-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathparse_programs.py
538 lines (446 loc) · 20.6 KB
/
parse_programs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
import json
import os
import sys
import argparse
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import numpy as np
from Model import BERTRanker
import torch
import torch.nn.functional as F
from torch import nn
from torch.autograd import Variable
from multiprocessing import Pool
import multiprocessing
from parser import Parser, recursion, program_eq, split_prog
from collections import Counter
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm, trange
import random
import warnings
from datetime import datetime
warnings.filterwarnings("ignore", 'This pattern has match groups')
from transformers import (WEIGHTS_NAME, AdamW, BertConfig, BertTokenizer,
BertModel, get_linear_schedule_with_warmup,
squad_convert_examples_to_features)
from APIs import all_funcs
device = torch.device('cuda')
MODEL_CLASSES = {"bert": (BertConfig, BertModel, BertTokenizer)}
class ParseNLIDataset(Dataset):
def __init__(self, bootstrap_data, weakly_data, tokenizer):
self.bootstrap_data = bootstrap_data
self.weakly_data = weakly_data
self.tokenizer = tokenizer
#self.sent_max_len = 80
self.max_len = 120
@classmethod
def convert(cls, sent, prog, title, tokenizer, max_len):
title = '[CLS] title : {} [SEP]'.format(title)
title_ids = tokenizer.encode(title, add_special_tokens=False)
types = [1] * len(title_ids)
sent = '{} [SEP]'.format(sent)
sent_ids = tokenizer.encode(sent, add_special_tokens=False)
types += [0] * len(sent_ids)
prog = '{} [SEP]'.format(prog)
prog_ids = tokenizer.encode(prog, add_special_tokens=False)
types += [1] * len(prog_ids)
token_ids = title_ids + sent_ids + prog_ids
if len(types) > max_len:
token_ids = token_ids[:max_len]
masks = [1] * max_len
types = types[:max_len]
else:
token_ids = token_ids + [tokenizer.pad_token_id] * (max_len - len(types))
masks = [1] * len(types) + [0] * (max_len - len(types))
types = types + [0] * (max_len - len(types))
return token_ids, masks, types
def __getitem__(self, index):
if random.random() < 0.4:
entry = random.choice(self.bootstrap_data)
else:
entry = random.choice(self.weakly_data)
#entry = random.choice(self.weakly_data)
sent = entry[0]
prog = entry[1]
title = entry[2]
label = entry[3]
token_ids, masks, types = self.convert(sent, prog, title, self.tokenizer, self.max_len)
token_ids = np.array(token_ids, 'int64')
types = np.array(types, 'int64')
masks = np.array(masks, 'int64')
label = np.array(label, 'int64')
return token_ids, types, masks, label
def __len__(self):
return len(self.bootstrap_data) + len(self.weakly_data)
#return len(self.weakly_data)
def get_model(model_type, model_name_or_path, cache_dir):
config_class, model_class, tokenizer_class = MODEL_CLASSES[model_type]
config = config_class.from_pretrained(
model_name_or_path,
cache_dir=cache_dir,
)
tokenizer = tokenizer_class.from_pretrained(
model_name_or_path,
do_lower_case=True,
cache_dir=cache_dir,
)
tokenizer.add_tokens(["[{}]".format(_) for _ in all_funcs])
tokenizer.add_tokens(["all_rows"])
model = BERTRanker(model_class, model_name_or_path, config, cache_dir)
model.base.resize_token_embeddings(len(tokenizer))
return tokenizer, model
def convert_program(program):
arrays, _ = split_prog(program, True)
for i in range(len(arrays) - 1):
if arrays[i + 1] == '{':
arrays[i] = '[{}]'.format(arrays[i])
return " ".join(arrays)
def evaluate(tokenizer, model, parser):
