-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathGPT-distributed.py
173 lines (143 loc) · 7.97 KB
/
GPT-distributed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import argparse
import logging
import torch
import torch.nn.functional as F
import numpy as np
from torch import nn
from torch.autograd import Variable
from transformers import GPT2Config
from transformers import GPT2LMHeadModel, GPT2Tokenizer, BertTokenizer
from DataLoader import *
from Model import BERTGen
from utils import sample_sequence
import torch.optim as optim
import math
import sys
import pandas
import os
import numpy
import nltk
from torch.utils.tensorboard import SummaryWriter
import warnings
from tqdm import tqdm, trange
from torch.utils.data import RandomSampler, SequentialSampler
from torch.utils.data import DataLoader as DL
import torch
from torch.utils.data.distributed import DistributedSampler
warnings.filterwarnings("ignore", category=UserWarning)
device = torch.device('cuda')
def set_seed(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--model", default='gpt2', type=str)
parser.add_argument("--top_k", type=int, default=0)
parser.add_argument("--top_p", type=float, default=0.9)
parser.add_argument('--seed', type=int, default=42, help="random seed for initialization")
parser.add_argument('--do_train', default=False, action="store_true", help="whether to train or test the model")
parser.add_argument('--do_rl', default=False, action="store_true", help="whether to train or test the model")
parser.add_argument('--do_val', default=False, action="store_true", help="whether to train or test the model")
parser.add_argument('--do_test', default=False, action="store_true", help="whether to compute the BLEU scores on test split")
parser.add_argument('--do_test_challenge', default=False, action="store_true", help="whether to compute the BLEU scores on challenge split")
parser.add_argument('--do_ppl', default=False, action="store_true", help="whether to compute perplexity of the model")
parser.add_argument('--do_verify', default=False, action="store_true", help="whether compute the adv-acc score on test split")
parser.add_argument('--do_verify_challenge', default=False, action="store_true", help="whether compute the adv-acc score on challenge split")
parser.add_argument('--epoch', default=10, type=int, help="whether to train or test the model")
parser.add_argument('--batch_size', default=6, type=int, help="whether to train or test the model")
parser.add_argument('--local_rank', default=-1, type=int, help="whether to train or test the model")
parser.add_argument('--learning_rate', default=2e-6, type=float, help="whether to train or test the model")
parser.add_argument('--dataset', default='table', type=str, help="whether to train or test the model")
parser.add_argument('--every', default=50, type=int, help="whether to train or test the model")
parser.add_argument('--load_from', default='', type=str, help="whether to train or test the model")
parser.add_argument('--id', default='models', type=str, help="specify the id of the experiment")
parser.add_argument('--max_len', default=800, type=int, help="whether to train or test the model")
parser.add_argument('--dim', default=768, type=int, help="whether to train or test the model")
parser.add_argument('--layers', default=3, type=int, help="whether to train or test the model")
parser.add_argument('--head', default=4, type=int, help="whether to train or test the model")
parser.add_argument("--modelpath", type=str, default="bert-base-uncased",
help="For distributed training: local_rank")
parser.add_argument('--gradient_accumulation_steps', type=int, default=5, help="accumulation steps for gradient")
parser.add_argument('--decode_first_K', type=int, default=10000, help="For debugging purpose")
args = parser.parse_args()
if args.local_rank == -1:
device = torch.device("cuda")
args.n_gpu = 1
else:
torch.cuda.set_device(args.local_rank)
device = torch.device('cuda', args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
if args.local_rank not in [-1, 0]:
torch.distributed.barrier()
tokenizer = GPT2Tokenizer.from_pretrained(args.model)
model = GPT2LMHeadModel.from_pretrained(args.model)
#model = nn.DataParallel(model)
model.to(args.device)
if args.local_rank == 0:
torch.distributed.barrier()
criterion = nn.CrossEntropyLoss(reduction='none', ignore_index=-1)
if args.do_train:
if args.local_rank in [-1, 0]:
if not os.path.exists(args.id):
os.mkdir(args.id)
tb_writer = SummaryWriter(log_dir='tensorboard/GPT2-{}'.format(args.model))
dataset = GPTTableDataset2('data/train_lm_preprocessed.json', tokenizer, args.max_len)
if args.local_rank == -1:
sampler = RandomSampler(dataset)
else:
sampler = DistributedSampler(dataset)
train_dataloader = DL(dataset, sampler=sampler, batch_size=args.batch_size, num_workers=0)
model.train()
optimizer = optim.Adam(model.parameters(), args.learning_rate)
avg_loss = 0
global_step = 0
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank, find_unused_parameters=True)
else:
model = torch.nn.DataParallel(model)
for epoch_idx in trange(0, args.epoch, desc='Epoch', disable=args.local_rank not in [-1, 0]):
#for idx in range(0, dataset.train_len()):
for idx, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
batch = tuple(Variable(t).to(device) for t in batch)
trg_inp, trg_out, mask, caption = batch
inputs = torch.cat([caption, trg_inp], 1)
model.zero_grad()
optimizer.zero_grad()
logits = model(inputs)[0]
logits = logits[:, -trg_out.shape[1]:, :].contiguous()
loss = criterion(logits.view(-1, logits.shape[-1]), trg_out.view(-1))
loss = loss * mask.view(-1)
loss = loss.sum() / mask.sum()
avg_loss += loss.item()
loss.backward()
optimizer.step()
global_step += 1
if args.local_rank in [-1, 0] and idx % args.every == 0 and idx > 0:
tb_writer.add_scalar("perplexity", math.exp(avg_loss / args.every), global_step)
fake_inputs = caption
gt_inputs = trg_out.cpu().data.numpy()
#samples = model.sample(fake_inputs, tabfeat, caption, highlight_idx, bert)
samples = sample_sequence(model, 30, fake_inputs, [])
samples = samples[:, caption.shape[1]:]
samples = samples.cpu().data.numpy()
for s, gt in zip(samples, gt_inputs):
text = tokenizer.decode(s, clean_up_tokenization_spaces=True)
text = text[: text.find(tokenizer.eos_token)]
print("PREDICTION |||||| ", text)
text = tokenizer.decode(gt, clean_up_tokenization_spaces=True)
text = text[: text.find(tokenizer.eos_token)]
print("GROUNDTRUH |||||| ",text)
break
avg_loss = 0
if args.local_rank in [-1, 0]:
if args.model == 'gpt2':
torch.save(model.state_dict(), '{}/GPT_ep{}.pt'.format(args.id, epoch_idx))
else:
torch.save(model.state_dict(), '{}/GPT_medium_ep{}.pt'.format(args.id, epoch_idx))
if args.local_rank in [-1, 0]:
tb_writer.close()