This repository contains the source code for our paper:
- It introduces a self-attention mechanism in the skip connections to enhance the extraction of key information from deep features;
- It replaces traditional convolutions with depthwise separable convolutions to reduce the model’s computational complexity and improve inference speed;
- It substitutes the bottleneck layer with a Transformer encoder to leverage the global modeling capabilities of Transformers, allowing the model to better understand contextual information within the image.
Model | PA(%)↑ | mIoU(%)↑ | Speed(ms)↓ | Size(MB) |
---|---|---|---|---|
Unet | 95.56 | 86.8 | 5.11 | 118.76 |
SegNET | 94.554 | 84.8 | 4.26 | 112.325 |
DDRNet | 87.655 | 71.8 | 2.62 | 21.7247 |
SmaAt-UNet | 93.713 | 83.0 | 2.66 | 15.3824 |
Our model-large | 96.309 | 89 | 5.45 | 129.69 |
Our model-small | 95.359 | 86.6 | 3.44 | 31.176 |
- cuda 11.8
- python 3.8.0
- conda create --name StrawSeg python=3.8.0
- Detail please reference requierment.txt
- warren@伟
- Blog:CSDN