with open('data/test_lm_pos_neg.json') as f:
data = json.load(f)
data = dict(list(data.items())[:200])
positive_sents = []
negative_sents = []
table_names = []
for k, vs in data.items():
for v in vs:
positive_sents.append(v['pos'][0])
negative_sents.append(v['neg'][0])
table_names.append(k)
cores = multiprocessing.cpu_count()
print("Using {} cores to run on {} instances".format(cores, len(positive_sents)))
pool = Pool(cores)
pos_res = pool.map(parser.distribute_parse, zip(table_names, positive_sents))
pool.close()
pool.join()
print("Using {} cores to run on {} instances".format(cores, len(negative_sents)))
pool = Pool(cores)
neg_res = pool.map(parser.distribute_parse, zip(table_names, negative_sents))
pool.close()
pool.join()
model.eval()
tp, tn, fp, fn = 0, 0, 0, 0
for res, polarity in zip([pos_res, neg_res], [True, False]):
for sent, programs, title in res:
labels = []
token_ids = []
types = []
masks = []
if len(programs) > 0:
for prog in programs[:64]:
token_id, type_, mask = ParseNLIDataset.convert(sent, convert_program(prog), title, tokenizer, 120)
token_ids.append(token_id)
types.append(type_)
masks.append(mask)
labels.append('=True' in prog)
token_ids = torch.LongTensor(token_ids).to(device)
types = torch.LongTensor(types).to(device)
masks = torch.LongTensor(masks).to(device)
probs = model.prob(token_ids, types, masks)
pred = labels[torch.argmax(probs, 0).item()]
else:
pred = False
if pred and polarity:
tp += 1
elif pred and not polarity:
fp += 1
elif not pred and polarity:
fn += 1
else:
tn += 1
sys.stdout.write("TP={},TN={},FP={},FN={},ACC={} \r".format(tp, tn, fp, fn, (tp + tn)/(tp + tn + fp + fn)))
accuracy = (tp + tn)/(tp + tn + fp + fn)
print("TP={},TN={},FP={},FN={},ACC={}".format(tp, tn, fp, fn, accuracy))
model.train()
return accuracy
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--gen_prog", default=False, action="store_true", help="whether to generate programs")
parser.add_argument("--rank_prog_bert", default=False, action="store_true", help="whether to rank programs")
parser.add_argument("--parse", default=False, action="store_true", help="whether to parse the output file")
parser.add_argument("--compute_score", default=False, action="store_true", help="whether to compute SP-Acc score")
parser.add_argument("--score_file", default=None, type=str, help="The input file to be scored")
parser.add_argument("--batch_size", default=64, type=int, help="batch size for training")
parser.add_argument("--model_type", default='bert', type=str, help="the model type")
parser.add_argument("--preprocess", default=False, action="store_true", help="whether to rank programs")
parser.add_argument("--model_name_or_path", default='bert-base-uncased', type=str, help="batch size for training")
parser.add_argument("--num_workers", default=16, type=int, help="number of workers in the dataloader")
parser.add_argument("--load_from", default=None, type=str, help="which model to load from")
parser.add_argument("--csv_path", default='data/all_csv', type=str, help="all_csv path")
parser.add_argument("--cache_dir", default='/tmp/', type=str, help="where to cache the BERT model")
parser.add_argument("--learning_rate", default=1e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs", default=10, type=int, help="Total number of training epochs to perform.")
parser.add_argument("--gradient_accumulation_steps", type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--logging_steps", default=50, type=int, help="Epsilon for Adam optimizer.")
