wikipedia_main()
youtube_comments_main()