args = parser.parse_args()
if args.gen_prog:
model = Parser(args.csv_path)
with open('data/bootstrap.json') as f:
data = json.load(f)
indexing = []
table_names = []
titles = []
sents = []
parses = []
for k, vs in data.items():
for v in vs:
indexing.append(len(table_names))
table_names.append(k)
titles.append(v[2])
sents.append(v[0])
parses.append(v[-1])
def func(inputs):
index, table_name, title, sent, parse = inputs
if os.path.exists('data/bootstrap_programs/{}/{}'.format('fail', table_name)) or\
os.path.exists('data/bootstrap_programs/{}/{}'.format('success', table_name)):
return
else:
rs, masked_sent, mapping = model.parse(table_name, sent)
result = 'fail'
for r in rs:
if program_eq(r, parse):
result = 'success'
break
output_file = 'data/bootstrap_programs/{}/{}'.format(result, table_name)
with open(output_file, 'w') as f:
json.dump((table_name, sent, title, rs, parse, masked_sent, mapping), f, indent=2)
cores = multiprocessing.cpu_count()
print("Using {} cores for {} instances".format(cores, len(sents)))
pool = Pool(cores)
res = pool.map(func, zip(indexing, table_names, titles, sents, parses))
pool.close()
pool.join()
model = Parser(args.csv_path)
with open('data/train_lm.json') as f:
data = json.load(f)
indexing = []
table_names = []
titles = []
sents = []
for k, vs in data.items():
for v in vs:
indexing.append(len(table_names))
table_names.append(k)
titles.append(v[2])
sents.append(v[0])
def func(inputs):
index, table_name, title, sent = inputs
output_file = 'data/all_programs/{}_program.json'.format(index)
if not os.path.exists(output_file):
rs, masked_sent, mapping = model.parse(table_name, sent)
with open(output_file, 'w') as f:
json.dump((table_name, sent, title, rs, None, masked_sent, mapping), f, indent=2)
else:
pass
cores = multiprocessing.cpu_count()
print("Using {} cores for {} instances".format(cores, len(sents)))
pool = Pool(cores)
res = pool.map(func, zip(indexing, table_names, titles, sents))
pool.close()
pool.join()
with open('data/train_adv_lm.json') as f:
data = json.load(f)
indexing = []
table_names = []
titles = []
sents = []
for k, vs in data.items():
for v in vs:
indexing.append(len(table_names))
table_names.append(k)
titles.append(v[2])
sents.append(v[0])
def func(inputs):
index, table_name, title, sent = inputs
output_file = 'data/all_adv_programs/{}_program.json'.format(index)
if not os.path.exists(output_file):
rs, masked_sent, mapping = model.parse(table_name, sent)
with open(output_file, 'w') as f:
json.dump((table_name, sent, title, rs, None, masked_sent, mapping), f, indent=2)
else:
pass
cores = multiprocessing.cpu_count()
print("Using {} cores for {} instances".format(cores, len(sents)))
pool = Pool(cores)
res = pool.map(func, zip(indexing, table_names, titles, sents))
pool.close()
pool.join()
if args.rank_prog_bert:
if not os.path.exists('data/training_data_for_ranker.json'):
bootstrap_results = []
for d in os.listdir('data/bootstrap_programs/success/'):
if d.endswith('.csv'):
with open('data/bootstrap_programs/success/{}'.format(d), 'r') as f:
data = json.load(f)
gt_program = data[-3]
mapping = data[-1]
imapping = {v:k for k, v in mapping.items()}
for prog in data[3]:
if program_eq(prog, gt_program):
label = 1
else:
label = 0
# split program
bootstrap_results.append((data[1], convert_program(prog), data[2], label))
print("done constructing the bootstrap postive and negative samples")
# Constructing the bootstrap instances
weakly_results = []
for d in os.listdir('data/all_programs/'):
if d.endswith('.json'):
with open('data/all_programs/{}'.format(d), 'r') as f:
data = json.load(f)
mapping = data[-1]
imapping = {v:k for k, v in mapping.items()}
for prog in data[3]:
if '=True' in prog:
label = 1
elif '=False':
label = 0
else:
raise NotImplementedError
weakly_results.append((data[1], convert_program(prog), data[2], label))
for d in os.listdir('data/all_adv_programs/'):
if d.endswith('.json'):
with open('data/all_adv_programs/{}'.format(d), 'r') as f:
data = json.load(f)
mapping = data[-1]
imapping = {v:k for k, v in mapping.items()}
for prog in data[3]:
if '=True' in prog:
label = 0
elif '=False':
label = 1
else:
raise NotImplementedError
weakly_results.append((data[1], convert_program(prog), data[2], label))
print("done constructing the weakly postive and negative samples")
with open('data/training_data_for_ranker.json', 'w') as f:
json.dump({'bootstrap': bootstrap_results, 'weakly': weakly_results}, f, indent=2)
else:
with open('data/training_data_for_ranker.json', 'r') as f:
data = json.load(f)
bootstrap_results = data['bootstrap']
weakly_results = data['weakly']
tokenizer, model = get_model(args.model_type, args.model_name_or_path, args.cache_dir)
model.to(device)
model.train()
dataset = ParseNLIDataset(bootstrap_results, weakly_results, tokenizer)
train_dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
criterion = nn.CrossEntropyLoss()
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
recording_time = datetime.now().strftime('%m_%d_%H_%M')
tb_writer = SummaryWriter(log_dir='tmp/{}'.format(recording_time))
global_step = 0
tr_loss = 0
parser = Parser(args.csv_path)
evaluate_every = int(len(train_dataloader) / 10)
print("evaluating the model every {} steps".format(evaluate_every))
for epoch in trange(0, 10, desc='Epoch'):
for i, batch in enumerate(tqdm(train_dataloader, 'Iteration')):
batch = tuple(Variable(t).to(device) for t in batch)
token_ids, types, masks, label = batch
model.zero_grad()
optimizer.zero_grad()
logits = model(token_ids, types, masks)
loss = criterion(logits, label)
loss.backward()
optimizer.step()
scheduler.step() # Update learning rate schedule
global_step += 1
tr_loss += loss.item()
if global_step % args.logging_steps == 0:
tb_writer.add_scalar("loss", tr_loss / args.logging_steps, global_step)
tr_loss = 0
if i % evaluate_every == 0 and i > 0:
acc = format(evaluate(tokenizer, model, parser), '.2f')
torch.save(model.state_dict(), 'parser_models/parser_step{}_acc{}.pt'.format(global_step, acc))
tb_writer.close()
if args.parse:
with open(args.score_file, 'r') as f:
data = json.load(f)
parser = Parser(args.csv_path)
table_names = []
sents = []
for k, vs in data.items():
for v in vs:
table_names.append(k)
sents.append(v)
cores = multiprocessing.cpu_count()
print("Using {} cores to run on {} instances".format(cores, len(sents)))
pool = Pool(cores)
results = pool.map(parser.distribute_parse, zip(table_names, sents))
pool.close()
pool.join()
with open("program_{}".format(args.score_file), 'w') as f:
json.dump(results, f, indent=2)
if args.compute_score:
tokenizer, model = get_model(args.model_type, args.model_name_or_path, args.cache_dir)
model.to(device)
model.eval()
model.load_state_dict(torch.load(args.load_from))
with open(args.score_file, 'r') as f:
results = json.load(f)
succ, total = 0, 0
for sent, programs, title in results:
labels = []
token_ids = []
types = []
masks = []
if len(programs) > 0:
for prog in programs[:36]:
token_id, type_, mask = ParseNLIDataset.convert(sent, convert_program(prog), title, tokenizer, 120)
token_ids.append(token_id)
types.append(type_)
masks.append(mask)
labels.append(1 if '=True' in prog else 0)
token_ids = torch.LongTensor(token_ids).to(device)
types = torch.LongTensor(types).to(device)
masks = torch.LongTensor(masks).to(device)
probs = model.prob(token_ids, types, masks)
if len(labels) > 8:
tmp = []
for _ in probs.topk(3)[1].tolist():
tmp.append(labels[_])
if sum(tmp) > 0:
pred = 1
else:
pred = 0
else:
pred = labels[torch.argmax(probs, 0).item()]
else:
pred = 0
if pred:
succ += 1
total += 1
sys.stdout.write('accuracy = {} \r'.format(succ / total))
print("accuracy = {}".format(succ / total))
if args.preprocess:
with open('data/test_lm.json') as f:
data = json.load(f)
data = dict(list(data.items())[:200])
parser = Parser(args.csv_path)
positive_sents = []
table_names = []
for k, vs in data.items():
for v in vs:
positive_sents.append(v[0])
table_names.append(k)
for _ in zip(table_names, positive_sents):
print(parser.preprocess(_))